1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Mads Jensen <mje.mads@gmail.com>
#
# License: BSD-3-Clause
import contextlib
import copy
import os.path as op
from types import GeneratorType
import numpy as np
from .baseline import rescale
from .cov import Covariance
from .evoked import _get_peak
from .filter import resample
from .fixes import _safe_svd
from ._freesurfer import (_import_nibabel, _get_mri_info_data,
_get_atlas_values, read_freesurfer_lut)
from .io.constants import FIFF
from .io.pick import pick_types
from .surface import (read_surface, _get_ico_surface, mesh_edges,
_project_onto_surface)
from .source_space import (_ensure_src, _get_morph_src_reordering,
_ensure_src_subject, SourceSpaces, _get_src_nn,
_check_volume_labels)
from .transforms import _get_trans, apply_trans
from .utils import (get_subjects_dir, _check_subject, logger, verbose, _pl,
_time_mask, warn, copy_function_doc_to_method_doc,
fill_doc, _check_option, _validate_type, _check_src_normal,
_check_stc_units, _check_pandas_installed,
_check_pandas_index_arguments, _convert_times, _ensure_int,
_build_data_frame, _check_time_format, _path_like,
sizeof_fmt, object_size, _check_fname, _import_h5io_funcs)
from .viz import (plot_source_estimates, plot_vector_source_estimates,
plot_volume_source_estimates)
from .io.base import TimeMixin
from .io.meas_info import Info
def _read_stc(filename):
"""Aux Function."""
with open(filename, 'rb') as fid:
buf = fid.read()
stc = dict()
offset = 0
num_bytes = 4
# read tmin in ms
stc['tmin'] = float(np.frombuffer(buf, dtype=">f4", count=1,
offset=offset))
stc['tmin'] /= 1000.0
offset += num_bytes
# read sampling rate in ms
stc['tstep'] = float(np.frombuffer(buf, dtype=">f4", count=1,
offset=offset))
stc['tstep'] /= 1000.0
offset += num_bytes
# read number of vertices/sources
vertices_n = int(np.frombuffer(buf, dtype=">u4", count=1, offset=offset))
offset += num_bytes
# read the source vector
stc['vertices'] = np.frombuffer(buf, dtype=">u4", count=vertices_n,
offset=offset)
offset += num_bytes * vertices_n
# read the number of timepts
data_n = int(np.frombuffer(buf, dtype=">u4", count=1, offset=offset))
offset += num_bytes
if (vertices_n and # vertices_n can be 0 (empty stc)
((len(buf) // 4 - 4 - vertices_n) % (data_n * vertices_n)) != 0):
raise ValueError('incorrect stc file size')
# read the data matrix
stc['data'] = np.frombuffer(buf, dtype=">f4", count=vertices_n * data_n,
offset=offset)
stc['data'] = stc['data'].reshape([data_n, vertices_n]).T
return stc
def _write_stc(filename, tmin, tstep, vertices, data):
"""Write an STC file.
Parameters
----------
filename : string
The name of the STC file.
tmin : float
The first time point of the data in seconds.
tstep : float
Time between frames in seconds.
vertices : array of integers
Vertex indices (0 based).
data : 2D array
The data matrix (nvert * ntime).
"""
filename
with open(filename, 'wb') as fid:
# write start time in ms
fid.write(np.array(1000 * tmin, dtype='>f4').tobytes())
# write sampling rate in ms
fid.write(np.array(1000 * tstep, dtype='>f4').tobytes())
# write number of vertices
fid.write(np.array(vertices.shape[0], dtype='>u4').tobytes())
# write the vertex indices
fid.write(np.array(vertices, dtype='>u4').tobytes())
# write the number of timepts
fid.write(np.array(data.shape[1], dtype='>u4').tobytes())
# write the data
fid.write(np.array(data.T, dtype='>f4').tobytes())
def _read_3(fid):
"""Read 3 byte integer from file."""
data = np.fromfile(fid, dtype=np.uint8, count=3).astype(np.int32)
out = np.left_shift(data[0], 16) + np.left_shift(data[1], 8) + data[2]
return out
def _read_w(filename):
"""Read a w file.
w files contain activations or source reconstructions for a single time
point.
Parameters
----------
filename : string
The name of the w file.
Returns
-------
data: dict
The w structure. It has the following keys:
vertices vertex indices (0 based)
data The data matrix (nvert long)
"""
with open(filename, 'rb', buffering=0) as fid: # buffering=0 for np bug
# skip first 2 bytes
fid.read(2)
# read number of vertices/sources (3 byte integer)
vertices_n = int(_read_3(fid))
vertices = np.zeros((vertices_n), dtype=np.int32)
data = np.zeros((vertices_n), dtype=np.float32)
# read the vertices and data
for i in range(vertices_n):
vertices[i] = _read_3(fid)
data[i] = np.fromfile(fid, dtype='>f4', count=1)[0]
w = dict()
w['vertices'] = vertices
w['data'] = data
return w
def _write_3(fid, val):
"""Write 3 byte integer to file."""
f_bytes = np.zeros((3), dtype=np.uint8)
f_bytes[0] = (val >> 16) & 255
f_bytes[1] = (val >> 8) & 255
f_bytes[2] = val & 255
fid.write(f_bytes.tobytes())
def _write_w(filename, vertices, data):
"""Write a w file.
w files contain activations or source reconstructions for a single time
point.
Parameters
----------
filename: string
The name of the w file.
vertices: array of int
Vertex indices (0 based).
data: 1D array
The data array (nvert).
"""
assert (len(vertices) == len(data))
with open(filename, 'wb') as fid:
# write 2 zero bytes
fid.write(np.zeros((2), dtype=np.uint8).tobytes())
# write number of vertices/sources (3 byte integer)
vertices_n = len(vertices)
_write_3(fid, vertices_n)
# write the vertices and data
for i in range(vertices_n):
_write_3(fid, vertices[i])
# XXX: without float() endianness is wrong, not sure why
fid.write(np.array(float(data[i]), dtype='>f4').tobytes())
def read_source_estimate(fname, subject=None):
"""Read a source estimate object.
Parameters
----------
fname : str
Path to (a) source-estimate file(s).
subject : str | None
Name of the subject the source estimate(s) is (are) from.
It is good practice to set this attribute to avoid combining
incompatible labels and SourceEstimates (e.g., ones from other
subjects). Note that due to file specification limitations, the
subject name isn't saved to or loaded from files written to disk.
Returns
-------
stc : SourceEstimate | VectorSourceEstimate | VolSourceEstimate | MixedSourceEstimate
The source estimate object loaded from file.
Notes
-----
- for volume source estimates, ``fname`` should provide the path to a
single file named '*-vl.stc` or '*-vol.stc'
- for surface source estimates, ``fname`` should either provide the
path to the file corresponding to a single hemisphere ('*-lh.stc',
'*-rh.stc') or only specify the asterisk part in these patterns. In any
case, the function expects files for both hemisphere with names
following this pattern.
- for vector surface source estimates, only HDF5 files are supported.
- for mixed source estimates, only HDF5 files are supported.
- for single time point .w files, ``fname`` should follow the same
pattern as for surface estimates, except that files are named
'*-lh.w' and '*-rh.w'.
""" # noqa: E501
fname_arg = fname
_validate_type(fname, 'path-like', 'fname')
# expand `~` without checking whether the file actually exists – we'll
# take care of that later, as it's complicated by the different suffixes
# STC files can have
fname = _check_fname(fname=fname, overwrite='read', must_exist=False)
# make sure corresponding file(s) can be found
ftype = None
if op.exists(fname):
if fname.endswith(('-vl.stc', '-vol.stc', '-vl.w', '-vol.w')):
ftype = 'volume'
elif fname.endswith('.stc'):
ftype = 'surface'
if fname.endswith(('-lh.stc', '-rh.stc')):
fname = fname[:-7]
else:
err = ("Invalid .stc filename: %r; needs to end with "
"hemisphere tag ('...-lh.stc' or '...-rh.stc')"
% fname)
raise IOError(err)
elif fname.endswith('.w'):
ftype = 'w'
if fname.endswith(('-lh.w', '-rh.w')):
fname = fname[:-5]
else:
err = ("Invalid .w filename: %r; needs to end with "
"hemisphere tag ('...-lh.w' or '...-rh.w')"
% fname)
raise IOError(err)
elif fname.endswith('.h5'):
ftype = 'h5'
fname = fname[:-3]
else:
raise RuntimeError('Unknown extension for file %s' % fname_arg)
if ftype != 'volume':
stc_exist = [op.exists(f)
for f in [fname + '-rh.stc', fname + '-lh.stc']]
w_exist = [op.exists(f)
for f in [fname + '-rh.w', fname + '-lh.w']]
if all(stc_exist) and ftype != 'w':
ftype = 'surface'
elif all(w_exist):
ftype = 'w'
elif op.exists(fname + '.h5'):
ftype = 'h5'
elif op.exists(fname + '-stc.h5'):
ftype = 'h5'
fname += '-stc'
elif any(stc_exist) or any(w_exist):
raise IOError("Hemisphere missing for %r" % fname_arg)
else:
raise IOError("SourceEstimate File(s) not found for: %r"
% fname_arg)
# read the files
if ftype == 'volume': # volume source space
if fname.endswith('.stc'):
kwargs = _read_stc(fname)
elif fname.endswith('.w'):
kwargs = _read_w(fname)
kwargs['data'] = kwargs['data'][:, np.newaxis]
kwargs['tmin'] = 0.0
kwargs['tstep'] = 0.0
else:
raise IOError('Volume source estimate must end with .stc or .w')
kwargs['vertices'] = [kwargs['vertices']]
elif ftype == 'surface': # stc file with surface source spaces
lh = _read_stc(fname + '-lh.stc')
rh = _read_stc(fname + '-rh.stc')
assert lh['tmin'] == rh['tmin']
assert lh['tstep'] == rh['tstep']
kwargs = lh.copy()
kwargs['data'] = np.r_[lh['data'], rh['data']]
kwargs['vertices'] = [lh['vertices'], rh['vertices']]
elif ftype == 'w': # w file with surface source spaces
lh = _read_w(fname + '-lh.w')
rh = _read_w(fname + '-rh.w')
kwargs = lh.copy()
kwargs['data'] = np.atleast_2d(np.r_[lh['data'], rh['data']]).T
kwargs['vertices'] = [lh['vertices'], rh['vertices']]
# w files only have a single time point
kwargs['tmin'] = 0.0
kwargs['tstep'] = 1.0
ftype = 'surface'
elif ftype == 'h5':
read_hdf5, _ = _import_h5io_funcs()
kwargs = read_hdf5(fname + '.h5', title='mnepython')
ftype = kwargs.pop('src_type', 'surface')
if isinstance(kwargs['vertices'], np.ndarray):
kwargs['vertices'] = [kwargs['vertices']]
if ftype != 'volume':
# Make sure the vertices are ordered
vertices = kwargs['vertices']
if any(np.any(np.diff(v.astype(int)) <= 0) for v in vertices):
sidx = [np.argsort(verts) for verts in vertices]
vertices = [verts[idx] for verts, idx in zip(vertices, sidx)]
data = kwargs['data'][np.r_[sidx[0], len(sidx[0]) + sidx[1]]]
kwargs['vertices'] = vertices
kwargs['data'] = data
if 'subject' not in kwargs:
kwargs['subject'] = subject
if subject is not None and subject != kwargs['subject']:
raise RuntimeError('provided subject name "%s" does not match '
'subject name from the file "%s'
% (subject, kwargs['subject']))
if ftype in ('volume', 'discrete'):
klass = VolVectorSourceEstimate
elif ftype == 'mixed':
klass = MixedVectorSourceEstimate
else:
assert ftype == 'surface'
klass = VectorSourceEstimate
if kwargs['data'].ndim < 3:
klass = klass._scalar_class
return klass(**kwargs)
def _get_src_type(src, vertices, warn_text=None):
src_type = None
if src is None:
if warn_text is None:
warn("src should not be None for a robust guess of stc type.")
else:
warn(warn_text)
if isinstance(vertices, list) and len(vertices) == 2:
src_type = 'surface'
elif isinstance(vertices, np.ndarray) or isinstance(vertices, list) \
and len(vertices) == 1:
src_type = 'volume'
elif isinstance(vertices, list) and len(vertices) > 2:
src_type = 'mixed'
else:
src_type = src.kind
assert src_type in ('surface', 'volume', 'mixed', 'discrete')
return src_type
def _make_stc(data, vertices, src_type=None, tmin=None, tstep=None,
subject=None, vector=False, source_nn=None, warn_text=None):
"""Generate a surface, vector-surface, volume or mixed source estimate."""
def guess_src_type():
return _get_src_type(src=None, vertices=vertices, warn_text=warn_text)
src_type = guess_src_type() if src_type is None else src_type
if vector and src_type == 'surface' and source_nn is None:
raise RuntimeError('No source vectors supplied.')
