1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
# Authors: Yousra Bekhti <yousra.bekhti@gmail.com>
# Mark Wronkiewicz <wronk@uw.edu>
# Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD (3-clause)
from functools import partial
import numpy as np
from mne.utils import _check_option, fill_doc, _validate_type
def _check_stc(stc1, stc2):
"""Check that stcs are compatible."""
if stc1.data.shape != stc2.data.shape:
raise ValueError('Data in stcs must have the same size')
if np.all(stc1.times != stc2.times):
raise ValueError('Times of two stcs must match.')
def source_estimate_quantification(stc1, stc2, metric='rms'):
"""Calculate STC similarities across all sources and times.
Parameters
----------
stc1 : SourceEstimate
First source estimate for comparison.
stc2 : SourceEstimate
Second source estimate for comparison.
metric : str
Metric to calculate, 'rms' or 'cosine'.
Returns
-------
score : float | array
Calculated metric.
Notes
-----
Metric calculation has multiple options:
* rms: Root mean square of difference between stc data matrices.
* cosine: Normalized correlation of all elements in stc data matrices.
.. versionadded:: 0.10.0
"""
_check_option('metric', metric, ['rms', 'cosine'])
# This is checking that the datas are having the same size meaning
# no comparison between distributed and sparse can be done so far.
_check_stc(stc1, stc2)
data1, data2 = stc1.data, stc2.data
# Calculate root mean square difference between two matrices
if metric == 'rms':
score = np.sqrt(np.mean((data1 - data2) ** 2))
# Calculate correlation coefficient between matrix elements
elif metric == 'cosine':
score = 1. - _cosine(data1, data2)
return score
def _uniform_stc(stc1, stc2):
"""Uniform vertices of two stcs.
This function returns the stcs with the same vertices by
inserting zeros in data for missing vertices.
"""
if len(stc1.vertices) != len(stc2.vertices):
raise ValueError('Data in stcs must have the same number of vertices '
'components. Got %d != %d.' %
(len(stc1.vertices), len(stc2.vertices)))
idx_start1 = 0
idx_start2 = 0
stc1 = stc1.copy()
stc2 = stc2.copy()
all_data1 = []
all_data2 = []
for i, (vert1, vert2) in enumerate(zip(stc1.vertices, stc2.vertices)):
vert = np.union1d(vert1, vert2)
data1 = np.zeros([len(vert), stc1.data.shape[1]])
data2 = np.zeros([len(vert), stc2.data.shape[1]])
data1[np.searchsorted(vert, vert1)] = \
stc1.data[idx_start1:idx_start1 + len(vert1)]
data2[np.searchsorted(vert, vert2)] = \
stc2.data[idx_start2:idx_start2 + len(vert2)]
idx_start1 += len(vert1)
idx_start2 += len(vert2)
stc1.vertices[i] = vert
stc2.vertices[i] = vert
all_data1.append(data1)
all_data2.append(data2)
stc1._data = np.concatenate(all_data1, axis=0)
stc2._data = np.concatenate(all_data2, axis=0)
return stc1, stc2
def _apply(func, stc_true, stc_est, per_sample):
"""Apply metric to stcs.
Applies a metric to each pair of columns of stc_true and stc_est
if per_sample is True. Otherwise it applies it to stc_true and stc_est
directly.
"""
if per_sample:
metric = np.empty(stc_true.data.shape[1]) # one value per time point
for i in range(stc_true.data.shape[1]):
metric[i] = func(stc_true.data[:, i:i + 1],
stc_est.data[:, i:i + 1])
else:
metric = func(stc_true.data, stc_est.data)
return metric
def _thresholding(stc_true, stc_est, threshold):
relative = isinstance(threshold, str)
threshold = _check_threshold(threshold)
if relative:
if stc_true is not None:
stc_true._data[np.abs(stc_true._data) <=
threshold * np.max(np.abs(stc_true._data))] = 0.
