1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
|
# Authors: Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
# Many of the computations in this code were derived from Matti Hämäläinen's
# C code.
from copy import deepcopy
from functools import partial
import os
import os.path as op
import numpy as np
from .io.constants import FIFF
from .io.meas_info import create_info, Info
from .io.tree import dir_tree_find
from .io.tag import find_tag, read_tag
from .io.open import fiff_open
from .io.write import (start_block, end_block, write_int,
write_float_sparse_rcs, write_string,
write_float_matrix, write_int_matrix,
write_coord_trans, start_and_end_file, write_id)
from .io.pick import channel_type, _picks_to_idx
from .bem import read_bem_surfaces, ConductorModel
from .fixes import _get_img_fdata
from .surface import (read_surface, _create_surf_spacing, _get_ico_surface,
_tessellate_sphere_surf, _get_surf_neighbors,
_normalize_vectors, _triangle_neighbors, mesh_dist,
complete_surface_info, _compute_nearest, fast_cross_3d,
_CheckInside)
# keep get_mni_fiducials here just for easy backward compat
from ._freesurfer import (_get_mri_info_data, _get_atlas_values, # noqa: F401
read_freesurfer_lut, get_mni_fiducials, _check_mri)
from .utils import (get_subjects_dir, check_fname, logger, verbose, fill_doc,
_ensure_int, check_version, _get_call_line, warn,
_check_fname, _path_like, _check_sphere,
_validate_type, _check_option, _is_numeric, _pl, _suggest,
object_size, sizeof_fmt)
from .parallel import parallel_func
from .transforms import (invert_transform, apply_trans, _print_coord_trans,
combine_transforms, _get_trans,
_coord_frame_name, Transform, _str_to_frame,
_ensure_trans)
_src_kind_dict = {
'vol': 'volume',
'surf': 'surface',
'discrete': 'discrete',
}
class SourceSpaces(list):
"""Represent a list of source space.
This class acts like a list of dictionaries containing the source
space information, one entry in the list per source space type. See
Notes for details.
.. warning::
This class should not be created or modified by the end user. Use
:func:`mne.setup_source_space`, :func:`mne.setup_volume_source_space`,
or :func:`mne.read_source_spaces` to create :class:`SourceSpaces`.
Parameters
----------
source_spaces : list
A list of dictionaries containing the source space information.
info : dict
Dictionary with information about the creation of the source space
file. Has keys 'working_dir' and 'command_line'.
Attributes
----------
kind : str
The kind of source space, one of
``{'surface', 'volume', 'discrete', 'mixed'}``.
info : dict
Dictionary with information about the creation of the source space
file. Has keys 'working_dir' and 'command_line'.
See Also
--------
mne.setup_source_space : Setup a surface source space.
mne.setup_volume_source_space : Setup a volume source space.
mne.read_source_spaces : Read source spaces from a file.
Notes
-----
Each element in SourceSpaces (e.g., ``src[0]``) is a dictionary. For
example, a surface source space will have ``len(src) == 2``, one entry for
each hemisphere. A volume source space will have ``len(src) == 1`` if it
uses a single monolithic grid, or ``len(src) == len(volume_label)`` when
created with a list-of-atlas-labels. A mixed source space consists of both
surface and volumetric source spaces in a single SourceSpaces object.
Each of those dictionaries can be accessed using standard Python
:class:`python:dict` access using the string keys listed below (e.g.,
``src[0]['type'] == 'surf'``). The relevant key/value pairs depend on
the source space type:
**Relevant to all source spaces**
The following are always present:
id : int
The FIF ID, either ``FIFF.FIFFV_MNE_SURF_LEFT_HEMI`` or
``FIFF.FIFFV_MNE_SURF_RIGHT_HEMI`` for surfaces, or
``FIFF.FIFFV_MNE_SURF_UNKNOWN`` for volume source spaces.
type : str
The type of source space, one of ``{'surf', 'vol', 'discrete'}``.
np : int
Number of vertices in the dense surface or complete volume.
coord_frame : int
The coordinate frame, usually ``FIFF.FIFFV_COORD_MRI``.
rr : ndarray, shape (np, 3)
The dense surface or complete volume vertex locations.
nn : ndarray, shape (np, 3)
The dense surface or complete volume normals.
nuse : int
The number of points in the subsampled surface.
inuse : ndarray, shape (np,)
An integer array defining whether each dense surface vertex is used
(``1``) or unused (``0``).
vertno : ndarray, shape (n_src,)
The vertex numbers of the dense surface or complete volume that are
used (i.e., ``np.where(src[0]['inuse'])[0]``).
subject_his_id : str
The FreeSurfer subject name.