# infer Klass from src_type
if src_type == 'surface':
Klass = VectorSourceEstimate if vector else SourceEstimate
elif src_type in ('volume', 'discrete'):
Klass = VolVectorSourceEstimate if vector else VolSourceEstimate
elif src_type == 'mixed':
Klass = MixedVectorSourceEstimate if vector else MixedSourceEstimate
else:
raise ValueError('vertices has to be either a list with one or more '
'arrays or an array')
# Rotate back for vector source estimates
if vector:
n_vertices = sum(len(v) for v in vertices)
assert data.shape[0] in (n_vertices, n_vertices * 3)
if len(data) == n_vertices:
assert src_type == 'surface' # should only be possible for this
assert source_nn.shape == (n_vertices, 3)
data = data[:, np.newaxis] * source_nn[:, :, np.newaxis]
else:
data = data.reshape((-1, 3, data.shape[-1]))
assert source_nn.shape in ((n_vertices, 3, 3),
(n_vertices * 3, 3))
# This will be an identity transform for volumes, but let's keep
# the code simple and general and just do the matrix mult
data = np.matmul(
np.transpose(source_nn.reshape(n_vertices, 3, 3),
axes=[0, 2, 1]), data)
return Klass(
data=data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject
)
def _verify_source_estimate_compat(a, b):
"""Make sure two SourceEstimates are compatible for arith. operations."""
compat = False
if type(a) != type(b):
raise ValueError('Cannot combine %s and %s.' % (type(a), type(b)))
if len(a.vertices) == len(b.vertices):
if all(np.array_equal(av, vv)
for av, vv in zip(a.vertices, b.vertices)):
compat = True
if not compat:
raise ValueError('Cannot combine source estimates that do not have '
'the same vertices. Consider using stc.expand().')
if a.subject != b.subject:
raise ValueError('source estimates do not have the same subject '
'names, %r and %r' % (a.subject, b.subject))
class _BaseSourceEstimate(TimeMixin):
_data_ndim = 2
@verbose
def __init__(self, data, vertices, tmin, tstep,
subject=None, verbose=None): # noqa: D102
assert hasattr(self, '_data_ndim'), self.__class__.__name__
assert hasattr(self, '_src_type'), self.__class__.__name__
assert hasattr(self, '_src_count'), self.__class__.__name__
kernel, sens_data = None, None
if isinstance(data, tuple):
if len(data) != 2:
raise ValueError('If data is a tuple it has to be length 2')
kernel, sens_data = data
data = None
if kernel.shape[1] != sens_data.shape[0]:
raise ValueError('kernel (%s) and sens_data (%s) have invalid '
'dimensions'
% (kernel.shape, sens_data.shape))
if sens_data.ndim != 2:
raise ValueError('The sensor data must have 2 dimensions, got '
'%s' % (sens_data.ndim,))
_validate_type(vertices, list, 'vertices')
if self._src_count is not None:
if len(vertices) != self._src_count:
raise ValueError('vertices must be a list with %d entries, '
'got %s' % (self._src_count, len(vertices)))
vertices = [np.array(v, np.int64) for v in vertices] # makes copy
if any(np.any(np.diff(v) <= 0) for v in vertices):
raise ValueError('Vertices must be ordered in increasing order.')
n_src = sum([len(v) for v in vertices])
# safeguard the user against doing something silly
if data is not None:
if data.ndim not in (self._data_ndim, self._data_ndim - 1):
raise ValueError('Data (shape %s) must have %s dimensions for '
'%s' % (data.shape, self._data_ndim,
self.__class__.__name__))
if data.shape[0] != n_src:
raise ValueError(
f'Number of vertices ({n_src}) and stc.data.shape[0] '
f'({data.shape[0]}) must match')
if self._data_ndim == 3:
if data.shape[1] != 3:
raise ValueError(
'Data for VectorSourceEstimate must have '
'shape[1] == 3, got shape %s' % (data.shape,))
if data.ndim == self._data_ndim - 1: # allow upbroadcasting
data = data[..., np.newaxis]
self._data = data
self._tmin = tmin
self._tstep = tstep
self.vertices = vertices
self._kernel = kernel
self._sens_data = sens_data
self._kernel_removed = False
self._times = None
self._update_times()
self.subject = _check_subject(None, subject, raise_error=False)
def __repr__(self): # noqa: D105
s = "%d vertices" % (sum(len(v) for v in self.vertices),)
if self.subject is not None:
s += ", subject : %s" % self.subject
s += ", tmin : %s (ms)" % (1e3 * self.tmin)
s += ", tmax : %s (ms)" % (1e3 * self.times[-1])
s += ", tstep : %s (ms)" % (1e3 * self.tstep)
s += ", data shape : %s" % (self.shape,)
sz = sum(object_size(x) for x in (self.vertices + [self.data]))
s += f", ~{sizeof_fmt(sz)}"
return "<%s | %s>" % (type(self).__name__, s)
@fill_doc
def get_peak(self, tmin=None, tmax=None, mode='abs',
vert_as_index=False, time_as_index=False):
"""Get location and latency of peak amplitude.
Parameters
----------
%(get_peak_parameters)s
Returns
-------
pos : int
The vertex exhibiting the maximum response, either ID or index.
latency : float
The latency in seconds.
"""
stc = self.magnitude() if self._data_ndim == 3 else self
if self._n_vertices == 0:
raise RuntimeError('Cannot find peaks with no vertices')
vert_idx, time_idx, _ = _get_peak(
stc.data, self.times, tmin, tmax, mode)
if not vert_as_index:
vert_idx = np.concatenate(self.vertices)[vert_idx]
if not time_as_index:
time_idx = self.times[time_idx]
return vert_idx, time_idx
@verbose
def extract_label_time_course(self, labels, src, mode='auto',
allow_empty=False, verbose=None):
"""Extract label time courses for lists of labels.
This function will extract one time course for each label. The way the
time courses are extracted depends on the mode parameter.
Parameters
----------
%(labels_eltc)s
%(src_eltc)s
%(mode_eltc)s
%(allow_empty_eltc)s
%(verbose)s
Returns
-------
%(label_tc_el_returns)s
See Also
--------
extract_label_time_course : Extract time courses for multiple STCs.
Notes
-----
%(eltc_mode_notes)s
"""
return extract_label_time_course(
self, labels, src, mode=mode, return_generator=False,
allow_empty=allow_empty, verbose=verbose)
@verbose
def apply_baseline(self, baseline=(None, 0), *, verbose=None):
"""Baseline correct source estimate data.
Parameters
----------
%(baseline_stc)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(verbose)s
Returns
-------
stc : instance of SourceEstimate
The baseline-corrected source estimate object.
Notes
-----
Baseline correction can be done multiple times.
"""
self.data = rescale(self.data, self.times, baseline, copy=False)
return self
@verbose
def save(self, fname, ftype='h5', *, overwrite=False, verbose=None):
"""Save the full source estimate to an HDF5 file.
Parameters
----------
fname : str
The file name to write the source estimate to, should end in
'-stc.h5'.
ftype : str
File format to use. Currently, the only allowed values is "h5".
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
"""
fname = _check_fname(fname=fname, overwrite=True) # check below
if ftype != 'h5':
raise ValueError('%s objects can only be written as HDF5 files.'
% (self.__class__.__name__,))
_, write_hdf5 = _import_h5io_funcs()
if not fname.endswith('.h5'):
fname += '-stc.h5'
fname = _check_fname(fname=fname, overwrite=overwrite)
write_hdf5(fname,
dict(vertices=self.vertices, data=self.data,
tmin=self.tmin, tstep=self.tstep, subject=self.subject,
src_type=self._src_type),
title='mnepython',
overwrite=True)
@copy_function_doc_to_method_doc(plot_source_estimates)
def plot(self, subject=None, surface='inflated', hemi='lh',
colormap='auto', time_label='auto', smoothing_steps=10,
transparent=True, alpha=1.0, time_viewer='auto',
subjects_dir=None,
figure=None, views='auto', colorbar=True, clim='auto',
cortex="classic", size=800, background="black",
foreground=None, initial_time=None, time_unit='s',
backend='auto', spacing='oct6', title=None, show_traces='auto',
src=None, volume_options=1., view_layout='vertical',
add_data_kwargs=None, brain_kwargs=None, verbose=None):
brain = plot_source_estimates(
self, subject, surface=surface, hemi=hemi, colormap=colormap,
time_label=time_label, smoothing_steps=smoothing_steps,
transparent=transparent, alpha=alpha, time_viewer=time_viewer,
subjects_dir=subjects_dir, figure=figure, views=views,
colorbar=colorbar, clim=clim, cortex=cortex, size=size,
background=background, foreground=foreground,
initial_time=initial_time, time_unit=time_unit, backend=backend,
spacing=spacing, title=title, show_traces=show_traces,
src=src, volume_options=volume_options, view_layout=view_layout,
add_data_kwargs=add_data_kwargs, brain_kwargs=brain_kwargs,
verbose=verbose)
return brain
@property
def sfreq(self):
"""Sample rate of the data."""
return 1. / self.tstep
@property
def _n_vertices(self):
return sum(len(v) for v in self.vertices)
def _remove_kernel_sens_data_(self):
"""Remove kernel and sensor space data and compute self._data."""
if self._kernel is not None or self._sens_data is not None:
self._kernel_removed = True
self._data = np.dot(self._kernel, self._sens_data)
self._kernel = None
self._sens_data = None
@fill_doc
def crop(self, tmin=None, tmax=None, include_tmax=True):
"""Restrict SourceEstimate to a time interval.
Parameters
----------
tmin : float | None
The first time point in seconds. If None the first present is used.
tmax : float | None
The last time point in seconds. If None the last present is used.
%(include_tmax)s
Returns
-------
stc : instance of SourceEstimate
The cropped source estimate.
"""
mask = _time_mask(self.times, tmin, tmax, sfreq=self.sfreq,
include_tmax=include_tmax)
self.tmin = self.times[np.where(mask)[0][0]]
if self._kernel is not None and self._sens_data is not None:
self._sens_data = self._sens_data[..., mask]
else:
self.data = self.data[..., mask]
return self # return self for chaining methods
@verbose
def resample(self, sfreq, npad='auto', window='boxcar', n_jobs=None,
verbose=None):
"""Resample data.
If appropriate, an anti-aliasing filter is applied before resampling.
See :ref:`resampling-and-decimating` for more information.
Parameters
----------
sfreq : float
New sample rate to use.
npad : int | str
Amount to pad the start and end of the data.
Can also be "auto" to use a padding that will result in
a power-of-two size (can be much faster).
window : str | tuple
Window to use in resampling. See :func:`scipy.signal.resample`.
%(n_jobs)s
%(verbose)s
Returns
-------
stc : instance of SourceEstimate
The resampled source estimate.
Notes
-----
For some data, it may be more accurate to use npad=0 to reduce
artifacts. This is dataset dependent -- check your data!
Note that the sample rate of the original data is inferred from tstep.
"""
# resampling in sensor instead of source space gives a somewhat
# different result, so we don't allow it
self._remove_kernel_sens_data_()
o_sfreq = 1.0 / self.tstep
data = self.data
if data.dtype == np.float32:
data = data.astype(np.float64)
self.data = resample(data, sfreq, o_sfreq, npad, n_jobs=n_jobs)
# adjust indirectly affected variables
self.tstep = 1.0 / sfreq
return self
@property
def data(self):
"""Numpy array of source estimate data."""
if self._data is None:
# compute the solution the first time the data is accessed and
# remove the kernel and sensor data
self._remove_kernel_sens_data_()
return self._data
@data.setter
def data(self, value):
value = np.asarray(value)
if self._data is not None and value.ndim != self._data.ndim:
raise ValueError('Data array should have %d dimensions.' %
self._data.ndim)
n_verts = sum(len(v) for v in self.vertices)
if value.shape[0] != n_verts:
raise ValueError('The first dimension of the data array must '
'match the number of vertices (%d != %d)' %
(value.shape[0], n_verts))
self._data = value
self._update_times()
@property
def shape(self):
"""Shape of the data."""
if self._data is not None:
return self._data.shape
return (self._kernel.shape[0], self._sens_data.shape[1])
@property
def tmin(self):
"""The first timestamp."""
return self._tmin
@tmin.setter
def tmin(self, value):
self._tmin = float(value)
self._update_times()
@property
def tstep(self):
"""The change in time between two consecutive samples (1 / sfreq)."""
return self._tstep
@tstep.setter
def tstep(self, value):
if value <= 0:
raise ValueError('.tstep must be greater than 0.')
self._tstep = float(value)
self._update_times()
@property
def times(self):
"""A timestamp for each sample."""
return self._times
@times.setter
def times(self, value):
raise ValueError('You cannot write to the .times attribute directly. '
'This property automatically updates whenever '
'.tmin, .tstep or .data changes.')
def _update_times(self):
"""Update the times attribute after changing tmin, tmax, or tstep."""
self._times = self.tmin + (self.tstep * np.arange(self.shape[-1]))
self._times.flags.writeable = False
def __add__(self, a):
"""Add source estimates."""
stc = self.copy()
stc += a
return stc
def __iadd__(self, a): # noqa: D105
self._remove_kernel_sens_data_()
if isinstance(a, _BaseSourceEstimate):
_verify_source_estimate_compat(self, a)
self.data += a.data
else:
self.data += a
return self
def mean(self):
"""Make a summary stc file with mean over time points.
Returns
-------
stc : SourceEstimate | VectorSourceEstimate
The modified stc.
"""
out = self.sum()
out /= len(self.times)
return out
def sum(self):
"""Make a summary stc file with sum over time points.
Returns
-------
stc : SourceEstimate | VectorSourceEstimate
The modified stc.
