File: test_regress.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (138 lines) | stat: -rw-r--r-- 5,501 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause


import os.path as op

import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal

from mne.datasets import testing
from mne.io import read_raw_fif
from mne.preprocessing import (regress_artifact, create_eog_epochs,
                               EOGRegression, read_eog_regression)
from mne.utils import requires_version

data_path = testing.data_path(download=False)
raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')


@testing.requires_testing_data
def test_regress_artifact():
    """Test regressing artifact data."""
    raw = read_raw_fif(raw_fname).pick_types(meg=False, eeg=True, eog=True)
    raw.load_data()
    epochs = create_eog_epochs(raw)
    epochs.apply_baseline((None, None))
    orig_data = epochs.get_data('eeg')
    orig_norm = np.linalg.norm(orig_data)
    epochs_clean, betas = regress_artifact(epochs)
    regress_artifact(epochs, betas=betas, copy=False)  # inplace, and w/betas
    assert_allclose(epochs_clean.get_data(), epochs.get_data())
    clean_data = epochs_clean.get_data('eeg')
    clean_norm = np.linalg.norm(clean_data)
    assert orig_norm / 2 > clean_norm > orig_norm / 10
    with pytest.raises(ValueError, match=r'Invalid value.*betas\.shape.*'):
        regress_artifact(epochs, betas=betas[:-1])
    # Regressing channels onto themselves should work
    epochs, betas = regress_artifact(epochs, picks='eog', picks_artifact='eog')
    assert np.ptp(epochs.get_data('eog')) < 1E-15  # constant value
    assert_allclose(betas, 1)


@testing.requires_testing_data
def test_eog_regression():
    """Test regressing artifact data using the EOGRegression class."""
    raw_meg_eeg = read_raw_fif(raw_fname)
    raw = raw_meg_eeg.copy().pick(['eeg', 'eog', 'stim'])

    # Test various errors
    with pytest.raises(RuntimeError, match='Projections need to be applied'):
        model = EOGRegression(proj=False).fit(raw)
    with pytest.raises(RuntimeError, match='requires raw data to be loaded'):
        model = EOGRegression().fit(raw)
    raw.load_data()

    # Test regression on raw data
    model = EOGRegression()
    assert str(model) == '<EOGRegression | not fitted>'
    model.fit(raw)
    assert str(model) == '<EOGRegression | fitted to 1 artifact channel>'
    assert model.coef_.shape == (59, 1)  # 59 EEG channels, 1 EOG channel
    raw_clean = model.apply(raw)
    # Some signal must have been removed
    assert np.ptp(raw_clean.get_data('eeg')) < np.ptp(raw.get_data('eeg'))

    # Test regression on epochs
    epochs = create_eog_epochs(raw)
    model = EOGRegression().fit(epochs)
    epochs = model.apply(epochs)
    # Since these were blinks, they should be mostly gone
    assert np.ptp(epochs.get_data('eeg')) < 1E-4

    # Test regression on evoked
    evoked = epochs.average('all')
    model = EOGRegression().fit(evoked)
    evoked = model.apply(evoked)
    assert model.coef_.shape == (59, 1)
    # Since this was a blink evoked, signal should be mostly gone
    assert np.ptp(evoked.get_data('eeg')) < 1E-4

    # Test regression on evoked and applying to raw, with different ordering of
    # channels. This should not work.
    raw_ = raw.copy().drop_channels(['EEG 001'])
    raw_ = raw_.add_channels([raw.copy().pick(['EEG 001'])])
    model = EOGRegression().fit(evoked)
    with pytest.raises(ValueError, match='data channels are not compatible'):
        model.apply(raw_)

    # Test in-place operation
    raw_ = model.apply(raw, copy=False)
    assert raw_ is raw
    assert raw_._data is raw._data
    raw_ = model.apply(raw, copy=True)
    assert raw_ is not raw
    assert raw_._data is not raw._data

    # Test plotting with one channel type
    fig = model.plot()
    assert len(fig.axes) == 2  # (one topomap and one colorbar)
    assert fig.axes[0].title.get_text() == 'eeg/EOG 061'

    # Test plotting with multiple channel types
    raw_meg_eeg.load_data()
    fig = EOGRegression().fit(raw_meg_eeg).plot()
    assert len(fig.axes) == 6  # (3 topomaps and 3 colorbars)
    assert fig.axes[0].title.get_text() == 'grad/EOG 061'
    assert fig.axes[1].title.get_text() == 'mag/EOG 061'
    assert fig.axes[2].title.get_text() == 'eeg/EOG 061'

    # Test plotting with multiple channel types, multiple regressors)
    m = EOGRegression(picks_artifact=['EEG 001', 'EOG 061']).fit(raw_meg_eeg)
    assert str(m) == '<EOGRegression | fitted to 2 artifact channels>'
    fig = m.plot()
    assert len(fig.axes) == 12  # (6 topomaps and 3 colorbars)
    assert fig.axes[0].title.get_text() == 'grad/EEG 001'
    assert fig.axes[1].title.get_text() == 'mag/EEG 001'
    assert fig.axes[4].title.get_text() == 'mag/EOG 061'
    assert fig.axes[5].title.get_text() == 'eeg/EOG 061'


@requires_version('h5io')
@testing.requires_testing_data
def test_read_eog_regression(tmp_path):
    """Test saving and loading an EOGRegression object."""
    raw = read_raw_fif(raw_fname).pick(['eeg', 'eog'])
    raw.load_data()
    model = EOGRegression().fit(raw)

    model.save(tmp_path / 'weights.h5', overwrite=True)
    model2 = read_eog_regression(tmp_path / 'weights.h5')
    assert_array_equal(model.picks, model2.picks)
    assert_array_equal(model.picks_artifact, model2.picks_artifact)
    assert_array_equal(model.exclude, model2.exclude)
    assert_array_equal(model.coef_, model2.coef_)
    assert model.proj == model2.proj
    assert model.info_.keys() == model2.info_.keys()