File: rank.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (441 lines) | stat: -rw-r--r-- 17,092 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# -*- coding: utf-8 -*-
"""Some utility functions for rank estimation."""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause

import numpy as np

from .defaults import _handle_default
from .io.meas_info import _simplify_info
from .io.pick import (_picks_by_type, pick_info, pick_channels_cov,
                      _picks_to_idx)
from .io.proj import make_projector
from .utils import (logger, _compute_row_norms, _pl, _validate_type,
                    _apply_scaling_cov, _undo_scaling_cov,
                    _scaled_array, warn, _check_rank, _on_missing, verbose,
                    _check_on_missing, fill_doc)


@verbose
def estimate_rank(data, tol='auto', return_singular=False, norm=True,
                  tol_kind='absolute', verbose=None):
    """Estimate the rank of data.

    This function will normalize the rows of the data (typically
    channels or vertices) such that non-zero singular values
    should be close to one.

    Parameters
    ----------
    data : array
        Data to estimate the rank of (should be 2-dimensional).
    %(tol_rank)s
    return_singular : bool
        If True, also return the singular values that were used
        to determine the rank.
    norm : bool
        If True, data will be scaled by their estimated row-wise norm.
        Else data are assumed to be scaled. Defaults to True.
    %(tol_kind_rank)s

    Returns
    -------
    rank : int
        Estimated rank of the data.
    s : array
        If return_singular is True, the singular values that were
        thresholded to determine the rank are also returned.
    """
    from scipy import linalg
    if norm:
        data = data.copy()  # operate on a copy
        norms = _compute_row_norms(data)
        data /= norms[:, np.newaxis]
    s = linalg.svdvals(data)
    rank = _estimate_rank_from_s(s, tol, tol_kind)
    if return_singular is True:
        return rank, s
    else:
        return rank


def _estimate_rank_from_s(s, tol='auto', tol_kind='absolute'):
    """Estimate the rank of a matrix from its singular values.

    Parameters
    ----------
    s : ndarray, shape (..., ndim)
        The singular values of the matrix.
    tol : float | 'auto'
        Tolerance for singular values to consider non-zero in calculating the
        rank. Can be 'auto' to use the same thresholding as
        ``scipy.linalg.orth`` (assuming np.float64 datatype) adjusted
        by a factor of 2.
    tol_kind : str
        Can be "absolute" or "relative".

    Returns
    -------
    rank : ndarray, shape (...)
        The estimated rank.
    """
    s = np.array(s, float)
    max_s = np.amax(s, axis=-1)
    if isinstance(tol, str):
        if tol not in ('auto', 'float32'):
            raise ValueError('tol must be "auto" or float, got %r' % (tol,))
        # XXX this should be float32 probably due to how we save and
        # load data, but it breaks test_make_inverse_operator (!)
        # The factor of 2 gets test_compute_covariance_auto_reg[None]
        # to pass without breaking minimum norm tests. :(
        # Passing 'float32' is a hack workaround for test_maxfilter_get_rank :(
        if tol == 'float32':
            eps = np.finfo(np.float32).eps
        else:
            eps = np.finfo(np.float64).eps
        tol = s.shape[-1] * max_s * eps
        if s.ndim == 1:  # typical
            logger.info('    Using tolerance %0.2g (%0.2g eps * %d dim * %0.2g'
                        '  max singular value)' % (tol, eps, len(s), max_s))
    elif not (isinstance(tol, np.ndarray) and tol.dtype.kind == 'f'):
        tol = float(tol)
        if tol_kind == 'relative':
            tol = tol * max_s

    rank = np.sum(s > tol, axis=-1)
    return rank


def _estimate_rank_raw(raw, picks=None, tol=1e-4, scalings='norm',
                       with_ref_meg=False, tol_kind='absolute'):
    """Aid the transition away from raw.estimate_rank."""
    if picks is None:
        picks = _picks_to_idx(raw.info, picks, with_ref_meg=with_ref_meg)
    # conveniency wrapper to expose the expert "tol" option + scalings options
    return _estimate_rank_meeg_signals(
        raw[picks][0], pick_info(raw.info, picks), scalings,
        tol, False, tol_kind)


@fill_doc
def _estimate_rank_meeg_signals(data, info, scalings, tol='auto',
                                return_singular=False, tol_kind='absolute'):
    """Estimate rank for M/EEG data.