"""
data = self.data
tmax = self.tmin + self.tstep * data.shape[-1]
tmin = (self.tmin + tmax) / 2.
tstep = tmax - self.tmin
sum_stc = self.__class__(self.data.sum(axis=-1, keepdims=True),
vertices=self.vertices, tmin=tmin,
tstep=tstep, subject=self.subject)
return sum_stc
def __sub__(self, a):
"""Subtract source estimates."""
stc = self.copy()
stc -= a
return stc
def __isub__(self, a): # noqa: D105
self._remove_kernel_sens_data_()
if isinstance(a, _BaseSourceEstimate):
_verify_source_estimate_compat(self, a)
self.data -= a.data
else:
self.data -= a
return self
def __truediv__(self, a): # noqa: D105
return self.__div__(a)
def __div__(self, a): # noqa: D105
"""Divide source estimates."""
stc = self.copy()
stc /= a
return stc
def __itruediv__(self, a): # noqa: D105
return self.__idiv__(a)
def __idiv__(self, a): # noqa: D105
self._remove_kernel_sens_data_()
if isinstance(a, _BaseSourceEstimate):
_verify_source_estimate_compat(self, a)
self.data /= a.data
else:
self.data /= a
return self
def __mul__(self, a):
"""Multiply source estimates."""
stc = self.copy()
stc *= a
return stc
def __imul__(self, a): # noqa: D105
self._remove_kernel_sens_data_()
if isinstance(a, _BaseSourceEstimate):
_verify_source_estimate_compat(self, a)
self.data *= a.data
else:
self.data *= a
return self
def __pow__(self, a): # noqa: D105
stc = self.copy()
stc **= a
return stc
def __ipow__(self, a): # noqa: D105
self._remove_kernel_sens_data_()
self.data **= a
return self
def __radd__(self, a): # noqa: D105
return self + a
def __rsub__(self, a): # noqa: D105
return self - a
def __rmul__(self, a): # noqa: D105
return self * a
def __rdiv__(self, a): # noqa: D105
return self / a
def __neg__(self): # noqa: D105
"""Negate the source estimate."""
stc = self.copy()
stc._remove_kernel_sens_data_()
stc.data *= -1
return stc
def __pos__(self): # noqa: D105
return self
def __abs__(self):
"""Compute the absolute value of the data.
Returns
-------
stc : instance of _BaseSourceEstimate
A version of the source estimate, where the data attribute is set
to abs(self.data).
"""
stc = self.copy()
stc._remove_kernel_sens_data_()
stc._data = abs(stc._data)
return stc
def sqrt(self):
"""Take the square root.
Returns
-------
stc : instance of SourceEstimate
A copy of the SourceEstimate with sqrt(data).
"""
return self ** (0.5)
def copy(self):
"""Return copy of source estimate instance.
Returns
-------
stc : instance of SourceEstimate
A copy of the source estimate.
"""
return copy.deepcopy(self)
def bin(self, width, tstart=None, tstop=None, func=np.mean):
"""Return a source estimate object with data summarized over time bins.
Time bins of ``width`` seconds. This method is intended for
visualization only. No filter is applied to the data before binning,
making the method inappropriate as a tool for downsampling data.
Parameters
----------
width : scalar
Width of the individual bins in seconds.
tstart : scalar | None
Time point where the first bin starts. The default is the first
time point of the stc.
tstop : scalar | None
Last possible time point contained in a bin (if the last bin would
be shorter than width it is dropped). The default is the last time
point of the stc.
func : callable
Function that is applied to summarize the data. Needs to accept a
numpy.array as first input and an ``axis`` keyword argument.
Returns
-------
stc : SourceEstimate | VectorSourceEstimate
The binned source estimate.
"""
if tstart is None:
tstart = self.tmin
if tstop is None:
tstop = self.times[-1]
times = np.arange(tstart, tstop + self.tstep, width)
nt = len(times) - 1
data = np.empty(self.shape[:-1] + (nt,), dtype=self.data.dtype)
for i in range(nt):
idx = (self.times >= times[i]) & (self.times < times[i + 1])
data[..., i] = func(self.data[..., idx], axis=-1)
tmin = times[0] + width / 2.
stc = self.copy()
stc._data = data
stc.tmin = tmin
stc.tstep = width
return stc
def transform_data(self, func, idx=None, tmin_idx=None, tmax_idx=None):
"""Get data after a linear (time) transform has been applied.
The transform is applied to each source time course independently.
Parameters
----------
func : callable
The transform to be applied, including parameters (see, e.g.,
:func:`functools.partial`). The first parameter of the function is
the input data. The first return value is the transformed data,
remaining outputs are ignored. The first dimension of the
transformed data has to be the same as the first dimension of the
input data.
idx : array | None
Indicices of source time courses for which to compute transform.
If None, all time courses are used.
tmin_idx : int | None
Index of first time point to include. If None, the index of the
first time point is used.
tmax_idx : int | None
Index of the first time point not to include. If None, time points
up to (and including) the last time point are included.
Returns
-------
data_t : ndarray
The transformed data.
Notes
-----
Applying transforms can be significantly faster if the
SourceEstimate object was created using "(kernel, sens_data)", for
the "data" parameter as the transform is applied in sensor space.
Inverse methods, e.g., "apply_inverse_epochs", or "apply_lcmv_epochs"
do this automatically (if possible).
"""
if idx is None:
# use all time courses by default
idx = slice(None, None)
if self._kernel is None and self._sens_data is None:
if self._kernel_removed:
warn('Performance can be improved by not accessing the data '
'attribute before calling this method.')
# transform source space data directly
data_t = func(self.data[idx, ..., tmin_idx:tmax_idx])
if isinstance(data_t, tuple):
# use only first return value
data_t = data_t[0]
else:
# apply transform in sensor space
sens_data_t = func(self._sens_data[:, tmin_idx:tmax_idx])
if isinstance(sens_data_t, tuple):
# use only first return value
sens_data_t = sens_data_t[0]
# apply inverse
data_shape = sens_data_t.shape
if len(data_shape) > 2:
# flatten the last dimensions
sens_data_t = sens_data_t.reshape(data_shape[0],
np.prod(data_shape[1:]))
data_t = np.dot(self._kernel[idx, :], sens_data_t)
# restore original shape if necessary
if len(data_shape) > 2:
data_t = data_t.reshape(data_t.shape[0], *data_shape[1:])
return data_t
def transform(self, func, idx=None, tmin=None, tmax=None, copy=False):
"""Apply linear transform.
The transform is applied to each source time course independently.
Parameters
----------
func : callable
The transform to be applied, including parameters (see, e.g.,
:func:`functools.partial`). The first parameter of the function is
the input data. The first two dimensions of the transformed data
should be (i) vertices and (ii) time. See Notes for details.
idx : array | None
Indices of source time courses for which to compute transform.
If None, all time courses are used.
tmin : float | int | None
First time point to include (ms). If None, self.tmin is used.
tmax : float | int | None
Last time point to include (ms). If None, self.tmax is used.
copy : bool
If True, return a new instance of SourceEstimate instead of
modifying the input inplace.
Returns
-------
stcs : SourceEstimate | VectorSourceEstimate | list
The transformed stc or, in the case of transforms which yield
N-dimensional output (where N > 2), a list of stcs. For a list,
copy must be True.
Notes
-----
Transforms which yield 3D
output (e.g. time-frequency transforms) are valid, so long as the
first two dimensions are vertices and time. In this case, the
copy parameter must be True and a list of
SourceEstimates, rather than a single instance of SourceEstimate,
will be returned, one for each index of the 3rd dimension of the
transformed data. In the case of transforms yielding 2D output
(e.g. filtering), the user has the option of modifying the input
inplace (copy = False) or returning a new instance of
SourceEstimate (copy = True) with the transformed data.
Applying transforms can be significantly faster if the
SourceEstimate object was created using "(kernel, sens_data)", for
the "data" parameter as the transform is applied in sensor space.
Inverse methods, e.g., "apply_inverse_epochs", or "apply_lcmv_epochs"
do this automatically (if possible).
"""
# min and max data indices to include
times = 1000. * self.times
t_idx = np.where(_time_mask(times, tmin, tmax, sfreq=self.sfreq))[0]
if tmin is None:
tmin_idx = None
else:
tmin_idx = t_idx[0]
if tmax is None:
tmax_idx = None
else:
# +1, because upper boundary needs to include the last sample
tmax_idx = t_idx[-1] + 1
data_t = self.transform_data(func, idx=idx, tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
# account for change in n_vertices
if idx is not None:
idx_lh = idx[idx < len(self.lh_vertno)]
idx_rh = idx[idx >= len(self.lh_vertno)] - len(self.lh_vertno)
verts_lh = self.lh_vertno[idx_lh]
verts_rh = self.rh_vertno[idx_rh]
else:
verts_lh = self.lh_vertno
verts_rh = self.rh_vertno
verts = [verts_lh, verts_rh]
tmin_idx = 0 if tmin_idx is None else tmin_idx
tmin = self.times[tmin_idx]
if data_t.ndim > 2:
# return list of stcs if transformed data has dimensionality > 2
if copy:
stcs = [SourceEstimate(data_t[:, :, a], verts, tmin,
self.tstep, self.subject)
for a in range(data_t.shape[-1])]
else:
raise ValueError('copy must be True if transformed data has '
'more than 2 dimensions')
else:
# return new or overwritten stc
stcs = self if not copy else self.copy()
stcs.vertices = verts
stcs.data = data_t
stcs.tmin = tmin
return stcs
@verbose
def to_data_frame(self, index=None, scalings=None,
long_format=False, time_format=None, *,
verbose=None):
"""Export data in tabular structure as a pandas DataFrame.
Vertices are converted to columns in the DataFrame. By default,
an additional column "time" is added, unless ``index='time'``
(in which case time values form the DataFrame's index).
Parameters
----------
%(index_df_evk)s
Defaults to ``None``.
%(scalings_df)s
%(long_format_df_stc)s
%(time_format_df)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# arg checking
valid_index_args = ['time', 'subject']
valid_time_formats = ['ms', 'timedelta']
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(time_format, valid_time_formats)
# get data
data = self.data.T
times = self.times
# prepare extra columns / multiindex
mindex = list()
default_index = ['time']
if self.subject is not None:
default_index = ['subject', 'time']
mindex.append(('subject', np.repeat(self.subject, data.shape[0])))
times = _convert_times(self, times, time_format)
mindex.append(('time', times))
# triage surface vs volume source estimates
col_names = list()
kinds = ['VOL'] * len(self.vertices)
if isinstance(self, (_BaseSurfaceSourceEstimate,
_BaseMixedSourceEstimate)):
kinds[:2] = ['LH', 'RH']
for ii, (kind, vertno) in enumerate(zip(kinds, self.vertices)):
col_names.extend(['{}_{}'.format(kind, vert) for vert in vertno])
# build DataFrame
df = _build_data_frame(self, data, None, long_format, mindex, index,
default_index=default_index,
col_names=col_names, col_kind='source')
return df
def _center_of_mass(vertices, values, hemi, surf, subject, subjects_dir,
restrict_vertices):
"""Find the center of mass on a surface."""
if (values == 0).all() or (values < 0).any():
raise ValueError('All values must be non-negative and at least one '
'must be non-zero, cannot compute COM')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surf = read_surface(op.join(subjects_dir, subject, 'surf',
hemi + '.' + surf))
if restrict_vertices is True:
restrict_vertices = vertices
elif restrict_vertices is False:
restrict_vertices = np.arange(surf[0].shape[0])
elif isinstance(restrict_vertices, SourceSpaces):
idx = 1 if restrict_vertices.kind == 'surface' and hemi == 'rh' else 0
restrict_vertices = restrict_vertices[idx]['vertno']
else:
restrict_vertices = np.array(restrict_vertices, int)
pos = surf[0][vertices, :].T
c_o_m = np.sum(pos * values, axis=1) / np.sum(values)
vertex = np.argmin(np.sqrt(np.mean((surf[0][restrict_vertices, :] -
c_o_m) ** 2, axis=1)))
vertex = restrict_vertices[vertex]
return vertex
@fill_doc
class _BaseSurfaceSourceEstimate(_BaseSourceEstimate):
"""Abstract base class for surface source estimates.
Parameters
----------
data : array
The data in source space.
vertices : list of array, shape (2,)
Vertex numbers corresponding to the data. The first element of the list
contains vertices of left hemisphere and the second element contains
vertices of right hemisphere.
%(tmin)s
%(tstep)s
%(subject_optional)s
%(verbose)s
Attributes
----------
subject : str | None
The subject name.
times : array of shape (n_times,)
The time vector.
vertices : list of array, shape (2,)
Vertex numbers corresponding to the data. The first element of the list
contains vertices of left hemisphere and the second element contains
vertices of right hemisphere.
data : array
The data in source space.
shape : tuple
The shape of the data. A tuple of int (n_dipoles, n_times).
"""
_src_type = 'surface'
_src_count = 2
@property
def lh_data(self):
"""Left hemisphere data."""
return self.data[:len(self.lh_vertno)]
@property
def rh_data(self):
"""Right hemisphere data."""
return self.data[len(self.lh_vertno):]
@property
def lh_vertno(self):
"""Left hemisphere vertno."""
return self.vertices[0]
@property
def rh_vertno(self):
"""Right hemisphere vertno."""
return self.vertices[1]
def _hemilabel_stc(self, label):
if label.hemi == 'lh':
stc_vertices = self.vertices[0]
else:
stc_vertices = self.vertices[1]
# find index of the Label's vertices
idx = np.nonzero(np.in1d(stc_vertices, label.vertices))[0]
# find output vertices
vertices = stc_vertices[idx]
# find data
if label.hemi == 'rh':
values = self.data[idx + len(self.vertices[0])]
else:
values = self.data[idx]
return vertices, values
def in_label(self, label):
"""Get a source estimate object restricted to a label.