stc_est._data[np.abs(stc_est._data) <=
threshold * np.max(np.abs(stc_est._data))] = 0.
else:
if stc_true is not None:
stc_true._data[np.abs(stc_true._data) <= threshold] = 0.
stc_est._data[np.abs(stc_est._data) <= threshold] = 0.
return stc_true, stc_est
def _cosine(x, y):
p = x.ravel()
q = y.ravel()
p_norm = np.linalg.norm(p)
q_norm = np.linalg.norm(q)
if p_norm * q_norm:
return (p.T @ q) / (p_norm * q_norm)
elif p_norm == q_norm:
return 1
else:
return 0
@fill_doc
def cosine_score(stc_true, stc_est, per_sample=True):
"""Compute cosine similarity between 2 source estimates.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
.. versionadded:: 1.2
"""
stc_true, stc_est = _uniform_stc(stc_true, stc_est)
metric = _apply(_cosine, stc_true, stc_est, per_sample=per_sample)
return metric
def _check_threshold(threshold):
"""Accept a float or a string that ends with %."""
_validate_type(threshold, ('numeric', str), 'threshold')
if isinstance(threshold, str):
if not threshold.endswith("%"):
raise ValueError('Threshold if a string must end with '
'"%%". Got %s.' % threshold)
threshold = float(threshold[:-1]) / 100.0
threshold = float(threshold)
if not 0 <= threshold <= 1:
raise ValueError(
'Threshold proportion must be between 0 and 1 (inclusive), but '
f'got {threshold}')
return threshold
def _abs_col_sum(x):
return np.abs(x).sum(axis=1)
def _dle(p, q, src, stc):
"""Aux function to compute dipole localization error."""
from scipy.spatial.distance import cdist
p = _abs_col_sum(p)
q = _abs_col_sum(q)
idx1 = np.nonzero(p)[0]
idx2 = np.nonzero(q)[0]
points = []
for i in range(len(src)):
points.append(src[i]['rr'][stc.vertices[i]])
points = np.concatenate(points, axis=0)
if len(idx1) and len(idx2):
D = cdist(points[idx1], points[idx2])
D_min_1 = np.min(D, axis=0)
D_min_2 = np.min(D, axis=1)
return (np.mean(D_min_1) + np.mean(D_min_2)) / 2.
else:
return np.inf
@fill_doc
def region_localization_error(stc_true, stc_est, src, threshold='90%',
per_sample=True):
r"""Compute region localization error (RLE) between 2 source estimates.
.. math::
RLE = \frac{1}{2Q}\sum_{k \in I} \min_{l \in \hat{I}}{||r_k - r_l||} + \frac{1}{2\hat{Q}}\sum_{l \in \hat{I}} \min_{k \in I}{||r_k - r_l||}
where :math:`I` and :math:`\hat{I}` denote respectively the original and
estimated indexes of active sources, :math:`Q` and :math:`\hat{Q}` are
the numbers of original and estimated active sources.
:math:`r_k` denotes the position of the k-th source dipole in space
and :math:`||\cdot||` is an Euclidean norm in :math:`\mathbb{R}^3`.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
src : instance of SourceSpaces
The source space on which the source estimates are defined.
threshold : float | str
The threshold to apply to source estimates before computing
the dipole localization error. If a string the threshold is
a percentage and it should end with the percent character.
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
Papers :footcite:`MaksymenkoEtAl2017` and :footcite:`BeckerEtAl2017`
use term Dipole Localization Error (DLE) for the same formula. Paper
:footcite:`YaoEtAl2005` uses term Error Distance (ED) for the same formula.
To unify the terminology and to avoid confusion with other cases
of using term DLE but for different metric :footcite:`MolinsEtAl2008`, we
use term Region Localization Error (RLE).