    Parameters
    ----------
    data : np.ndarray of float, shape(n_channels, n_samples)
        The M/EEG signals.
    %(info_not_none)s
    scalings : dict | 'norm' | np.ndarray | None
        The rescaling method to be applied. If dict, it will override the
        following default dict:

            dict(mag=1e15, grad=1e13, eeg=1e6)

        If 'norm' data will be scaled by channel-wise norms. If array,
        pre-specified norms will be used. If None, no scaling will be applied.
    tol : float | str
        Tolerance. See ``estimate_rank``.
    return_singular : bool
        If True, also return the singular values that were used
        to determine the rank.
    tol_kind : str
        Tolerance kind. See ``estimate_rank``.

    Returns
    -------
    rank : int
        Estimated rank of the data.
    s : array
        If return_singular is True, the singular values that were
        thresholded to determine the rank are also returned.
    """
    picks_list = _picks_by_type(info)
    if data.shape[1] < data.shape[0]:
        ValueError("You've got fewer samples than channels, your "
                   "rank estimate might be inaccurate.")
    with _scaled_array(data, picks_list, scalings):
        out = estimate_rank(data, tol=tol, norm=False,
                            return_singular=return_singular,
                            tol_kind=tol_kind)
    rank = out[0] if isinstance(out, tuple) else out
    ch_type = ' + '.join(list(zip(*picks_list))[0])
    logger.info('    Estimated rank (%s): %d' % (ch_type, rank))
    return out


@verbose
def _estimate_rank_meeg_cov(data, info, scalings, tol='auto',
                            return_singular=False, verbose=None):
    """Estimate rank of M/EEG covariance data, given the covariance.

    Parameters
    ----------
    data : np.ndarray of float, shape (n_channels, n_channels)
        The M/EEG covariance.
    %(info_not_none)s
    scalings : dict | 'norm' | np.ndarray | None
        The rescaling method to be applied. If dict, it will override the
        following default dict:

            dict(mag=1e12, grad=1e11, eeg=1e5)

        If 'norm' data will be scaled by channel-wise norms. If array,
        pre-specified norms will be used. If None, no scaling will be applied.
    tol : float | str
        Tolerance. See ``estimate_rank``.
    return_singular : bool
        If True, also return the singular values that were used
        to determine the rank.

    Returns
    -------
    rank : int
        Estimated rank of the data.
    s : array
        If return_singular is True, the singular values that were
        thresholded to determine the rank are also returned.
    """
    picks_list = _picks_by_type(info, exclude=[])
    scalings = _handle_default('scalings_cov_rank', scalings)
    _apply_scaling_cov(data, picks_list, scalings)
    if data.shape[1] < data.shape[0]:
        ValueError("You've got fewer samples than channels, your "
                   "rank estimate might be inaccurate.")
    out = estimate_rank(data, tol=tol, norm=False,
                        return_singular=return_singular)
    rank = out[0] if isinstance(out, tuple) else out
    ch_type = ' + '.join(list(zip(*picks_list))[0])
    logger.info('    Estimated rank (%s): %d' % (ch_type, rank))
    _undo_scaling_cov(data, picks_list, scalings)
    return out


@verbose
def _get_rank_sss(inst, msg='You should use data-based rank estimate instead',
                  verbose=None):
    """Look up rank from SSS data.

    .. note::
        Throws an error if SSS has not been applied.