SourceEstimate contains the time course of
activation of all sources inside the label.
Parameters
----------
label : Label | BiHemiLabel
The label (as created for example by mne.read_label). If the label
does not match any sources in the SourceEstimate, a ValueError is
raised.
Returns
-------
stc : SourceEstimate | VectorSourceEstimate
The source estimate restricted to the given label.
"""
# make sure label and stc are compatible
from .label import Label, BiHemiLabel
_validate_type(label, (Label, BiHemiLabel), 'label')
if label.subject is not None and self.subject is not None \
and label.subject != self.subject:
raise RuntimeError('label and stc must have same subject names, '
'currently "%s" and "%s"' % (label.subject,
self.subject))
if label.hemi == 'both':
lh_vert, lh_val = self._hemilabel_stc(label.lh)
rh_vert, rh_val = self._hemilabel_stc(label.rh)
vertices = [lh_vert, rh_vert]
values = np.vstack((lh_val, rh_val))
elif label.hemi == 'lh':
lh_vert, values = self._hemilabel_stc(label)
vertices = [lh_vert, np.array([], int)]
else:
assert label.hemi == 'rh'
rh_vert, values = self._hemilabel_stc(label)
vertices = [np.array([], int), rh_vert]
if sum([len(v) for v in vertices]) == 0:
raise ValueError('No vertices match the label in the stc file')
label_stc = self.__class__(values, vertices=vertices, tmin=self.tmin,
tstep=self.tstep, subject=self.subject)
return label_stc
def expand(self, vertices):
"""Expand SourceEstimate to include more vertices.
This will add rows to stc.data (zero-filled) and modify stc.vertices
to include all vertices in stc.vertices and the input vertices.
Parameters
----------
vertices : list of array
New vertices to add. Can also contain old values.
Returns
-------
stc : SourceEstimate | VectorSourceEstimate
The modified stc (note: method operates inplace).
"""
if not isinstance(vertices, list):
raise TypeError('vertices must be a list')
if not len(self.vertices) == len(vertices):
raise ValueError('vertices must have the same length as '
'stc.vertices')
# can no longer use kernel and sensor data
self._remove_kernel_sens_data_()
inserters = list()
offsets = [0]
for vi, (v_old, v_new) in enumerate(zip(self.vertices, vertices)):
v_new = np.setdiff1d(v_new, v_old)
inds = np.searchsorted(v_old, v_new)
# newer numpy might overwrite inds after np.insert, copy here
inserters += [inds.copy()]
offsets += [len(v_old)]
self.vertices[vi] = np.insert(v_old, inds, v_new)
inds = [ii + offset for ii, offset in zip(inserters, offsets[:-1])]
inds = np.concatenate(inds)
new_data = np.zeros((len(inds),) + self.data.shape[1:])
self.data = np.insert(self.data, inds, new_data, axis=0)
return self
@verbose
def to_original_src(self, src_orig, subject_orig=None,
subjects_dir=None, verbose=None):
"""Get a source estimate from morphed source to the original subject.
Parameters
----------
src_orig : instance of SourceSpaces
The original source spaces that were morphed to the current
subject.
subject_orig : str | None
The original subject. For most source spaces this shouldn't need
to be provided, since it is stored in the source space itself.
%(subjects_dir)s
%(verbose)s
Returns
-------
stc : SourceEstimate | VectorSourceEstimate
The transformed source estimate.
See Also
--------
morph_source_spaces
Notes
-----
.. versionadded:: 0.10.0
"""
if self.subject is None:
raise ValueError('stc.subject must be set')
src_orig = _ensure_src(src_orig, kind='surface')
subject_orig = _ensure_src_subject(src_orig, subject_orig)
data_idx, vertices = _get_morph_src_reordering(
self.vertices, src_orig, subject_orig, self.subject, subjects_dir)
return self.__class__(self._data[data_idx], vertices,
self.tmin, self.tstep, subject_orig)
@fill_doc
def get_peak(self, hemi=None, tmin=None, tmax=None, mode='abs',
vert_as_index=False, time_as_index=False):
"""Get location and latency of peak amplitude.
Parameters
----------
hemi : {'lh', 'rh', None}
The hemi to be considered. If None, the entire source space is
considered.
%(get_peak_parameters)s
Returns
-------
pos : int
The vertex exhibiting the maximum response, either ID or index.
latency : float | int
The time point of the maximum response, either latency in seconds
or index.
"""
_check_option('hemi', hemi, ('lh', 'rh', None))
vertex_offset = 0
if hemi is not None:
if hemi == 'lh':
data = self.lh_data
vertices = [self.lh_vertno, []]
else:
vertex_offset = len(self.vertices[0])
data = self.rh_data
vertices = [[], self.rh_vertno]
meth = self.__class__(
data, vertices, self.tmin, self.tstep).get_peak
else:
meth = super().get_peak
out = meth(tmin=tmin, tmax=tmax, mode=mode,
vert_as_index=vert_as_index,
time_as_index=time_as_index)
if vertex_offset and vert_as_index:
out = (out[0] + vertex_offset, out[1])
return out
@fill_doc
class SourceEstimate(_BaseSurfaceSourceEstimate):
"""Container for surface source estimates.
Parameters
----------
data : array of shape (n_dipoles, n_times) | tuple, shape (2,)
The data in source space. When it is a single array, the
left hemisphere is stored in data[:len(vertices[0])] and the right
hemisphere is stored in data[-len(vertices[1]):].
When data is a tuple, it contains two arrays:
- "kernel" shape (n_vertices, n_sensors) and
- "sens_data" shape (n_sensors, n_times).
In this case, the source space data corresponds to
``np.dot(kernel, sens_data)``.
vertices : list of array, shape (2,)
Vertex numbers corresponding to the data. The first element of the list
contains vertices of left hemisphere and the second element contains
vertices of right hemisphere.
%(tmin)s
%(tstep)s
%(subject_optional)s
%(verbose)s
Attributes
----------
subject : str | None
The subject name.
times : array of shape (n_times,)
The time vector.
vertices : list of array, shape (2,)
The indices of the dipoles in the left and right source space.
data : array of shape (n_dipoles, n_times)
The data in source space.
shape : tuple
The shape of the data. A tuple of int (n_dipoles, n_times).
See Also
--------
VectorSourceEstimate : A container for vector surface source estimates.
VolSourceEstimate : A container for volume source estimates.
VolVectorSourceEstimate : A container for volume vector source estimates.
MixedSourceEstimate : A container for mixed surface + volume source
estimates.
"""
@verbose
def save(self, fname, ftype='stc', *, overwrite=False, verbose=None):
"""Save the source estimates to a file.
Parameters
----------
fname : str
The stem of the file name. The file names used for surface source
spaces are obtained by adding "-lh.stc" and "-rh.stc" (or "-lh.w"
and "-rh.w") to the stem provided, for the left and the right
hemisphere, respectively.
ftype : str
File format to use. Allowed values are "stc" (default), "w",
and "h5". The "w" format only supports a single time point.
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
"""
fname = _check_fname(fname=fname, overwrite=True) # checked below
_check_option('ftype', ftype, ['stc', 'w', 'h5'])
lh_data = self.data[:len(self.lh_vertno)]
rh_data = self.data[-len(self.rh_vertno):]
if ftype == 'stc':
if np.iscomplexobj(self.data):
raise ValueError("Cannot save complex-valued STC data in "
"FIFF format; please set ftype='h5' to save "
"in HDF5 format instead, or cast the data to "
"real numbers before saving.")
logger.info('Writing STC to disk...')
fname_l = _check_fname(fname + '-lh.stc', overwrite=overwrite)
fname_r = _check_fname(fname + '-rh.stc', overwrite=overwrite)
_write_stc(fname_l, tmin=self.tmin, tstep=self.tstep,
vertices=self.lh_vertno, data=lh_data)
_write_stc(fname_r, tmin=self.tmin, tstep=self.tstep,
vertices=self.rh_vertno, data=rh_data)
elif ftype == 'w':
if self.shape[1] != 1:
raise ValueError('w files can only contain a single time '
'point')
logger.info('Writing STC to disk (w format)...')
fname_l = _check_fname(fname + '-lh.w', overwrite=overwrite)
fname_r = _check_fname(fname + '-rh.w', overwrite=overwrite)
_write_w(fname_l, vertices=self.lh_vertno, data=lh_data[:, 0])
_write_w(fname_r, vertices=self.rh_vertno, data=rh_data[:, 0])
elif ftype == 'h5':
super().save(fname, overwrite=overwrite)
logger.info('[done]')
@verbose
def estimate_snr(self, info, fwd, cov, verbose=None):
r"""Compute time-varying SNR in the source space.
This function should only be used with source estimates with units
nanoAmperes (i.e., MNE-like solutions, *not* dSPM or sLORETA).
See also :footcite:`GoldenholzEtAl2009`.
.. warning:: This function currently only works properly for fixed
orientation.
Parameters
----------
%(info_not_none)s
fwd : instance of Forward
The forward solution used to create the source estimate.
cov : instance of Covariance
The noise covariance used to estimate the resting cortical
activations. Should be an evoked covariance, not empty room.
%(verbose)s
Returns
-------
snr_stc : instance of SourceEstimate
The source estimate with the SNR computed.
Notes
-----
We define the SNR in decibels for each source location at each
time point as:
.. math::
{\rm SNR} = 10\log_10[\frac{a^2}{N}\sum_k\frac{b_k^2}{s_k^2}]
where :math:`\\b_k` is the signal on sensor :math:`k` provided by the
forward model for a source with unit amplitude, :math:`a` is the
source amplitude, :math:`N` is the number of sensors, and
:math:`s_k^2` is the noise variance on sensor :math:`k`.
References
----------
.. footbibliography::
"""
from .forward import convert_forward_solution, Forward
from .minimum_norm.inverse import _prepare_forward
_validate_type(fwd, Forward, 'fwd')
_validate_type(info, Info, 'info')
_validate_type(cov, Covariance, 'cov')
_check_stc_units(self)
if (self.data >= 0).all():
warn('This STC appears to be from free orientation, currently SNR'
' function is valid only for fixed orientation')
fwd = convert_forward_solution(fwd, surf_ori=True, force_fixed=False)
# G is gain matrix [ch x src], cov is noise covariance [ch x ch]
G, _, _, _, _, _, _, cov, _ = _prepare_forward(
fwd, info, cov, fixed=True, loose=0, rank=None, pca=False,
use_cps=True, exp=None, limit_depth_chs=False, combine_xyz='fro',
allow_fixed_depth=False, limit=None)
G = G['sol']['data']
n_channels = cov['dim'] # number of sensors/channels
b_k2 = (G * G).T
s_k2 = np.diag(cov['data'])
scaling = (1 / n_channels) * np.sum(b_k2 / s_k2, axis=1, keepdims=True)
snr_stc = self.copy()
snr_stc._data[:] = 10 * np.log10((self.data * self.data) * scaling)
return snr_stc
@fill_doc
def center_of_mass(self, subject=None, hemi=None, restrict_vertices=False,
subjects_dir=None, surf='sphere'):
"""Compute the center of mass of activity.
This function computes the spatial center of mass on the surface
as well as the temporal center of mass as in :footcite:`LarsonLee2013`.
.. note:: All activity must occur in a single hemisphere, otherwise
an error is raised. The "mass" of each point in space for
computing the spatial center of mass is computed by summing
across time, and vice-versa for each point in time in
computing the temporal center of mass. This is useful for
quantifying spatio-temporal cluster locations, especially
when combined with :func:`mne.vertex_to_mni`.
Parameters
----------
subject : str | None
The subject the stc is defined for.
hemi : int, or None
Calculate the center of mass for the left (0) or right (1)
hemisphere. If None, one of the hemispheres must be all zeroes,
and the center of mass will be calculated for the other
hemisphere (useful for getting COM for clusters).
restrict_vertices : bool | array of int | instance of SourceSpaces
If True, returned vertex will be one from stc. Otherwise, it could
be any vertex from surf. If an array of int, the returned vertex
will come from that array. If instance of SourceSpaces (as of
0.13), the returned vertex will be from the given source space.
For most accuruate estimates, do not restrict vertices.
%(subjects_dir)s
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
Returns
-------
vertex : int
Vertex of the spatial center of mass for the inferred hemisphere,
with each vertex weighted by the sum of the stc across time. For a
boolean stc, then, this would be weighted purely by the duration
each vertex was active.
hemi : int
Hemisphere the vertex was taken from.
t : float
Time of the temporal center of mass (weighted by the sum across
source vertices).