**Surface source spaces**
Surface source spaces created using :func:`mne.setup_source_space` can have
the following additional entries (which will be missing, or have values of
``None`` or ``0`` for volumetric source spaces):
ntri : int
Number of triangles in the dense surface triangulation.
tris : ndarray, shape (ntri, 3)
The dense surface triangulation.
nuse_tri : int
The number of triangles in the subsampled surface.
use_tris : ndarray, shape (nuse_tri, 3)
The subsampled surface triangulation.
dist : scipy.sparse.csr_matrix, shape (n_src, n_src) | None
The distances (euclidean for volume, along the cortical surface for
surfaces) between source points.
dist_limit : float
The maximum distance allowed for inclusion in ``nearest``.
pinfo : list of ndarray
For each vertex in the subsampled surface, the indices of the
vertices in the dense surface that it represents (i.e., is closest
to of all subsampled indices), e.g. for the left hemisphere
(here constructed for ``sample`` with ``spacing='oct-6'``),
which vertices did we choose? Note the first is 14::
>>> src[0]['vertno'] # doctest:+SKIP
array([ 14, 54, 59, ..., 155295, 155323, 155330])
And which dense surface verts did our vertno[0] (14 on dense) represent? ::
>>> src[0]['pinfo'][0] # doctest:+SKIP
array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 39, 134, 135,
136, 137, 138, 139, 141, 142, 143, 144, 149, 150, 151, 152, 156,
162, 163, 173, 174, 185, 448, 449, 450, 451, 452, 453, 454, 455,
456, 462, 463, 464, 473, 474, 475, 485, 496, 497, 512, 864, 876,
881, 889, 890, 904])
patch_inds : ndarray, shape (n_src_remaining,)
The patch indices that have been retained (if relevant, following
forward computation. After just :func:`mne.setup_source_space`,
this will be ``np.arange(src[0]['nuse'])``. After forward
computation, some vertices can be excluded, in which case this
tells you which patches (of the original ``np.arange(nuse)``)
are still in use. So if some vertices have been excluded, the
line above for ``pinfo`` for completeness should be (noting that
the first subsampled vertex ([0]) represents the following dense
vertices)::
>>> src[0]['pinfo'][src[0]['patch_inds'][0]] # doctest:+SKIP
array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 39, 134, 135,
136, 137, 138, 139, 141, 142, 143, 144, 149, 150, 151, 152, 156,
162, 163, 173, 174, 185, 448, 449, 450, 451, 452, 453, 454, 455,
456, 462, 463, 464, 473, 474, 475, 485, 496, 497, 512, 864, 876,
881, 889, 890, 904])
nearest : ndarray, shape (np,)
For each vertex on the dense surface, this gives the vertex index
(in the dense surface) that each dense surface vertex is closest to
of the vertices chosen for subsampling. This is essentially the
reverse map off ``pinfo``, e.g.::
>>> src[0]['nearest'].shape # doctest:+SKIP
(115407,)
Based on ``pinfo`` above, this should be 14:
>>> src[0]['nearest'][6] # doctest:+SKIP
14
nearest_dist : ndarray, shape (np,)
The distances corresponding to ``nearest``.
**Volume source spaces**
Volume source spaces created using :func:`mne.setup_volume_source_space`
can have the following additional entries (which will be missing, or
have values of ``None`` or ``0`` for surface source spaces):
mri_width, mri_height, mri_depth : int
The MRI dimensions (in voxels).
neighbor_vert : ndarray
The 26-neighborhood information for each vertex.
interpolator : scipy.sparse.csr_matrix | None
The linear interpolator to go from the subsampled volume vertices
to the high-resolution volume.
shape : tuple of int
The shape of the subsampled grid.
mri_ras_t : instance of :class:`~mne.transforms.Transform`
The transformation from MRI surface RAS (``FIFF.FIFFV_COORD_MRI``)
to MRI scanner RAS (``FIFF.FIFFV_MNE_COORD_RAS``).
src_mri_t : instance of :class:`~mne.transforms.Transform`
The transformation from subsampled source space voxel to MRI
surface RAS.
vox_mri_t : instance of :class:`~mne.transforms.Transform`
The transformation from the original MRI voxel
(``FIFF.FIFFV_MNE_COORD_MRI_VOXEL``) space to MRI surface RAS.
mri_volume_name : str
The MRI volume name, e.g. ``'subjects_dir/subject/mri/T1.mgz'``.
seg_name : str
The MRI atlas segmentation name (e.g., ``'Left-Cerebellum-Cortex'``
from the parameter ``volume_label``).
Source spaces also have some attributes that are accessible via ``.``
access, like ``src.kind``.