    Parameters
    ----------
    inst : instance of Raw, Epochs or Evoked, or Info
        Any MNE object with an .info attribute

    Returns
    -------
    rank : int
        The numerical rank as predicted by the number of SSS
        components.
    """
    # XXX this is too basic for movement compensated data
    # https://github.com/mne-tools/mne-python/issues/4676
    from .io.meas_info import Info
    info = inst if isinstance(inst, Info) else inst.info
    del inst

    proc_info = info.get('proc_history', [])
    if len(proc_info) > 1:
        logger.info('Found multiple SSS records. Using the first.')
    if len(proc_info) == 0 or 'max_info' not in proc_info[0] or \
            'in_order' not in proc_info[0]['max_info']['sss_info']:
        raise ValueError('Could not find Maxfilter information in '
                         'info["proc_history"]. %s' % msg)
    proc_info = proc_info[0]
    max_info = proc_info['max_info']
    inside = max_info['sss_info']['in_order']
    nfree = (inside + 1) ** 2 - 1
    nfree -= (len(max_info['sss_info']['components'][:nfree]) -
              max_info['sss_info']['components'][:nfree].sum())
    return nfree


def _info_rank(info, ch_type, picks, rank):
    if ch_type in ['meg', 'mag', 'grad'] and rank != 'full':
        try:
            return _get_rank_sss(info)
        except ValueError:
            pass
    return len(picks)


def _compute_rank_int(inst, *args, **kwargs):
    """Wrap compute_rank but yield an int."""
    # XXX eventually we should unify how channel types are handled
    # so that we don't need to do this, or we do it everywhere.
    # Using pca=True in compute_whitener might help.
    return sum(compute_rank(inst, *args, **kwargs).values())


@verbose
def compute_rank(inst, rank=None, scalings=None, info=None, tol='auto',
                 proj=True, tol_kind='absolute', on_rank_mismatch='ignore',
                 verbose=None):
    """Compute the rank of data or noise covariance.

    This function will normalize the rows of the data (typically
    channels or vertices) such that non-zero singular values
    should be close to one.

    Parameters
    ----------
    inst : instance of Raw, Epochs, or Covariance
        Raw measurements to compute the rank from or the covariance.
    %(rank_none)s
    scalings : dict | None (default None)
        Defaults to ``dict(mag=1e15, grad=1e13, eeg=1e6)``.
        These defaults will scale different channel types
        to comparable values.
    %(info)s Only necessary if ``inst`` is a :class:`mne.Covariance`
        object (since this does not provide ``inst.info``).
    %(tol_rank)s
    proj : bool
        If True, all projs in ``inst`` and ``info`` will be applied or
        considered when ``rank=None`` or ``rank='info'``.
    %(tol_kind_rank)s
    %(on_rank_mismatch)s
    %(verbose)s

    Returns
    -------
    rank : dict
        Estimated rank of the data for each channel type.
        To get the total rank, you can use ``sum(rank.values())``.

    Notes
    -----
    .. versionadded:: 0.18
    """
    from .io.base import BaseRaw
    from .epochs import BaseEpochs
    from . import Covariance

    rank = _check_rank(rank)
    scalings = _handle_default('scalings_cov_rank', scalings)
    _check_on_missing(on_rank_mismatch, 'on_rank_mismatch')

    if isinstance(inst, Covariance):
        inst_type = 'covariance'
        if info is None:
            raise ValueError('info cannot be None if inst is a Covariance.')
        # Reset bads as it's already taken into account in inst['names']
        info = info.copy()
        info['bads'] = []
        inst = pick_channels_cov(
            inst, set(inst['names']) & set(info['ch_names']), exclude=[])
        if info['ch_names'] != inst['names']:
            info = pick_info(info, [info['ch_names'].index(name)
                                    for name in inst['names']])
    else:
        info = inst.info
        inst_type = 'data'
    logger.info('Computing rank from %s with rank=%r' % (inst_type, rank))