.. versionadded:: 1.2
References
----------
.. footbibliography::
""" # noqa: E501
stc_true, stc_est = _uniform_stc(stc_true, stc_est)
stc_true, stc_est = _thresholding(stc_true, stc_est, threshold)
func = partial(_dle, src=src, stc=stc_true)
metric = _apply(func, stc_true, stc_est, per_sample=per_sample)
return metric
def _roc_auc_score(p, q):
from sklearn.metrics import roc_auc_score
return roc_auc_score(np.abs(p) > 0, np.abs(q))
@fill_doc
def roc_auc_score(stc_true, stc_est, per_sample=True):
"""Compute ROC AUC between 2 source estimates.
ROC stands for receiver operating curve and AUC is Area under the curve.
When computing this metric the stc_true must be thresholded
as any non-zero value will be considered as a positive.
The ROC-AUC metric is computed between amplitudes of the source
estimates, i.e. after taking the absolute values.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
.. versionadded:: 1.2
"""
stc_true, stc_est = _uniform_stc(stc_true, stc_est)
metric = _apply(_roc_auc_score, stc_true, stc_est, per_sample=per_sample)
return metric
def _f1_score(p, q):
from sklearn.metrics import f1_score
return f1_score(_abs_col_sum(p) > 0, _abs_col_sum(q) > 0)
@fill_doc
def f1_score(stc_true, stc_est, threshold='90%', per_sample=True):
"""Compute the F1 score, also known as balanced F-score or F-measure.
The F1 score can be interpreted as a weighted average of the precision
and recall, where an F1 score reaches its best value at 1 and worst score
at 0. The relative contribution of precision and recall to the F1
score are equal.
The formula for the F1 score is::
F1 = 2 * (precision * recall) / (precision + recall)
Threshold is used first for data binarization.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
threshold : float | str
The threshold to apply to source estimates before computing
the f1 score. If a string the threshold is
a percentage and it should end with the percent character.
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
.. versionadded:: 1.2
"""
stc_true, stc_est = _uniform_stc(stc_true, stc_est)
stc_true, stc_est = _thresholding(stc_true, stc_est, threshold)
metric = _apply(_f1_score, stc_true, stc_est, per_sample=per_sample)
return metric
def _precision_score(p, q):
from sklearn.metrics import precision_score
return precision_score(_abs_col_sum(p) > 0, _abs_col_sum(q) > 0)
@fill_doc
def precision_score(stc_true, stc_est, threshold='90%', per_sample=True):
"""Compute the precision.
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
true positives and ``fp`` the number of false positives. The precision is
intuitively the ability of the classifier not to label as positive a sample
that is negative.
The best value is 1 and the worst value is 0.
Threshold is used first for data binarization.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
threshold : float | str
The threshold to apply to source estimates before computing
the precision. If a string the threshold is
a percentage and it should end with the percent character.
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
.. versionadded:: 1.2
"""
stc_true, stc_est = _uniform_stc(stc_true, stc_est)
stc_true, stc_est = _thresholding(stc_true, stc_est, threshold)
metric = _apply(_precision_score, stc_true, stc_est, per_sample=per_sample)
return metric
def _recall_score(p, q):
from sklearn.metrics import recall_score
return recall_score(_abs_col_sum(p) > 0, _abs_col_sum(q) > 0)
@fill_doc
def recall_score(stc_true, stc_est, threshold='90%', per_sample=True):
"""Compute the recall.
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
true positives and ``fn`` the number of false negatives. The recall is
intuitively the ability of the classifier to find all the positive samples.
The best value is 1 and the worst value is 0.
Threshold is used first for data binarization.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
threshold : float | str
The threshold to apply to source estimates before computing
the recall. If a string the threshold is
a percentage and it should end with the percent character.
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
.. versionadded:: 1.2
"""
stc_true, stc_est = _uniform_stc(stc_true, stc_est)
stc_true, stc_est = _thresholding(stc_true, stc_est, threshold)
metric = _apply(_recall_score, stc_true, stc_est, per_sample=per_sample)
return metric
def _prepare_ppe_sd(stc_true, stc_est, src, threshold='50%'):
stc_true = stc_true.copy()
stc_est = stc_est.copy()
n_dipoles = 0
for i, v in enumerate(stc_true.vertices):
if len(v):
n_dipoles += len(v)
r_true = src[i]['rr'][v]
if n_dipoles != 1:
raise ValueError('True source must contain only one dipole, got %d.'