""" # noqa: E501
def __init__(self, source_spaces, info=None): # noqa: D102
# First check the types is actually a valid config
_validate_type(source_spaces, list, 'source_spaces')
super(SourceSpaces, self).__init__(source_spaces) # list
self.kind # will raise an error if there is a problem
if info is None:
self.info = dict()
else:
self.info = dict(info)
@property
def kind(self):
types = list()
for si, s in enumerate(self):
_validate_type(s, dict, 'source_spaces[%d]' % (si,))
types.append(s.get('type', None))
_check_option('source_spaces[%d]["type"]' % (si,),
types[-1], ('surf', 'discrete', 'vol'))
if all(k == 'surf' for k in types[:2]):
surf_check = 2
if len(types) == 2:
kind = 'surface'
else:
kind = 'mixed'
else:
surf_check = 0
if all(k == 'discrete' for k in types):
kind = 'discrete'
else:
kind = 'volume'
if any(k == 'surf' for k in types[surf_check:]):
raise RuntimeError('Invalid source space with kinds %s' % (types,))
return kind
@verbose
def plot(self, head=False, brain=None, skull=None, subjects_dir=None,
trans=None, verbose=None):
"""Plot the source space.
Parameters
----------
head : bool
If True, show head surface.
brain : bool | str
If True, show the brain surfaces. Can also be a str for
surface type (e.g., 'pial', same as True). Default is None,
which means 'white' for surface source spaces and False otherwise.
skull : bool | str | list of str | list of dict | None
Whether to plot skull surface. If string, common choices would be
'inner_skull', or 'outer_skull'. Can also be a list to plot
multiple skull surfaces. If a list of dicts, each dict must
contain the complete surface info (such as you get from
:func:`mne.make_bem_model`). True is an alias of 'outer_skull'.
The subjects bem and bem/flash folders are searched for the 'surf'
files. Defaults to None, which is False for surface source spaces,
and True otherwise.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment.
trans : str | 'auto' | dict | None
The full path to the head<->MRI transform ``*-trans.fif`` file
produced during coregistration. If trans is None, an identity
matrix is assumed. This is only needed when the source space is in
head coordinates.
%(verbose)s
Returns
-------
fig : instance of Figure3D
The figure.
"""
from .viz import plot_alignment
surfaces = list()
bem = None
if brain is None:
brain = 'white' if any(ss['type'] == 'surf'
for ss in self) else False
if isinstance(brain, str):
surfaces.append(brain)
elif brain:
surfaces.append('brain')
if skull is None:
skull = False if self.kind == 'surface' else True
if isinstance(skull, str):
surfaces.append(skull)
elif skull is True:
surfaces.append('outer_skull')
elif skull is not False: # list
if isinstance(skull[0], dict): # bem
skull_map = {FIFF.FIFFV_BEM_SURF_ID_BRAIN: 'inner_skull',
FIFF.FIFFV_BEM_SURF_ID_SKULL: 'outer_skull',
FIFF.FIFFV_BEM_SURF_ID_HEAD: 'outer_skin'}
for this_skull in skull:
surfaces.append(skull_map[this_skull['id']])
bem = skull
else: # list of str
for surf in skull:
surfaces.append(surf)
if head:
surfaces.append('head')
if self[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
coord_frame = 'head'
if trans is None:
raise ValueError('Source space is in head coordinates, but no '
'head<->MRI transform was given. Please '
'specify the full path to the appropriate '
'*-trans.fif file as the "trans" parameter.')
else:
coord_frame = 'mri'
info = create_info(0, 1000., 'eeg')
return plot_alignment(
info, trans=trans, subject=self._subject,
subjects_dir=subjects_dir, surfaces=surfaces,
coord_frame=coord_frame, meg=(), eeg=False, dig=False, ecog=False,
bem=bem, src=self
)
def __getitem__(self, *args, **kwargs):
"""Get an item."""
out = super().__getitem__(*args, **kwargs)
if isinstance(out, list):
out = SourceSpaces(out)
return out
def __repr__(self): # noqa: D105
ss_repr = []
extra = []
for si, ss in enumerate(self):
ss_type = ss['type']
r = _src_kind_dict[ss_type]
if ss_type == 'vol':
if 'seg_name' in ss:
r += " (%s)" % (ss['seg_name'],)
else:
r += ", shape=%s" % (ss['shape'],)
elif ss_type == 'surf':
r += (" (%s), n_vertices=%i" % (_get_hemi(ss)[0], ss['np']))
r += ', n_used=%i' % (ss['nuse'],)
if si == 0:
extra += ['%s coords'
% (_coord_frame_name(int(ss['coord_frame'])))]
ss_repr.append('<%s>' % r)
subj = self._subject
if subj is not None:
extra += ['subject %r' % (subj,)]
sz = object_size(self)
if sz is not None:
extra += [f'~{sizeof_fmt(sz)}']
return "<SourceSpaces: [%s] %s>" % (
', '.join(ss_repr), ', '.join(extra))
@property
def _subject(self):
return self[0].get('subject_his_id', None)
def __add__(self, other):
"""Combine source spaces."""
out = self.copy()
out += other
return SourceSpaces(out)
def copy(self):
"""Make a copy of the source spaces.