See Also
--------
mne.Label.center_of_mass
mne.vertex_to_mni
References
----------
.. footbibliography::
"""
if not isinstance(surf, str):
raise TypeError('surf must be a string, got %s' % (type(surf),))
subject = _check_subject(self.subject, subject)
if np.any(self.data < 0):
raise ValueError('Cannot compute COM with negative values')
values = np.sum(self.data, axis=1) # sum across time
vert_inds = [np.arange(len(self.vertices[0])),
np.arange(len(self.vertices[1])) + len(self.vertices[0])]
if hemi is None:
hemi = np.where(np.array([np.sum(values[vi])
for vi in vert_inds]))[0]
if not len(hemi) == 1:
raise ValueError('Could not infer hemisphere')
hemi = hemi[0]
_check_option('hemi', hemi, [0, 1])
vertices = self.vertices[hemi]
values = values[vert_inds[hemi]] # left or right
del vert_inds
vertex = _center_of_mass(
vertices, values, hemi=['lh', 'rh'][hemi], surf=surf,
subject=subject, subjects_dir=subjects_dir,
restrict_vertices=restrict_vertices)
# do time center of mass by using the values across space
masses = np.sum(self.data, axis=0).astype(float)
t_ind = np.sum(masses * np.arange(self.shape[1])) / np.sum(masses)
t = self.tmin + self.tstep * t_ind
return vertex, hemi, t
class _BaseVectorSourceEstimate(_BaseSourceEstimate):
_data_ndim = 3
@verbose
def __init__(self, data, vertices=None, tmin=None, tstep=None,
subject=None, verbose=None): # noqa: D102
assert hasattr(self, '_scalar_class')
super().__init__(data, vertices, tmin, tstep, subject, verbose)
def magnitude(self):
"""Compute magnitude of activity without directionality.
Returns
-------
stc : instance of SourceEstimate
The source estimate without directionality information.
"""
data_mag = np.linalg.norm(self.data, axis=1)
return self._scalar_class(
data_mag, self.vertices, self.tmin, self.tstep, self.subject)
def _get_src_normals(self, src, use_cps):
normals = np.vstack([_get_src_nn(s, use_cps, v) for s, v in
zip(src, self.vertices)])
return normals
@fill_doc
def project(self, directions, src=None, use_cps=True):
"""Project the data for each vertex in a given direction.
Parameters
----------
directions : ndarray, shape (n_vertices, 3) | str
Can be:
- ``'normal'``
Project onto the source space normals.
- ``'pca'``
SVD will be used to project onto the direction of maximal
power for each source.
- :class:`~numpy.ndarray`, shape (n_vertices, 3)
Projection directions for each source.
src : instance of SourceSpaces | None
The source spaces corresponding to the source estimate.
Not used when ``directions`` is an array, optional when
``directions='pca'``.
%(use_cps)s
Should be the same value that was used when the forward model
was computed (typically True).
Returns
-------
stc : instance of SourceEstimate
The projected source estimate.
directions : ndarray, shape (n_vertices, 3)
The directions that were computed (or just used).
Notes
-----
When using SVD, there is a sign ambiguity for the direction of maximal
power. When ``src is None``, the direction is chosen that makes the
resulting time waveform sum positive (i.e., have positive amplitudes).
When ``src`` is provided, the directions are flipped in the direction
of the source normals, i.e., outward from cortex for surface source
spaces and in the +Z / superior direction for volume source spaces.
.. versionadded:: 0.21
"""
_validate_type(directions, (str, np.ndarray), 'directions')
_validate_type(src, (None, SourceSpaces), 'src')
if isinstance(directions, str):
_check_option('directions', directions, ('normal', 'pca'),
extra='when str')
if directions == 'normal':
if src is None:
raise ValueError(
'If directions="normal", src cannot be None')
_check_src_normal('normal', src)
directions = self._get_src_normals(src, use_cps)
else:
assert directions == 'pca'
x = self.data
if not np.isrealobj(self.data):
_check_option('stc.data.dtype', self.data.dtype,
(np.complex64, np.complex128))
dtype = \
np.float32 if x.dtype == np.complex64 else np.float64
x = x.view(dtype)
assert x.shape[-1] == 2 * self.data.shape[-1]
u, _, v = np.linalg.svd(x, full_matrices=False)
directions = u[:, :, 0]
# The sign is arbitrary, so let's flip it in the direction that
# makes the resulting time series the most positive:
if src is None:
signs = np.sum(v[:, 0].real, axis=1, keepdims=True)
else:
normals = self._get_src_normals(src, use_cps)
signs = np.sum(directions * normals, axis=1, keepdims=True)
assert signs.shape == (self.data.shape[0], 1)
signs = np.sign(signs)
signs[signs == 0] = 1.
directions *= signs
_check_option(
'directions.shape', directions.shape, [(self.data.shape[0], 3)])
data_norm = np.matmul(directions[:, np.newaxis], self.data)[:, 0]
stc = self._scalar_class(
data_norm, self.vertices, self.tmin, self.tstep, self.subject)
return stc, directions
@copy_function_doc_to_method_doc(plot_vector_source_estimates)
def plot(self, subject=None, hemi='lh', colormap='hot', time_label='auto',
smoothing_steps=10, transparent=True, brain_alpha=0.4,
overlay_alpha=None, vector_alpha=1.0, scale_factor=None,
time_viewer='auto', subjects_dir=None, figure=None,
views='lateral',
colorbar=True, clim='auto', cortex='classic', size=800,
background='black', foreground=None, initial_time=None,
time_unit='s', show_traces='auto', src=None, volume_options=1.,
view_layout='vertical', add_data_kwargs=None,
brain_kwargs=None, verbose=None): # noqa: D102
return plot_vector_source_estimates(
self, subject=subject, hemi=hemi, colormap=colormap,
time_label=time_label, smoothing_steps=smoothing_steps,
transparent=transparent, brain_alpha=brain_alpha,
overlay_alpha=overlay_alpha, vector_alpha=vector_alpha,
scale_factor=scale_factor, time_viewer=time_viewer,
subjects_dir=subjects_dir, figure=figure, views=views,
colorbar=colorbar, clim=clim, cortex=cortex, size=size,
background=background, foreground=foreground,
initial_time=initial_time, time_unit=time_unit,
show_traces=show_traces, src=src, volume_options=volume_options,
view_layout=view_layout, add_data_kwargs=add_data_kwargs,
brain_kwargs=brain_kwargs, verbose=verbose)
class _BaseVolSourceEstimate(_BaseSourceEstimate):
_src_type = 'volume'
_src_count = None
@copy_function_doc_to_method_doc(plot_source_estimates)
def plot_3d(self, subject=None, surface='white', hemi='both',
colormap='auto', time_label='auto', smoothing_steps=10,
transparent=True, alpha=0.1, time_viewer='auto',
subjects_dir=None,
figure=None, views='axial', colorbar=True, clim='auto',
cortex="classic", size=800, background="black",
foreground=None, initial_time=None, time_unit='s',
backend='auto', spacing='oct6', title=None, show_traces='auto',
src=None, volume_options=1., view_layout='vertical',
add_data_kwargs=None, brain_kwargs=None, verbose=None):
return super().plot(
subject=subject, surface=surface, hemi=hemi, colormap=colormap,
time_label=time_label, smoothing_steps=smoothing_steps,
transparent=transparent, alpha=alpha, time_viewer=time_viewer,
subjects_dir=subjects_dir,
figure=figure, views=views, colorbar=colorbar, clim=clim,
cortex=cortex, size=size, background=background,
foreground=foreground, initial_time=initial_time,
time_unit=time_unit, backend=backend, spacing=spacing, title=title,
show_traces=show_traces, src=src, volume_options=volume_options,
view_layout=view_layout, add_data_kwargs=add_data_kwargs,
brain_kwargs=brain_kwargs, verbose=verbose)
@copy_function_doc_to_method_doc(plot_volume_source_estimates)
def plot(self, src, subject=None, subjects_dir=None, mode='stat_map',
bg_img='T1.mgz', colorbar=True, colormap='auto', clim='auto',
transparent='auto', show=True, initial_time=None,
initial_pos=None, verbose=None):
data = self.magnitude() if self._data_ndim == 3 else self
return plot_volume_source_estimates(
data, src=src, subject=subject, subjects_dir=subjects_dir,
mode=mode, bg_img=bg_img, colorbar=colorbar, colormap=colormap,
clim=clim, transparent=transparent, show=show,
initial_time=initial_time, initial_pos=initial_pos,
verbose=verbose)
# Override here to provide the volume-specific options
@verbose
def extract_label_time_course(self, labels, src, mode='auto',
allow_empty=False, *,
mri_resolution=True, verbose=None):
"""Extract label time courses for lists of labels.
This function will extract one time course for each label. The way the
time courses are extracted depends on the mode parameter.
Parameters
----------
%(labels_eltc)s
%(src_eltc)s
%(mode_eltc)s
%(allow_empty_eltc)s
%(mri_resolution_eltc)s
%(verbose)s
Returns
-------
%(label_tc_el_returns)s
See Also
--------
extract_label_time_course : Extract time courses for multiple STCs.
Notes
-----
%(eltc_mode_notes)s
"""
return extract_label_time_course(
self, labels, src, mode=mode, return_generator=False,
allow_empty=allow_empty,
mri_resolution=mri_resolution, verbose=verbose)
@verbose
def in_label(self, label, mri, src, *, verbose=None):
"""Get a source estimate object restricted to a label.
SourceEstimate contains the time course of
activation of all sources inside the label.
Parameters
----------
label : str | int
The label to use. Can be the name of a label if using a standard
FreeSurfer atlas, or an integer value to extract from the ``mri``.
mri : str
Path to the atlas to use.
src : instance of SourceSpaces
The volumetric source space. It must be a single, whole-brain
volume.
%(verbose)s
Returns
-------
stc : VolSourceEstimate | VolVectorSourceEstimate
The source estimate restricted to the given label.
Notes
-----
.. versionadded:: 0.21.0
"""
if len(self.vertices) != 1:
raise RuntimeError('This method can only be used with whole-brain '
'volume source spaces')
_validate_type(label, (str, 'int-like'), 'label')
if isinstance(label, str):
volume_label = [label]
else:
volume_label = {'Volume ID %s' % (label): _ensure_int(label)}
label = _volume_labels(src, (mri, volume_label), mri_resolution=False)
assert len(label) == 1
label = label[0]
vertices = label.vertices
keep = np.in1d(self.vertices[0], label.vertices)
values, vertices = self.data[keep], [self.vertices[0][keep]]
label_stc = self.__class__(values, vertices=vertices, tmin=self.tmin,
tstep=self.tstep, subject=self.subject)
return label_stc
@verbose
def save_as_volume(self, fname, src, dest='mri', mri_resolution=False,
format='nifti1', *, overwrite=False, verbose=None):
"""Save a volume source estimate in a NIfTI file.
Parameters
----------
fname : str
The name of the generated nifti file.
src : list
The list of source spaces (should all be of type volume).
dest : 'mri' | 'surf'
If 'mri' the volume is defined in the coordinate system of
the original T1 image. If 'surf' the coordinate system
of the FreeSurfer surface is used (Surface RAS).
mri_resolution : bool
It True the image is saved in MRI resolution.
.. warning:: If you have many time points, the file produced can be
huge.
format : str
Either 'nifti1' (default) or 'nifti2'.
.. versionadded:: 0.17
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
.. versionadded:: 1.0
Returns
-------
img : instance Nifti1Image
The image object.
Notes
-----
.. versionadded:: 0.9.0
"""
import nibabel as nib
_validate_type(fname, 'path-like', 'fname')
fname = _check_fname(fname=fname, overwrite=overwrite)
img = self.as_volume(src, dest=dest, mri_resolution=mri_resolution,
format=format)
nib.save(img, fname)
def as_volume(self, src, dest='mri', mri_resolution=False,
format='nifti1'):
"""Export volume source estimate as a nifti object.
Parameters
----------
src : instance of SourceSpaces
The source spaces (should all be of type volume, or part of a
mixed source space).
dest : 'mri' | 'surf'
If 'mri' the volume is defined in the coordinate system of
the original T1 image. If 'surf' the coordinate system
of the FreeSurfer surface is used (Surface RAS).
mri_resolution : bool
It True the image is saved in MRI resolution.
.. warning:: If you have many time points, the file produced can be
huge.
format : str
Either 'nifti1' (default) or 'nifti2'.
Returns
-------
img : instance of Nifti1Image
The image object.
Notes
-----
.. versionadded:: 0.9.0
"""
from .morph import _interpolate_data
data = self.magnitude() if self._data_ndim == 3 else self
return _interpolate_data(data, src, mri_resolution=mri_resolution,
mri_space=True, output=format)
@fill_doc
class VolSourceEstimate(_BaseVolSourceEstimate):
"""Container for volume source estimates.
Parameters
----------
data : array of shape (n_dipoles, n_times) | tuple, shape (2,)
The data in source space. The data can either be a single array or
a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and
"sens_data" shape (n_sensors, n_times). In this case, the source
space data corresponds to ``np.dot(kernel, sens_data)``.
%(vertices_volume)s
%(tmin)s
%(tstep)s
%(subject_optional)s
%(verbose)s
Attributes
----------
subject : str | None
The subject name.
times : array of shape (n_times,)
The time vector.
%(vertices_volume)s
data : array of shape (n_dipoles, n_times)
The data in source space.
shape : tuple
The shape of the data. A tuple of int (n_dipoles, n_times).
See Also
--------
SourceEstimate : A container for surface source estimates.
VectorSourceEstimate : A container for vector surface source estimates.
VolVectorSourceEstimate : A container for volume vector source estimates.
MixedSourceEstimate : A container for mixed surface + volume source
estimates.
Notes
-----
.. versionadded:: 0.9.0
"""
@verbose
def save(self, fname, ftype='stc', *, overwrite=False, verbose=None):
"""Save the source estimates to a file.
Parameters
----------
fname : str
The stem of the file name. The stem is extended with "-vl.stc"
or "-vl.w".
ftype : str
File format to use. Allowed values are "stc" (default), "w",
and "h5". The "w" format only supports a single time point.