% n_dipoles)
_, stc_est = _thresholding(None, stc_est, threshold)
r_est = np.empty([0, 3])
for i, v in enumerate(stc_est.vertices):
if len(v):
r_est = np.vstack([r_est, src[i]['rr'][v]])
return stc_est, r_true, r_est
def _peak_position_error(p, q, r_est, r_true):
q = _abs_col_sum(q)
if np.sum(q):
q /= np.sum(q)
r_est_mean = np.dot(q, r_est)
return np.linalg.norm(r_est_mean - r_true)
else:
return np.inf
@fill_doc
def peak_position_error(stc_true, stc_est, src, threshold='50%',
per_sample=True):
r"""Compute the peak position error.
The peak position error measures the distance between the center-of-mass
of the estimated and the true source.
.. math::
PPE = \| \dfrac{\sum_i|s_i|r_{i}}{\sum_i|s_i|}
- r_{true}\|,
where :math:`r_{true}` is a true dipole position,
:math:`r_i` and :math:`|s_i|` denote respectively the position
and amplitude of i-th dipole in source estimate.
Threshold is used on estimated source for focusing the metric to strong
amplitudes and omitting the low-amplitude values.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
src : instance of SourceSpaces
The source space on which the source estimates are defined.
threshold : float | str
The threshold to apply to source estimates before computing
the recall. If a string the threshold is
a percentage and it should end with the percent character.
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
These metrics are documented in :footcite:`StenroosHauk2013` and
:footcite:`LinEtAl2006a`.
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
stc_est, r_true, r_est = _prepare_ppe_sd(stc_true, stc_est, src, threshold)
func = partial(_peak_position_error, r_est=r_est, r_true=r_true)
metric = _apply(func, stc_true, stc_est, per_sample=per_sample)
return metric
def _spatial_deviation(p, q, r_est, r_true):
q = _abs_col_sum(q)
if np.sum(q):
q /= np.sum(q)
r_true_tile = np.tile(r_true, (r_est.shape[0], 1))
r_diff = r_est - r_true_tile
r_diff_norm = np.sum(r_diff ** 2, axis=1)
return np.sqrt(np.dot(q, r_diff_norm))
else:
return np.inf
@fill_doc
def spatial_deviation_error(stc_true, stc_est, src, threshold='50%',
per_sample=True):
r"""Compute the spatial deviation.
The spatial deviation characterizes the spread of the estimate source
around the true source.
.. math::
SD = \dfrac{\sum_i|s_i|\|r_{i} - r_{true}\|^2}{\sum_i|s_i|}.
where :math:`r_{true}` is a true dipole position,
:math:`r_i` and :math:`|s_i|` denote respectively the position
and amplitude of i-th dipole in source estimate.
Threshold is used on estimated source for focusing the metric to strong
amplitudes and omitting the low-amplitude values.
Parameters
----------
%(stc_true_metric)s
%(stc_est_metric)s
src : instance of SourceSpaces
The source space on which the source estimates are defined.
threshold : float | str
The threshold to apply to source estimates before computing
the recall. If a string the threshold is
a percentage and it should end with the percent character.
%(per_sample_metric)s
Returns
-------
%(stc_metric)s
Notes
-----
These metrics are documented in :footcite:`StenroosHauk2013` and
:footcite:`LinEtAl2006a`.
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
stc_est, r_true, r_est = _prepare_ppe_sd(stc_true, stc_est, src, threshold)
func = partial(_spatial_deviation, r_est=r_est, r_true=r_true)
metric = _apply(func, stc_true, stc_est, per_sample=per_sample)
return metric
|