Returns
-------
src : instance of SourceSpaces
The copied source spaces.
"""
return deepcopy(self)
def __deepcopy__(self, memodict):
"""Make a deepcopy."""
# don't copy read-only views (saves a ton of mem for split-vol src)
info = deepcopy(self.info, memodict)
ss = list()
for s in self:
for key in ('rr', 'nn'):
if key in s:
arr = s[key]
id_ = id(arr)
if id_ not in memodict:
if not arr.flags.writeable:
memodict[id_] = arr
ss.append(deepcopy(s, memodict))
return SourceSpaces(ss, info)
@verbose
def save(self, fname, overwrite=False, *, verbose=None):
"""Save the source spaces to a fif file.
Parameters
----------
fname : str
File to write.
%(overwrite)s
%(verbose)s
"""
write_source_spaces(fname, self, overwrite=overwrite)
@verbose
def export_volume(self, fname, include_surfaces=True,
include_discrete=True, dest='mri', trans=None,
mri_resolution=False, use_lut=True, overwrite=False,
verbose=None):
"""Export source spaces to nifti or mgz file.
Parameters
----------
fname : str
Name of nifti or mgz file to write.
include_surfaces : bool
If True, include surface source spaces.
include_discrete : bool
If True, include discrete source spaces.
dest : 'mri' | 'surf'
If 'mri' the volume is defined in the coordinate system of the
original T1 image. If 'surf' the coordinate system of the
FreeSurfer surface is used (Surface RAS).
trans : dict, str, or None
Either a transformation filename (usually made using mne_analyze)
or an info dict (usually opened using read_trans()). If string, an
ending of ``.fif`` or ``.fif.gz`` will be assumed to be in FIF
format, any other ending will be assumed to be a text file with a
4x4 transformation matrix (like the ``--trans`` MNE-C option.
Must be provided if source spaces are in head coordinates and
include_surfaces and mri_resolution are True.
mri_resolution : bool | str
If True, the image is saved in MRI resolution
(e.g. 256 x 256 x 256), and each source region (surface or
segmentation volume) filled in completely. If "sparse", only a
single voxel in the high-resolution MRI is filled in for each
source point.
.. versionchanged:: 0.21.0
Support for "sparse" was added.
use_lut : bool
If True, assigns a numeric value to each source space that
corresponds to a color on the freesurfer lookup table.
%(overwrite)s
.. versionadded:: 0.19
%(verbose)s
Notes
-----
This method requires nibabel.
"""
_check_fname(fname, overwrite)
_validate_type(mri_resolution, (bool, str), 'mri_resolution')
if isinstance(mri_resolution, str):
_check_option('mri_resolution', mri_resolution, ["sparse"],
extra='when mri_resolution is a string')
else:
mri_resolution = bool(mri_resolution)
fname = str(fname)
# import nibabel or raise error
try:
import nibabel as nib
except ImportError:
raise ImportError('This function requires nibabel.')
# Check coordinate frames of each source space
coord_frames = np.array([s['coord_frame'] for s in self])
# Raise error if trans is not provided when head coordinates are used
# and mri_resolution and include_surfaces are true
if (coord_frames == FIFF.FIFFV_COORD_HEAD).all():
coords = 'head' # all sources in head coordinates
if mri_resolution and include_surfaces:
if trans is None:
raise ValueError('trans containing mri to head transform '
'must be provided if mri_resolution and '
'include_surfaces are true and surfaces '
'are in head coordinates')
elif trans is not None:
logger.info('trans is not needed and will not be used unless '
'include_surfaces and mri_resolution are True.')
elif (coord_frames == FIFF.FIFFV_COORD_MRI).all():
coords = 'mri' # all sources in mri coordinates
if trans is not None:
logger.info('trans is not needed and will not be used unless '
'sources are in head coordinates.')
# Raise error if all sources are not in the same space, or sources are
# not in mri or head coordinates
else:
raise ValueError('All sources must be in head coordinates or all '
'sources must be in mri coordinates.')