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
"""
# check overwrite individually below
fname = _check_fname(fname=fname, overwrite=True) # checked below
_check_option('ftype', ftype, ['stc', 'w', 'h5'])
if ftype != 'h5' and len(self.vertices) != 1:
raise ValueError('Can only write to .stc or .w if a single volume '
'source space was used, use .h5 instead')
if ftype != 'h5' and self.data.dtype == 'complex':
raise ValueError('Can only write non-complex data to .stc or .w'
', use .h5 instead')
if ftype == 'stc':
logger.info('Writing STC to disk...')
if not fname.endswith(('-vl.stc', '-vol.stc')):
fname += '-vl.stc'
fname = _check_fname(fname, overwrite=overwrite)
_write_stc(fname, tmin=self.tmin, tstep=self.tstep,
vertices=self.vertices[0], data=self.data)
elif ftype == 'w':
logger.info('Writing STC to disk (w format)...')
if not fname.endswith(('-vl.w', '-vol.w')):
fname += '-vl.w'
fname = _check_fname(fname, overwrite=overwrite)
_write_w(fname, vertices=self.vertices[0], data=self.data)
elif ftype == 'h5':
super().save(fname, 'h5', overwrite=overwrite)
logger.info('[done]')
@fill_doc
class VolVectorSourceEstimate(_BaseVolSourceEstimate,
_BaseVectorSourceEstimate):
"""Container for volume source estimates.
Parameters
----------
data : array of shape (n_dipoles, 3, n_times)
The data in source space. Each dipole contains three vectors that
denote the dipole strength in X, Y and Z directions over time.
%(vertices_volume)s
%(tmin)s
%(tstep)s
%(subject_optional)s
%(verbose)s
Attributes
----------
subject : str | None
The subject name.
times : array of shape (n_times,)
The time vector.
%(vertices_volume)s
data : array of shape (n_dipoles, n_times)
The data in source space.
shape : tuple
The shape of the data. A tuple of int (n_dipoles, n_times).
See Also
--------
SourceEstimate : A container for surface source estimates.
VectorSourceEstimate : A container for vector surface source estimates.
VolSourceEstimate : A container for volume source estimates.
MixedSourceEstimate : A container for mixed surface + volume source
estimates.
Notes
-----
.. versionadded:: 0.9.0
"""
_scalar_class = VolSourceEstimate
# defaults differ: hemi='both', views='axial'
@copy_function_doc_to_method_doc(plot_vector_source_estimates)
def plot_3d(self, subject=None, hemi='both', colormap='hot',
time_label='auto',
smoothing_steps=10, transparent=True, brain_alpha=0.4,
overlay_alpha=None, vector_alpha=1.0, scale_factor=None,
time_viewer='auto', subjects_dir=None, figure=None,
views='axial',
colorbar=True, clim='auto', cortex='classic', size=800,
background='black', foreground=None, initial_time=None,
time_unit='s', show_traces='auto', src=None,
volume_options=1., view_layout='vertical',
add_data_kwargs=None, brain_kwargs=None,
verbose=None): # noqa: D102
return _BaseVectorSourceEstimate.plot(
self, subject=subject, hemi=hemi, colormap=colormap,
time_label=time_label, smoothing_steps=smoothing_steps,
transparent=transparent, brain_alpha=brain_alpha,
overlay_alpha=overlay_alpha, vector_alpha=vector_alpha,
scale_factor=scale_factor, time_viewer=time_viewer,
subjects_dir=subjects_dir, figure=figure, views=views,
colorbar=colorbar, clim=clim, cortex=cortex, size=size,
background=background, foreground=foreground,
initial_time=initial_time, time_unit=time_unit,
show_traces=show_traces, src=src, volume_options=volume_options,
view_layout=view_layout, add_data_kwargs=add_data_kwargs,
brain_kwargs=brain_kwargs, verbose=verbose)
@fill_doc
class VectorSourceEstimate(_BaseVectorSourceEstimate,
_BaseSurfaceSourceEstimate):
"""Container for vector surface source estimates.
For each vertex, the magnitude of the current is defined in the X, Y and Z
directions.
Parameters
----------
data : array of shape (n_dipoles, 3, n_times)
The data in source space. Each dipole contains three vectors that
denote the dipole strength in X, Y and Z directions over time.
vertices : list of array, shape (2,)
Vertex numbers corresponding to the data. The first element of the list
contains vertices of left hemisphere and the second element contains
vertices of right hemisphere.
%(tmin)s
%(tstep)s
%(subject_optional)s
%(verbose)s
Attributes
----------
subject : str | None
The subject name.
times : array of shape (n_times,)
The time vector.
shape : tuple
The shape of the data. A tuple of int (n_dipoles, n_times).
See Also
--------
SourceEstimate : A container for surface source estimates.
VolSourceEstimate : A container for volume source estimates.
MixedSourceEstimate : A container for mixed surface + volume source
estimates.
Notes
-----
.. versionadded:: 0.15
"""
_scalar_class = SourceEstimate
###############################################################################
# Mixed source estimate (two cortical surfs plus other stuff)
class _BaseMixedSourceEstimate(_BaseSourceEstimate):
_src_type = 'mixed'
_src_count = None
@verbose
def __init__(self, data, vertices=None, tmin=None, tstep=None,
subject=None, verbose=None): # noqa: D102
if not isinstance(vertices, list) or len(vertices) < 2:
raise ValueError('Vertices must be a list of numpy arrays with '
'one array per source space.')
super().__init__(data, vertices=vertices, tmin=tmin,
tstep=tstep, subject=subject,
verbose=verbose)
@property
def _n_surf_vert(self):
return sum(len(v) for v in self.vertices[:2])
def surface(self):
"""Return the cortical surface source estimate.
Returns
-------
stc : instance of SourceEstimate or VectorSourceEstimate
The surface source estimate.
"""
if self._data_ndim == 3:
klass = VectorSourceEstimate
else:
klass = SourceEstimate
return klass(
self.data[:self._n_surf_vert], self.vertices[:2],
self.tmin, self.tstep, self.subject)
def volume(self):
"""Return the volume surface source estimate.
Returns
-------
stc : instance of VolSourceEstimate or VolVectorSourceEstimate
The volume source estimate.
"""
if self._data_ndim == 3:
klass = VolVectorSourceEstimate
else:
klass = VolSourceEstimate
return klass(
self.data[self._n_surf_vert:], self.vertices[2:],
self.tmin, self.tstep, self.subject)
@fill_doc
class MixedSourceEstimate(_BaseMixedSourceEstimate):
"""Container for mixed surface and volume source estimates.
Parameters
----------
data : array of shape (n_dipoles, n_times) | tuple, shape (2,)
The data in source space. The data can either be a single array or
a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and
"sens_data" shape (n_sensors, n_times). In this case, the source
space data corresponds to ``np.dot(kernel, sens_data)``.
vertices : list of array
Vertex numbers corresponding to the data. The list contains arrays
with one array per source space.
%(tmin)s
%(tstep)s
%(subject_optional)s
%(verbose)s
Attributes
----------
subject : str | None
The subject name.
times : array of shape (n_times,)
The time vector.
vertices : list of array
Vertex numbers corresponding to the data. The list contains arrays
with one array per source space.
data : array of shape (n_dipoles, n_times)
The data in source space.
shape : tuple
The shape of the data. A tuple of int (n_dipoles, n_times).
See Also
--------
SourceEstimate : A container for surface source estimates.
VectorSourceEstimate : A container for vector surface source estimates.
VolSourceEstimate : A container for volume source estimates.
VolVectorSourceEstimate : A container for Volume vector source estimates.
Notes
-----
.. versionadded:: 0.9.0
"""
@fill_doc
class MixedVectorSourceEstimate(_BaseVectorSourceEstimate,
_BaseMixedSourceEstimate):
"""Container for volume source estimates.
Parameters
----------
data : array, shape (n_dipoles, 3, n_times)
The data in source space. Each dipole contains three vectors that
denote the dipole strength in X, Y and Z directions over time.
vertices : list of array, shape (n_src,)
Vertex numbers corresponding to the data.
%(tmin)s
%(tstep)s
%(subject_optional)s
%(verbose)s
Attributes
----------
subject : str | None
The subject name.
times : array, shape (n_times,)
The time vector.
vertices : array of shape (n_dipoles,)
The indices of the dipoles in the source space.
data : array of shape (n_dipoles, n_times)
The data in source space.
shape : tuple
The shape of the data. A tuple of int (n_dipoles, n_times).
See Also
--------
MixedSourceEstimate : A container for mixed surface + volume source
estimates.
Notes
-----
.. versionadded:: 0.21.0
"""
_scalar_class = MixedSourceEstimate
###############################################################################
# Morphing
def _get_vol_mask(src):
"""Get the volume source space mask."""
assert len(src) == 1 # not a mixed source space
shape = src[0]['shape'][::-1]
mask = np.zeros(shape, bool)
mask.flat[src[0]['vertno']] = True
return mask
def _spatio_temporal_src_adjacency_vol(src, n_times):
from sklearn.feature_extraction import grid_to_graph
mask = _get_vol_mask(src)
edges = grid_to_graph(*mask.shape, mask=mask)
adjacency = _get_adjacency_from_edges(edges, n_times)
return adjacency
def _spatio_temporal_src_adjacency_surf(src, n_times):
if src[0]['use_tris'] is None:
# XXX It would be nice to support non oct source spaces too...
raise RuntimeError("The source space does not appear to be an ico "
"surface. adjacency cannot be extracted from"
" non-ico source spaces.")
used_verts = [np.unique(s['use_tris']) for s in src]
offs = np.cumsum([0] + [len(u_v) for u_v in used_verts])[:-1]
tris = np.concatenate([np.searchsorted(u_v, s['use_tris']) + off
for u_v, s, off in zip(used_verts, src, offs)])
adjacency = spatio_temporal_tris_adjacency(tris, n_times)
# deal with source space only using a subset of vertices
masks = [np.in1d(u, s['vertno']) for s, u in zip(src, used_verts)]
if sum(u.size for u in used_verts) != adjacency.shape[0] / n_times:
raise ValueError('Used vertices do not match adjacency shape')
if [np.sum(m) for m in masks] != [len(s['vertno']) for s in src]:
raise ValueError('Vertex mask does not match number of vertices')
masks = np.concatenate(masks)
missing = 100 * float(len(masks) - np.sum(masks)) / len(masks)
if missing:
warn('%0.1f%% of original source space vertices have been'
' omitted, tri-based adjacency will have holes.\n'
'Consider using distance-based adjacency or '
'morphing data to all source space vertices.' % missing)
masks = np.tile(masks, n_times)
masks = np.where(masks)[0]
adjacency = adjacency.tocsr()
adjacency = adjacency[masks]
adjacency = adjacency[:, masks]
# return to original format
adjacency = adjacency.tocoo()
return adjacency
@verbose
def spatio_temporal_src_adjacency(src, n_times, dist=None, verbose=None):
"""Compute adjacency for a source space activation over time.
Parameters
----------
src : instance of SourceSpaces
The source space. It can be a surface source space or a
volume source space.
n_times : int
Number of time instants.
dist : float, or None
Maximal geodesic distance (in m) between vertices in the
source space to consider neighbors. If None, immediate neighbors
are extracted from an ico surface.
%(verbose)s
Returns
-------
adjacency : ~scipy.sparse.coo_matrix
The adjacency matrix describing the spatio-temporal
graph structure. If N is the number of vertices in the
source space, the N first nodes in the graph are the
vertices are time 1, the nodes from 2 to 2N are the vertices
during time 2, etc.
"""
# XXX we should compute adjacency for each source space and then
# use scipy.sparse.block_diag to concatenate them
if src[0]['type'] == 'vol':
if dist is not None:
raise ValueError('dist must be None for a volume '
'source space. Got %s.' % dist)
adjacency = _spatio_temporal_src_adjacency_vol(src, n_times)
elif dist is not None:
# use distances computed and saved in the source space file
adjacency = spatio_temporal_dist_adjacency(src, n_times, dist)
else:
adjacency = _spatio_temporal_src_adjacency_surf(src, n_times)
return adjacency
@verbose
def grade_to_tris(grade, verbose=None):
"""Get tris defined for a certain grade.
Parameters
----------
grade : int
Grade of an icosahedral mesh.
%(verbose)s
Returns
-------
tris : list
2-element list containing Nx3 arrays of tris, suitable for use in
spatio_temporal_tris_adjacency.
"""
a = _get_ico_tris(grade, None, False)
tris = np.concatenate((a, a + (np.max(a) + 1)))
return tris
@verbose
def spatio_temporal_tris_adjacency(tris, n_times, remap_vertices=False,
verbose=None):
"""Compute adjacency from triangles and time instants.
Parameters
----------
tris : array
N x 3 array defining triangles.
n_times : int
Number of time points.
remap_vertices : bool
Reassign vertex indices based on unique values. Useful
to process a subset of triangles. Defaults to False.
%(verbose)s
Returns
-------
adjacency : ~scipy.sparse.coo_matrix
The adjacency matrix describing the spatio-temporal
graph structure. If N is the number of vertices in the
source space, the N first nodes in the graph are the
vertices are time 1, the nodes from 2 to 2N are the vertices
during time 2, etc.
"""
from scipy import sparse
if remap_vertices:
logger.info('Reassigning vertex indices.')
tris = np.searchsorted(np.unique(tris), tris)
edges = mesh_edges(tris)
edges = (edges + sparse.eye(edges.shape[0], format='csr')).tocoo()
return _get_adjacency_from_edges(edges, n_times)
@verbose
def spatio_temporal_dist_adjacency(src, n_times, dist, verbose=None):
"""Compute adjacency from distances in a source space and time instants.