    _validate_type(rank, (str, dict, None), 'rank')
    if isinstance(rank, str):  # string, either 'info' or 'full'
        rank_type = 'info'
        info_type = rank
        rank = dict()
    else:  # None or dict
        rank_type = 'estimated'
        if rank is None:
            rank = dict()

    simple_info = _simplify_info(info)
    picks_list = _picks_by_type(info, meg_combined=True, ref_meg=False,
                                exclude='bads')
    for ch_type, picks in picks_list:
        est_verbose = None
        if ch_type in rank:
            # raise an error of user-supplied rank exceeds number of channels
            if rank[ch_type] > len(picks):
                raise ValueError(
                    f'rank[{repr(ch_type)}]={rank[ch_type]} exceeds the number'
                    f' of channels ({len(picks)})')
            # special case: if whitening a covariance, check the passed rank
            # against the estimated one
            est_verbose = False
            if not (on_rank_mismatch != 'ignore' and
                    rank_type == 'estimated' and
                    ch_type == 'meg' and
                    isinstance(inst, Covariance) and
                    not inst['diag']):
                continue
        ch_names = [info['ch_names'][pick] for pick in picks]
        n_chan = len(ch_names)
        if proj:
            proj_op, n_proj, _ = make_projector(info['projs'], ch_names)
        else:
            proj_op, n_proj = None, 0
        if rank_type == 'info':
            # use info
            this_rank = _info_rank(info, ch_type, picks, info_type)
            if info_type != 'full':
                this_rank -= n_proj
                logger.info('    %s: rank %d after %d projector%s applied to '
                            '%d channel%s'
                            % (ch_type.upper(), this_rank,
                               n_proj, _pl(n_proj), n_chan, _pl(n_chan)))
            else:
                logger.info('    %s: rank %d from info'
                            % (ch_type.upper(), this_rank))
        else:
            # Use empirical estimation
            assert rank_type == 'estimated'
            if isinstance(inst, (BaseRaw, BaseEpochs)):
                if isinstance(inst, BaseRaw):
                    data = inst.get_data(picks, reject_by_annotation='omit')
                else:  # isinstance(inst, BaseEpochs):
                    data = inst.get_data()[:, picks, :]
                    data = np.concatenate(data, axis=1)
                if proj:
                    data = np.dot(proj_op, data)
                this_rank = _estimate_rank_meeg_signals(
                    data, pick_info(simple_info, picks), scalings, tol, False,
                    tol_kind)
            else:
                assert isinstance(inst, Covariance)
                if inst['diag']:
                    this_rank = (inst['data'][picks] > 0).sum() - n_proj
                else:
                    data = inst['data'][picks][:, picks]
                    if proj:
                        data = np.dot(np.dot(proj_op, data), proj_op.T)

                    this_rank, sing = _estimate_rank_meeg_cov(
                        data, pick_info(simple_info, picks), scalings, tol,
                        return_singular=True, verbose=est_verbose)
                    if ch_type in rank:
                        ratio = sing[this_rank - 1] / sing[rank[ch_type] - 1]
                        if ratio > 100:
                            msg = (
                                f'The passed rank[{repr(ch_type)}]='
                                f'{rank[ch_type]} exceeds the estimated rank '
                                f'of the noise covariance ({this_rank}) '
                                f'leading to a potential increase in '
                                f'noise during whitening by a factor '
                                f'of {np.sqrt(ratio):0.1g}. Ensure that the '
                                f'rank correctly corresponds to that of the '
                                f'given noise covariance matrix.')
                            _on_missing(on_rank_mismatch, msg,
                                        'on_rank_mismatch')
                        continue
            this_info_rank = _info_rank(info, ch_type, picks, 'info')
            logger.info('    %s: rank %d computed from %d data channel%s '
                        'with %d projector%s'
                        % (ch_type.upper(), this_rank, n_chan, _pl(n_chan),
                           n_proj, _pl(n_proj)))
            if this_rank > this_info_rank:
                warn('Something went wrong in the data-driven estimation of '
                     'the data rank as it exceeds the theoretical rank from '
                     'the info (%d > %d). Consider setting rank to "auto" or '
                     'setting it explicitly as an integer.' %
                     (this_rank, this_info_rank))
        if ch_type not in rank:
            rank[ch_type] = this_rank

    return rank