# use lookup table to assign values to source spaces
logger.info('Reading FreeSurfer lookup table')
# read the lookup table
lut, _ = read_freesurfer_lut()
# Setup a dictionary of source types
src_types = dict(volume=[], surface_discrete=[])
# Populate dictionary of source types
for src in self:
# volume sources
if src['type'] == 'vol':
src_types['volume'].append(src)
# surface and discrete sources
elif src['type'] in ('surf', 'discrete'):
src_types['surface_discrete'].append(src)
else:
raise ValueError('Unrecognized source type: %s.' % src['type'])
# Raise error if there are no volume source spaces
if len(src_types['volume']) == 0:
raise ValueError('Source spaces must contain at least one volume.')
# Get shape, inuse array and interpolation matrix from volume sources
src = src_types['volume'][0]
aseg_data = None
if mri_resolution:
# read the mri file used to generate volumes
if mri_resolution is True:
aseg_data = _get_img_fdata(nib.load(src['mri_file']))
# get the voxel space shape
shape3d = (src['mri_width'], src['mri_depth'],
src['mri_height'])
else:
# get the volume source space shape
# read the shape in reverse order
# (otherwise results are scrambled)
shape3d = src['shape']
# calculate affine transform for image (MRI_VOXEL to RAS)
if mri_resolution:
# MRI_VOXEL to MRI transform
transform = src['vox_mri_t']
else:
# MRI_VOXEL to MRI transform
# NOTE: 'src' indicates downsampled version of MRI_VOXEL
transform = src['src_mri_t']
# Figure out how to get from our input source space to output voxels
fro_dst_t = invert_transform(transform)
dest = transform['to']
if coords == 'head':
head_mri_t = _get_trans(trans, 'head', 'mri')[0]
fro_dst_t = combine_transforms(head_mri_t, fro_dst_t, 'head', dest)
else:
fro_dst_t = fro_dst_t
# Fill in the volumes
img = np.zeros(shape3d)
for ii, vs in enumerate(src_types['volume']):
# read the lookup table value for segmented volume
if 'seg_name' not in vs:
raise ValueError('Volume sources should be segments, '
'not the entire volume.')
# find the color value for this volume
use_id = 1.
if mri_resolution is True or use_lut:
id_ = lut[vs['seg_name']]
if use_lut:
use_id = id_
if mri_resolution == 'sparse':
idx = apply_trans(fro_dst_t, vs['rr'][vs['vertno']])
idx = tuple(idx.round().astype(int).T)
elif mri_resolution is True: # fill the represented vol
# get the values for this volume
idx = (aseg_data == id_)
else:
assert mri_resolution is False
idx = vs['inuse'].reshape(shape3d, order='F').astype(bool)
img[idx] = use_id
# loop through the surface and discrete source spaces
# get the surface names (assumes left, right order. may want
# to add these names during source space generation
for src in src_types['surface_discrete']:
val = 1
if src['type'] == 'surf':
if not include_surfaces:
continue
if use_lut:
surf_name = {
FIFF.FIFFV_MNE_SURF_LEFT_HEMI: 'Left',
FIFF.FIFFV_MNE_SURF_RIGHT_HEMI: 'Right',
}[src['id']] + '-Cerebral-Cortex'
val = lut[surf_name]
else:
assert src['type'] == 'discrete'
if not include_discrete:
continue
if use_lut:
logger.info('Discrete sources do not have values on '
'the lookup table. Defaulting to 1.')
# convert vertex positions from their native space
# (either HEAD or MRI) to MRI_VOXEL space
if mri_resolution is True:
use_rr = src['rr']
else:
assert mri_resolution is False or mri_resolution == 'sparse'
use_rr = src['rr'][src['vertno']]
srf_vox = apply_trans(fro_dst_t['trans'], use_rr)
# convert to numeric indices
ix_, iy_, iz_ = srf_vox.T.round().astype(int)
# clip indices outside of volume space
ix = np.clip(ix_, 0, shape3d[0] - 1),
iy = np.clip(iy_, 0, shape3d[1] - 1)
iz = np.clip(iz_, 0, shape3d[2] - 1)
# compare original and clipped indices
n_diff = ((ix_ != ix) | (iy_ != iy) | (iz_ != iz)).sum()
# generate use warnings for clipping
if n_diff > 0:
warn(f'{n_diff} {src["type"]} vertices lay outside of volume '
f'space. Consider using a larger volume space.')