Parameters
----------
src : instance of SourceSpaces
The source space must have distances between vertices computed, such
that src['dist'] exists and is useful. This can be obtained
with a call to :func:`mne.setup_source_space` with the
``add_dist=True`` option.
n_times : int
Number of time points.
dist : float
Maximal geodesic distance (in m) between vertices in the
source space to consider neighbors.
%(verbose)s
Returns
-------
adjacency : ~scipy.sparse.coo_matrix
The adjacency matrix describing the spatio-temporal
graph structure. If N is the number of vertices in the
source space, the N first nodes in the graph are the
vertices are time 1, the nodes from 2 to 2N are the vertices
during time 2, etc.
"""
from scipy.sparse import block_diag as sparse_block_diag
if src[0]['dist'] is None:
raise RuntimeError('src must have distances included, consider using '
'setup_source_space with add_dist=True')
blocks = [s['dist'][s['vertno'], :][:, s['vertno']] for s in src]
# Ensure we keep explicit zeros; deal with changes in SciPy
for block in blocks:
if isinstance(block, np.ndarray):
block[block == 0] = -np.inf
else:
block.data[block.data == 0] == -1
edges = sparse_block_diag(blocks)
edges.data[:] = np.less_equal(edges.data, dist)
# clean it up and put it in coo format
edges = edges.tocsr()
edges.eliminate_zeros()
edges = edges.tocoo()
return _get_adjacency_from_edges(edges, n_times)
@verbose
def spatial_src_adjacency(src, dist=None, verbose=None):
"""Compute adjacency for a source space activation.
Parameters
----------
src : instance of SourceSpaces
The source space. It can be a surface source space or a
volume source space.
dist : float, or None
Maximal geodesic distance (in m) between vertices in the
source space to consider neighbors. If None, immediate neighbors
are extracted from an ico surface.
%(verbose)s
Returns
-------
adjacency : ~scipy.sparse.coo_matrix
The adjacency matrix describing the spatial graph structure.
"""
return spatio_temporal_src_adjacency(src, 1, dist)
@verbose
def spatial_tris_adjacency(tris, remap_vertices=False, verbose=None):
"""Compute adjacency from triangles.
Parameters
----------
tris : array
N x 3 array defining triangles.
remap_vertices : bool
Reassign vertex indices based on unique values. Useful
to process a subset of triangles. Defaults to False.
%(verbose)s
Returns
-------
adjacency : ~scipy.sparse.coo_matrix
The adjacency matrix describing the spatial graph structure.
"""
return spatio_temporal_tris_adjacency(tris, 1, remap_vertices)
@verbose
def spatial_dist_adjacency(src, dist, verbose=None):
"""Compute adjacency from distances in a source space.
Parameters
----------
src : instance of SourceSpaces
The source space must have distances between vertices computed, such
that src['dist'] exists and is useful. This can be obtained
with a call to :func:`mne.setup_source_space` with the
``add_dist=True`` option.
dist : float
Maximal geodesic distance (in m) between vertices in the
source space to consider neighbors.
%(verbose)s
Returns
-------
adjacency : ~scipy.sparse.coo_matrix
The adjacency matrix describing the spatial graph structure.
"""
return spatio_temporal_dist_adjacency(src, 1, dist)
@verbose
def spatial_inter_hemi_adjacency(src, dist, verbose=None):
"""Get vertices on each hemisphere that are close to the other hemisphere.
Parameters
----------
src : instance of SourceSpaces
The source space. Must be surface type.
dist : float
Maximal Euclidean distance (in m) between vertices in one hemisphere
compared to the other to consider neighbors.
%(verbose)s
Returns
-------
adjacency : ~scipy.sparse.coo_matrix
The adjacency matrix describing the spatial graph structure.
Typically this should be combined (addititively) with another
existing intra-hemispheric adjacency matrix, e.g. computed
using geodesic distances.
"""
from scipy import sparse
from scipy.spatial.distance import cdist
src = _ensure_src(src, kind='surface')
adj = cdist(src[0]['rr'][src[0]['vertno']],
src[1]['rr'][src[1]['vertno']])
adj = sparse.csr_matrix(adj <= dist, dtype=int)
empties = [sparse.csr_matrix((nv, nv), dtype=int) for nv in adj.shape]
adj = sparse.vstack([sparse.hstack([empties[0], adj]),
sparse.hstack([adj.T, empties[1]])])
return adj
@verbose
def _get_adjacency_from_edges(edges, n_times, verbose=None):
"""Given edges sparse matrix, create adjacency matrix."""
from scipy.sparse import coo_matrix
n_vertices = edges.shape[0]
logger.info("-- number of adjacent vertices : %d" % n_vertices)
nnz = edges.col.size
aux = n_vertices * np.tile(np.arange(n_times)[:, None], (1, nnz))
col = (edges.col[None, :] + aux).ravel()
row = (edges.row[None, :] + aux).ravel()
if n_times > 1: # add temporal edges
o = (n_vertices * np.arange(n_times - 1)[:, None] +
np.arange(n_vertices)[None, :]).ravel()
d = (n_vertices * np.arange(1, n_times)[:, None] +
np.arange(n_vertices)[None, :]).ravel()
row = np.concatenate((row, o, d))
col = np.concatenate((col, d, o))
data = np.ones(edges.data.size * n_times + 2 * n_vertices * (n_times - 1),
dtype=np.int64)
adjacency = coo_matrix((data, (row, col)),
shape=(n_times * n_vertices,) * 2)
return adjacency
@verbose
def _get_ico_tris(grade, verbose=None, return_surf=False):
"""Get triangles for ico surface."""
ico = _get_ico_surface(grade)
if not return_surf:
return ico['tris']
else:
return ico
def _pca_flip(flip, data):
U, s, V = _safe_svd(data, full_matrices=False)
# determine sign-flip
sign = np.sign(np.dot(U[:, 0], flip))
# use average power in label for scaling
scale = np.linalg.norm(s) / np.sqrt(len(data))
return sign * scale * V[0]
_label_funcs = {
'mean': lambda flip, data: np.mean(data, axis=0),
'mean_flip': lambda flip, data: np.mean(flip * data, axis=0),
'max': lambda flip, data: np.max(np.abs(data), axis=0),
'pca_flip': _pca_flip,
}
@contextlib.contextmanager
def _temporary_vertices(src, vertices):
orig_vertices = [s['vertno'] for s in src]
for s, v in zip(src, vertices):
s['vertno'] = v
try:
yield
finally:
for s, v in zip(src, orig_vertices):
s['vertno'] = v
def _check_stc_src(stc, src):
if stc is not None and src is not None:
_check_subject(
src._subject, stc.subject, raise_error=False,
first_kind='source space subject', second_kind='stc.subject')
for s, v, hemi in zip(src, stc.vertices, ('left', 'right')):
n_missing = (~np.in1d(v, s['vertno'])).sum()
if n_missing:
raise ValueError('%d/%d %s hemisphere stc vertices '
'missing from the source space, likely '
'mismatch' % (n_missing, len(v), hemi))
def _prepare_label_extraction(stc, labels, src, mode, allow_empty, use_sparse):
"""Prepare indices and flips for extract_label_time_course."""
# If src is a mixed src space, the first 2 src spaces are surf type and
# the other ones are vol type. For mixed source space n_labels will be
# given by the number of ROIs of the cortical parcellation plus the number
# of vol src space.
# If stc=None (i.e. no activation time courses provided) and mode='mean',
# only computes vertex indices and label_flip will be list of None.
from scipy import sparse
from .label import label_sign_flip, Label, BiHemiLabel
# if source estimate provided in stc, get vertices from source space and
# check that they are the same as in the stcs
_check_stc_src(stc, src)
vertno = [s['vertno'] for s in src] if stc is None else stc.vertices
nvert = [len(vn) for vn in vertno]
# initialization
label_flip = list()
label_vertidx = list()
bad_labels = list()
for li, label in enumerate(labels):
subject = label['subject'] if use_sparse else label.subject
# stc and src can each be None
_check_subject(
subject, getattr(stc, 'subject', None), raise_error=False,
first_kind='label.subject', second_kind='stc.subject')
_check_subject(
subject, getattr(src, '_subject', None), raise_error=False,
first_kind='label.subject', second_kind='source space subject')
if use_sparse:
assert isinstance(label, dict)
vertidx = label['csr']
# This can happen if some labels aren't present in the space
if vertidx.shape[0] == 0:
bad_labels.append(label['name'])
vertidx = None
# Efficiency shortcut: use linearity early to avoid redundant
# calculations
elif mode == 'mean':
vertidx = sparse.csr_matrix(vertidx.mean(axis=0))
label_vertidx.append(vertidx)
label_flip.append(None)
continue
# standard case
_validate_type(label, (Label, BiHemiLabel), 'labels[%d]' % (li,))
if label.hemi == 'both':
# handle BiHemiLabel
sub_labels = [label.lh, label.rh]
else:
sub_labels = [label]
this_vertidx = list()
for slabel in sub_labels:
if slabel.hemi == 'lh':
this_vertices = np.intersect1d(vertno[0], slabel.vertices)
vertidx = np.searchsorted(vertno[0], this_vertices)
elif slabel.hemi == 'rh':
this_vertices = np.intersect1d(vertno[1], slabel.vertices)
vertidx = nvert[0] + np.searchsorted(vertno[1], this_vertices)
else:
raise ValueError('label %s has invalid hemi' % label.name)
this_vertidx.append(vertidx)
# convert it to an array
this_vertidx = np.concatenate(this_vertidx)
this_flip = None
if len(this_vertidx) == 0:
bad_labels.append(label.name)
this_vertidx = None # to later check if label is empty
elif mode not in ('mean', 'max'): # mode-dependent initialization
# label_sign_flip uses two properties:
#
# - src[ii]['nn']
# - src[ii]['vertno']
#
# So if we override vertno with the stc vertices, it will pick
# the correct normals.
with _temporary_vertices(src, stc.vertices):
this_flip = label_sign_flip(label, src[:2])[:, None]
label_vertidx.append(this_vertidx)
label_flip.append(this_flip)
if len(bad_labels):
msg = ('source space does not contain any vertices for %d label%s:\n%s'
% (len(bad_labels), _pl(bad_labels), bad_labels))
if not allow_empty:
raise ValueError(msg)
else:
msg += '\nAssigning all-zero time series.'