# get surface id or use default value
# update image to include surface voxels
img[ix, iy, iz] = val
if dest == 'mri':
# combine with MRI to RAS transform
transform = combine_transforms(
transform, vs['mri_ras_t'],
transform['from'], vs['mri_ras_t']['to'])
# now setup the affine for volume image
affine = transform['trans'].copy()
# make sure affine converts from m to mm
affine[:3] *= 1e3
# setup image for file
if fname.endswith(('.nii', '.nii.gz')): # save as nifit
# setup the nifti header
hdr = nib.Nifti1Header()
hdr.set_xyzt_units('mm')
# save the nifti image
img = nib.Nifti1Image(img, affine, header=hdr)
elif fname.endswith('.mgz'): # save as mgh
# convert to float32 (float64 not currently supported)
img = img.astype('float32')
# save the mgh image
img = nib.freesurfer.mghformat.MGHImage(img, affine)
else:
raise ValueError('Unrecognized file extension')
# write image to file
nib.save(img, fname)
def _add_patch_info(s):
"""Patch information in a source space.
Generate the patch information from the 'nearest' vector in
a source space. For vertex in the source space it provides
the list of neighboring vertices in the high resolution
triangulation.
Parameters
----------
s : dict
The source space.
"""
nearest = s['nearest']
if nearest is None:
s['pinfo'] = None
s['patch_inds'] = None
return
logger.info(' Computing patch statistics...')
indn = np.argsort(nearest)
nearest_sorted = nearest[indn]
steps = np.where(nearest_sorted[1:] != nearest_sorted[:-1])[0] + 1
starti = np.r_[[0], steps]
stopi = np.r_[steps, [len(nearest)]]
pinfo = list()
for start, stop in zip(starti, stopi):
pinfo.append(np.sort(indn[start:stop]))
s['pinfo'] = pinfo
# compute patch indices of the in-use source space vertices
patch_verts = nearest_sorted[steps - 1]
s['patch_inds'] = np.searchsorted(patch_verts, s['vertno'])
logger.info(' Patch information added...')
@verbose
def _read_source_spaces_from_tree(fid, tree, patch_stats=False, verbose=None):
"""Read the source spaces from a FIF file.
Parameters
----------
fid : file descriptor
An open file descriptor.
tree : dict
The FIF tree structure if source is a file id.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
%(verbose)s
Returns
-------
src : SourceSpaces
The source spaces.
"""
# Find all source spaces
spaces = dir_tree_find(tree, FIFF.FIFFB_MNE_SOURCE_SPACE)
if len(spaces) == 0:
raise ValueError('No source spaces found')
src = list()
for s in spaces:
logger.info(' Reading a source space...')
this = _read_one_source_space(fid, s)
logger.info(' [done]')
if patch_stats:
_complete_source_space_info(this)
src.append(this)
logger.info(' %d source spaces read' % len(spaces))
return SourceSpaces(src)
@verbose
def read_source_spaces(fname, patch_stats=False, verbose=None):
"""Read the source spaces from a FIF file.
Parameters
----------
fname : str
The name of the file, which should end with -src.fif or
-src.fif.gz.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
%(verbose)s
Returns
-------
src : SourceSpaces
The source spaces.
See Also
--------
write_source_spaces, setup_source_space, setup_volume_source_space
"""
# be more permissive on read than write (fwd/inv can contain src)
fname = _check_fname(fname, overwrite='read', must_exist=True)
check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz',
'_src.fif', '_src.fif.gz',
'-fwd.fif', '-fwd.fif.gz',
'_fwd.fif', '_fwd.fif.gz',
'-inv.fif', '-inv.fif.gz',
'_inv.fif', '_inv.fif.gz'))
ff, tree, _ = fiff_open(fname)
with ff as fid:
src = _read_source_spaces_from_tree(fid, tree, patch_stats=patch_stats,
verbose=verbose)
src.info['fname'] = fname
node = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
if node:
node = node[0]
for p in range(node['nent']):
kind = node['directory'][p].kind
pos = node['directory'][p].pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_ENV_WORKING_DIR:
src.info['working_dir'] = tag.data
elif kind == FIFF.FIFF_MNE_ENV_COMMAND_LINE:
src.info['command_line'] = tag.data
return src
def _read_one_source_space(fid, this):
"""Read one source space."""
res = dict()
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_ID)
if tag is None:
res['id'] = int(FIFF.FIFFV_MNE_SURF_UNKNOWN)
else:
res['id'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE)
if tag is None:
raise ValueError('Unknown source space type')
else:
src_type = int(tag.data)
if src_type == FIFF.FIFFV_MNE_SPACE_SURFACE:
res['type'] = 'surf'
elif src_type == FIFF.FIFFV_MNE_SPACE_VOLUME:
res['type'] = 'vol'
elif src_type == FIFF.FIFFV_MNE_SPACE_DISCRETE:
res['type'] = 'discrete'
else:
raise ValueError('Unknown source space type (%d)' % src_type)
if res['type'] == 'vol':
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS)
if tag is not None:
res['shape'] = tuple(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_COORD_TRANS)
if tag is not None:
res['src_mri_t'] = tag.data
parent_mri = dir_tree_find(this, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
# MNE 2.7.3 (and earlier) didn't store necessary information
# about volume coordinate translations. Although there is a
# FFIF_COORD_TRANS in the higher level of the FIFF file, this
# doesn't contain all the info we need. Safer to return an
# error unless a user really wants us to add backward compat.
raise ValueError('Can not find parent MRI location. The volume '
'source space may have been made with an MNE '
'version that is too old (<= 2.7.3). Consider '
'updating and regenerating the inverse.')
mri = parent_mri[0]
for d in mri['directory']:
if d.kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, d.pos)
trans = tag.data
if trans['from'] == FIFF.FIFFV_MNE_COORD_MRI_VOXEL:
res['vox_mri_t'] = trans
if trans['to'] == FIFF.FIFFV_MNE_COORD_RAS:
res['mri_ras_t'] = trans
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR)
if tag is not None:
res['interpolator'] = tag.data
if tag.data.data.size == 0:
del res['interpolator']
else:
logger.info("Interpolation matrix for MRI not found.")
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE)
if tag is not None:
res['mri_file'] = tag.data
tag = find_tag(fid, mri, FIFF.FIFF_MRI_WIDTH)
if tag is not None:
res['mri_width'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MRI_HEIGHT)
if tag is not None:
res['mri_height'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MRI_DEPTH)
if tag is not None:
res['mri_depth'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MNE_FILE_NAME)
if tag is not None:
res['mri_volume_name'] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS)
if tag is not None:
nneighbors = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS)
offset = 0
neighbors = []
for n in nneighbors:
neighbors.append(tag.data[offset:offset + n])
offset += n
res['neighbor_vert'] = neighbors
tag = find_tag(fid, this, FIFF.FIFF_COMMENT)
if tag is not None:
res['seg_name'] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
if tag is None:
raise ValueError('Number of vertices not found')
res['np'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI)
if tag is None:
res['ntri'] = 0
else:
res['ntri'] = int(tag.data)
else:
res['ntri'] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
raise ValueError('Coordinate frame information not found')
res['coord_frame'] = tag.data[0]
# Vertices, normals, and triangles
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS)
if tag is None:
raise ValueError('Vertex data not found')
res['rr'] = tag.data.astype(np.float64)
if res['rr'].shape[0] != res['np']:
raise ValueError('Vertex information is incorrect')
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
if tag is None:
raise ValueError('Vertex normals not found')
res['nn'] = tag.data.copy()
if res['nn'].shape[0] != res['np']:
raise ValueError('Vertex normal information is incorrect')
if res['ntri'] > 0:
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES)
if tag is None:
raise ValueError('Triangulation not found')
else:
res['tris'] = tag.data - 1 # index start at 0 in Python
else:
res['tris'] = tag.data - 1 # index start at 0 in Python
if res['tris'].shape[0] != res['ntri']:
raise ValueError('Triangulation information is incorrect')
else:
res['tris'] = None
# Which vertices are active
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE)
if tag is None:
res['nuse'] = 0
res['inuse'] = np.zeros(res['nuse'], dtype=np.int64)
res['vertno'] = None
else:
res['nuse'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION)
if tag is None:
raise ValueError('Source selection information missing')
res['inuse'] = tag.data.astype(np.int64).T
if len(res['inuse']) != res['np']:
raise ValueError('Incorrect number of entries in source space '
'selection')
res['vertno'] = np.where(res['inuse'])[0]
# Use triangulation
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES)
if tag1 is None or tag2 is None:
res['nuse_tri'] = 0
res['use_tris'] = None
else:
res['nuse_tri'] = tag1.data
res['use_tris'] = tag2.data - 1 # index start at 0 in Python
# Patch-related information
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST)
if tag1 is None or tag2 is None:
res['nearest'] = None
res['nearest_dist'] = None
else:
res['nearest'] = tag1.data
res['nearest_dist'] = tag2.data.T
_add_patch_info(res)
# Distances
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT)
if tag1 is None or tag2 is None:
res['dist'] = None
res['dist_limit'] = None
else:
res['dist'] = tag1.data
res['dist_limit'] = tag2.data
# Add the upper triangle
res['dist'] = res['dist'] + res['dist'].T
if (res['dist'] is not None):
logger.info(' Distance information added...')
tag = find_tag(fid, this, FIFF.FIFF_SUBJ_HIS_ID)
if tag is None:
res['subject_his_id'] = None
else:
res['subject_his_id'] = tag.data
return res
@verbose
def _complete_source_space_info(this, verbose=None):
"""Add more info on surface."""