if allow_empty == 'ignore':
logger.info(msg)
else:
warn(msg)
return label_vertidx, label_flip
def _vol_src_rr(src):
return apply_trans(
src[0]['src_mri_t'], np.array(
[d.ravel(order='F')
for d in np.meshgrid(
*(np.arange(s) for s in src[0]['shape']),
indexing='ij')],
float).T)
def _volume_labels(src, labels, mri_resolution):
# This will create Label objects that should do the right thing for our
# given volumetric source space when used with extract_label_time_course
from .label import Label
assert src.kind == 'volume'
subject = src._subject
extra = ' when using a volume source space'
_import_nibabel('use volume atlas labels')
_validate_type(labels, ('path-like', list, tuple), 'labels' + extra)
if _path_like(labels):
mri = labels
infer_labels = True
else:
if len(labels) != 2:
raise ValueError('labels, if list or tuple, must have length 2, '
'got %s' % (len(labels),))
mri, labels = labels
infer_labels = False
_validate_type(mri, 'path-like', 'labels[0]' + extra)
logger.info('Reading atlas %s' % (mri,))
vol_info = _get_mri_info_data(str(mri), data=True)
atlas_data = vol_info['data']
atlas_values = np.unique(atlas_data)
if atlas_values.dtype.kind == 'f': # MGZ will be 'i'
atlas_values = atlas_values[np.isfinite(atlas_values)]
if not (atlas_values == np.round(atlas_values)).all():
raise RuntimeError('Non-integer values present in atlas, cannot '
'labelize')
atlas_values = np.round(atlas_values).astype(np.int64)
if infer_labels:
labels = {
k: v for k, v in read_freesurfer_lut()[0].items()
if v in atlas_values}
labels = _check_volume_labels(labels, mri, name='labels[1]')
assert isinstance(labels, dict)
del atlas_values
vox_mri_t = vol_info['vox_mri_t']
want = src[0].get('vox_mri_t', None)
if want is None:
raise RuntimeError(
'Cannot use volumetric atlas if no mri was supplied during '
'source space creation')
vox_mri_t, want = vox_mri_t['trans'], want['trans']
if not np.allclose(vox_mri_t, want, atol=1e-6):
raise RuntimeError(
'atlas vox_mri_t does not match that used to create the source '
'space')
src_shape = tuple(src[0]['mri_' + k] for k in ('width', 'height', 'depth'))
atlas_shape = atlas_data.shape
if atlas_shape != src_shape:
raise RuntimeError('atlas shape %s does not match source space MRI '
'shape %s' % (atlas_shape, src_shape))
atlas_data = atlas_data.ravel(order='F')
if mri_resolution:
# Upsample then just index
out_labels = list()
nnz = 0
interp = src[0]['interpolator']
# should be guaranteed by size checks above and our src interp code
assert interp.shape[0] == np.prod(src_shape)
assert interp.shape == (atlas_data.size, len(src[0]['rr']))
interp = interp[:, src[0]['vertno']]
for k, v in labels.items():
mask = atlas_data == v
csr = interp[mask]
out_labels.append(dict(csr=csr, name=k, subject=subject))
nnz += csr.shape[0] > 0
else:
# Use nearest values
vertno = src[0]['vertno']
rr = _vol_src_rr(src)
del src
src_values = _get_atlas_values(vol_info, rr[vertno])
vertices = [vertno[src_values == val] for val in labels.values()]
out_labels = [Label(v, hemi='lh', name=val, subject=subject)
for v, val in zip(vertices, labels.keys())]
nnz = sum(len(v) != 0 for v in vertices)
logger.info('%d/%d atlas regions had at least one vertex '
'in the source space' % (nnz, len(out_labels)))
return out_labels
def _get_default_label_modes():
return sorted(_label_funcs.keys()) + ['auto']
def _get_allowed_label_modes(stc):
if isinstance(stc, (_BaseVolSourceEstimate,
_BaseVectorSourceEstimate)):
return ('mean', 'max', 'auto')
else:
return _get_default_label_modes()
def _gen_extract_label_time_course(stcs, labels, src, *, mode='mean',
allow_empty=False,
mri_resolution=True, verbose=None):
# loop through source estimates and extract time series
from scipy import sparse
if src is None and mode in ['mean', 'max']:
kind = 'surface'
else:
_validate_type(src, SourceSpaces)
kind = src.kind
_check_option('mode', mode, _get_default_label_modes())
if kind in ('surface', 'mixed'):
if not isinstance(labels, list):
labels = [labels]
use_sparse = False
else:
labels = _volume_labels(src, labels, mri_resolution)
use_sparse = bool(mri_resolution)
n_mode = len(labels) # how many processed with the given mode
n_mean = len(src[2:]) if kind == 'mixed' else 0
n_labels = n_mode + n_mean
vertno = func = None
for si, stc in enumerate(stcs):
_validate_type(stc, _BaseSourceEstimate, 'stcs[%d]' % (si,),
'source estimate')
_check_option(
'mode', mode, _get_allowed_label_modes(stc),
'when using a vector and/or volume source estimate')
if isinstance(stc, (_BaseVolSourceEstimate,
_BaseVectorSourceEstimate)):
mode = 'mean' if mode == 'auto' else mode
else:
mode = 'mean_flip' if mode == 'auto' else mode
if vertno is None:
vertno = copy.deepcopy(stc.vertices) # avoid keeping a ref
nvert = np.array([len(v) for v in vertno])
label_vertidx, src_flip = _prepare_label_extraction(
stc, labels, src, mode, allow_empty, use_sparse)
func = _label_funcs[mode]
# make sure the stc is compatible with the source space
if len(vertno) != len(stc.vertices):
raise ValueError('stc not compatible with source space')
for vn, svn in zip(vertno, stc.vertices):
if len(vn) != len(svn):
raise ValueError('stc not compatible with source space. '
'stc has %s time series but there are %s '
'vertices in source space. Ensure you used '
'src from the forward or inverse operator, '
'as forward computation can exclude vertices.'
% (len(svn), len(vn)))
if not np.array_equal(svn, vn):
raise ValueError('stc not compatible with source space')
logger.info('Extracting time courses for %d labels (mode: %s)'
% (n_labels, mode))
# do the extraction
label_tc = np.zeros((n_labels,) + stc.data.shape[1:],
dtype=stc.data.dtype)
for i, (vertidx, flip) in enumerate(zip(label_vertidx, src_flip)):
if vertidx is not None:
if isinstance(vertidx, sparse.csr_matrix):
assert mri_resolution
assert vertidx.shape[1] == stc.data.shape[0]
this_data = np.reshape(stc.data, (stc.data.shape[0], -1))
this_data = vertidx @ this_data
this_data.shape = \
(this_data.shape[0],) + stc.data.shape[1:]
else:
this_data = stc.data[vertidx]
label_tc[i] = func(flip, this_data)
# extract label time series for the vol src space (only mean supported)
offset = nvert[:-n_mean].sum() # effectively :2 or :0
for i, nv in enumerate(nvert[2:]):
if nv != 0:
v2 = offset + nv
label_tc[n_mode + i] = np.mean(stc.data[offset:v2], axis=0)
offset = v2
# this is a generator!
yield label_tc
@verbose
def extract_label_time_course(stcs, labels, src, mode='auto',
allow_empty=False, return_generator=False,
*, mri_resolution=True, verbose=None):
"""Extract label time course for lists of labels and source estimates.
This function will extract one time course for each label and source
estimate. The way the time courses are extracted depends on the mode
parameter (see Notes).
Parameters
----------
stcs : SourceEstimate | list (or generator) of SourceEstimate
The source estimates from which to extract the time course.
%(labels_eltc)s
%(src_eltc)s
%(mode_eltc)s
%(allow_empty_eltc)s
return_generator : bool
If True, a generator instead of a list is returned.
%(mri_resolution_eltc)s
%(verbose)s
Returns
-------
%(label_tc_el_returns)s
Notes
-----
%(eltc_mode_notes)s
If encountering a ``ValueError`` due to mismatch between number of
source points in the subject source space and computed ``stc`` object set
``src`` argument to ``fwd['src']`` or ``inv['src']`` to ensure the source
space is the one actually used by the inverse to compute the source
time courses.
"""
# convert inputs to lists
if not isinstance(stcs, (list, tuple, GeneratorType)):
stcs = [stcs]
return_several = False
return_generator = False
else:
return_several = True
label_tc = _gen_extract_label_time_course(
stcs, labels, src, mode=mode, allow_empty=allow_empty,
mri_resolution=mri_resolution)
if not return_generator:
# do the extraction and return a list
label_tc = list(label_tc)
if not return_several:
# input was a single SoureEstimate, return single array
label_tc = label_tc[0]
return label_tc
@verbose
def stc_near_sensors(evoked, trans, subject, distance=0.01, mode='sum',
project=True, subjects_dir=None, src=None, picks=None,
surface='pial', verbose=None):
"""Create a STC from ECoG, sEEG and DBS sensor data.
Parameters
----------
evoked : instance of Evoked
The evoked data. Must contain ECoG, sEEG or DBS channels.
%(trans)s
.. versionchanged:: 0.19
Support for 'fsaverage' argument.
subject : str
The subject name.
distance : float
Distance (m) defining the activation "ball" of the sensor.
mode : str
Can be "sum" to do a linear sum of weights, "weighted" to make this
a weighted sum, "nearest" to
use only the weight of the nearest sensor, or "single" to
do a distance-weight of the nearest sensor. Default is "sum".
See Notes.
.. versionchanged:: 0.24
Added "weighted" option.
project : bool
If True, project the sensors to the nearest ``'pial`` surface
vertex before computing distances. Only used when doing a
surface projection.
%(subjects_dir)s
src : instance of SourceSpaces
The source space.
.. warning:: If a surface source space is used, make sure that
``surface='pial'`` was used during construction,
or that you set ``surface='pial'`` here.
%(picks_base)s good sEEG, ECoG, and DBS channels.
.. versionadded:: 0.24
surface : str | None
The surface to use if ``src=None``. Default is the pial surface.
If None, the source space surface will be used.
.. versionadded:: 0.24.1
%(verbose)s
Returns
-------
stc : instance of SourceEstimate
The surface source estimate. If src is None, a surface source
estimate will be produced, and the number of vertices will equal
the number of pial-surface vertices that were close enough to
the sensors to take on a non-zero volue. If src is not None,
a surface, volume, or mixed source estimate will be produced
(depending on the kind of source space passed) and the
vertices will match those of src (i.e., there may be me
many all-zero values in stc.data).
Notes
-----
For surface projections, this function projects the ECoG sensors to
the pial surface (if ``project``), then the activation at each pial
surface vertex is given by the mode:
- ``'sum'``
Activation is the sum across each sensor weighted by the fractional
``distance`` from each sensor. A sensor with zero distance gets weight
1 and a sensor at ``distance`` meters away (or larger) gets weight 0.
If ``distance`` is less than half the distance between any two
sensors, this will be the same as ``'single'``.
- ``'single'``
Same as ``'sum'`` except that only the nearest sensor is used,
rather than summing across sensors within the ``distance`` radius.
As ``'nearest'`` for vertices with distance zero to the projected
sensor.
- ``'nearest'``
The value is given by the value of the nearest sensor, up to a
``distance`` (beyond which it is zero).
- ``'weighted'``
The value is given by the same as ``sum`` but the total weight for
each vertex is 1. (i.e., it's a weighted sum based on proximity).
If creating a Volume STC, ``src`` must be passed in, and this
function will project sEEG and DBS sensors to nearby surrounding vertices.
Then the activation at each volume vertex is given by the mode
in the same way as ECoG surface projections.
.. versionadded:: 0.22
"""
from scipy.spatial.distance import cdist, pdist
from .evoked import Evoked
_validate_type(evoked, Evoked, 'evoked')
_validate_type(mode, str, 'mode')
_validate_type(src, (None, SourceSpaces), 'src')
_check_option('mode', mode, ('sum', 'single', 'nearest', 'weighted'))
# create a copy of Evoked using ecog, seeg and dbs
if picks is None:
picks = pick_types(evoked.info, ecog=True, seeg=True, dbs=True)
evoked = evoked.copy().pick(picks)
frames = set(evoked.info['chs'][pick]['coord_frame'] for pick in picks)
if not frames == {FIFF.FIFFV_COORD_HEAD}:
raise RuntimeError('Channels must be in the head coordinate frame, '
f'got {sorted(frames)}')
# get channel positions that will be used to pinpoint where
# in the Source space we will use the evoked data
pos = evoked._get_channel_positions()
# remove nan channels
nan_inds = np.where(np.isnan(pos).any(axis=1))[0]
nan_chs = [evoked.ch_names[idx] for idx in nan_inds]
if len(nan_chs):
evoked.drop_channels(nan_chs)
pos = [pos[idx] for idx in range(len(pos)) if idx not in nan_inds]
# coord_frame transformation from native mne "head" to MRI coord_frame
trans, _ = _get_trans(trans, 'head', 'mri', allow_none=True)
# convert head positions -> coord_frame MRI
pos = apply_trans(trans, pos)
subject = _check_subject(None, subject, raise_error=False)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if surface is not None:
surf_rr = [read_surface(op.join(subjects_dir, subject, 'surf',
f'{hemi}.{surface}'))[0] / 1000.
for hemi in ('lh', 'rh')]
if src is None: # fake a full surface one
_validate_type(surface, str, 'surface', 'when src is None')
src = SourceSpaces([
dict(rr=rr, vertno=np.arange(len(rr)), type='surf',
coord_frame=FIFF.FIFFV_COORD_MRI)
for rr in surf_rr])
rrs = np.concatenate([s_rr[s['vertno']] for s_rr, s in
zip(surf_rr, src)])
keep_all = False
else:
if surface is None:
rrs = np.concatenate([s['rr'][s['vertno']] for s in src])
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
rrs = apply_trans(trans, rrs)
else:
rrs = np.concatenate([s_rr[s['vertno']] for s_rr, s in
zip(surf_rr, src)])
keep_all = True
# ensure it's a usable one
klass = dict(
surface=SourceEstimate,
volume=VolSourceEstimate,
mixed=MixedSourceEstimate,
)
_check_option('src.kind', src.kind, sorted(klass.keys()))
klass = klass[src.kind]
# projection will only occur with surfaces
logger.info(
f'Projecting data from {len(pos)} sensor{_pl(pos)} onto {len(rrs)} '
f'{src.kind} vertices: {mode} mode')
if project and src.kind == 'surface':
logger.info(' Projecting sensors onto surface')
pos = _project_onto_surface(pos, dict(rr=rrs), project_rrs=True,
method='nearest')[2]
min_dist = pdist(pos).min() * 1000
logger.info(
f' Minimum {"projected " if project else ""}intra-sensor distance: '
f'{min_dist:0.1f} mm')
# compute pairwise distance between source space points and sensors
dists = cdist(rrs, pos)
assert dists.shape == (len(rrs), len(pos))
# only consider vertices within our "epsilon-ball"
# characterized by distance kwarg
vertices = np.where((dists <= distance).any(-1))[0]
logger.info(f' {len(vertices)} / {len(rrs)} non-zero vertices')
w = np.maximum(1. - dists[vertices] / distance, 0)
# now we triage based on mode
if mode in ('single', 'nearest'):
range_ = np.arange(w.shape[0])
idx = np.argmax(w, axis=1)
vals = w[range_, idx] if mode == 'single' else 1.
w.fill(0)
w[range_, idx] = vals
elif mode == 'weighted':
norms = w.sum(-1, keepdims=True)
norms[norms == 0] = 1.
w /= norms
missing = np.where(~np.any(w, axis=0))[0]
if len(missing):
warn(f'Channel{_pl(missing)} missing in STC: '
f'{", ".join(evoked.ch_names[mi] for mi in missing)}')
nz_data = w @ evoked.data
if keep_all:
data = np.zeros(
(sum(len(s['vertno']) for s in src), len(evoked.times)),
dtype=nz_data.dtype)
data[vertices] = nz_data
vertices = [s['vertno'].copy() for s in src]
else:
assert src.kind == 'surface'
data = nz_data
offset = len(src[0]['vertno'])
vertices = [vertices[vertices < offset],
vertices[vertices >= offset] - offset]
return klass(data, vertices, evoked.times[0], 1. / evoked.info['sfreq'],
subject=subject, verbose=verbose)
|