# Main triangulation
logger.info(' Completing triangulation info...')
this['tri_area'] = np.zeros(this['ntri'])
r1 = this['rr'][this['tris'][:, 0], :]
r2 = this['rr'][this['tris'][:, 1], :]
r3 = this['rr'][this['tris'][:, 2], :]
this['tri_cent'] = (r1 + r2 + r3) / 3.0
this['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
this['tri_area'] = _normalize_vectors(this['tri_nn']) / 2.0
logger.info('[done]')
# Selected triangles
logger.info(' Completing selection triangulation info...')
if this['nuse_tri'] > 0:
r1 = this['rr'][this['use_tris'][:, 0], :]
r2 = this['rr'][this['use_tris'][:, 1], :]
r3 = this['rr'][this['use_tris'][:, 2], :]
this['use_tri_cent'] = (r1 + r2 + r3) / 3.0
this['use_tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
this['use_tri_area'] = np.linalg.norm(this['use_tri_nn'], axis=1) / 2.
logger.info('[done]')
def find_source_space_hemi(src):
"""Return the hemisphere id for a source space.
Parameters
----------
src : dict
The source space to investigate.
Returns
-------
hemi : int
Deduced hemisphere id.
"""
xave = src['rr'][:, 0].sum()
if xave < 0:
hemi = int(FIFF.FIFFV_MNE_SURF_LEFT_HEMI)
else:
hemi = int(FIFF.FIFFV_MNE_SURF_RIGHT_HEMI)
return hemi
def label_src_vertno_sel(label, src):
"""Find vertex numbers and indices from label.
Parameters
----------
label : Label
Source space label.
src : dict
Source space.
Returns
-------
vertices : list of length 2
Vertex numbers for lh and rh.
src_sel : array of int (len(idx) = len(vertices[0]) + len(vertices[1]))
Indices of the selected vertices in sourse space.
"""
if src[0]['type'] != 'surf':
return Exception('Labels are only supported with surface source '
'spaces')
vertno = [src[0]['vertno'], src[1]['vertno']]
if label.hemi == 'lh':
vertno_sel = np.intersect1d(vertno[0], label.vertices)
src_sel = np.searchsorted(vertno[0], vertno_sel)
vertno[0] = vertno_sel
vertno[1] = np.array([], int)
elif label.hemi == 'rh':
vertno_sel = np.intersect1d(vertno[1], label.vertices)
src_sel = np.searchsorted(vertno[1], vertno_sel) + len(vertno[0])
vertno[0] = np.array([], int)
vertno[1] = vertno_sel
elif label.hemi == 'both':
vertno_sel_lh = np.intersect1d(vertno[0], label.lh.vertices)
src_sel_lh = np.searchsorted(vertno[0], vertno_sel_lh)
vertno_sel_rh = np.intersect1d(vertno[1], label.rh.vertices)
src_sel_rh = np.searchsorted(vertno[1], vertno_sel_rh) + len(vertno[0])
src_sel = np.hstack((src_sel_lh, src_sel_rh))
vertno = [vertno_sel_lh, vertno_sel_rh]
else:
raise Exception("Unknown hemisphere type")
return vertno, src_sel
def _get_vertno(src):
return [s['vertno'] for s in src]
###############################################################################
# Write routines
@verbose
def _write_source_spaces_to_fid(fid, src, verbose=None):
"""Write the source spaces to a FIF file.
Parameters
----------
fid : file descriptor
An open file descriptor.
src : list
The list of source spaces.
%(verbose)s
"""
for s in src:
logger.info(' Write a source space...')
start_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
_write_one_source_space(fid, s, verbose)
end_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
logger.info(' [done]')
logger.info(' %d source spaces written' % len(src))
@verbose
def write_source_spaces(fname, src, *, overwrite=False, verbose=None):
"""Write source spaces to a file.
Parameters
----------
fname : str
The name of the file, which should end with -src.fif or
-src.fif.gz.
src : instance of SourceSpaces
The source spaces (as returned by read_source_spaces).
%(overwrite)s
%(verbose)s
See Also
--------
read_source_spaces
"""
_validate_type(src, SourceSpaces, 'src')
check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz',
'_src.fif', '_src.fif.gz'))
_check_fname(fname, overwrite=overwrite)
with start_and_end_file(fname) as fid:
_write_source_spaces(fid, src)
def _write_source_spaces(fid, src):
start_block(fid, FIFF.FIFFB_MNE)
if src.info:
start_block(fid, FIFF.FIFFB_MNE_ENV)
write_id(fid, FIFF.FIFF_BLOCK_ID)
data = src.info.get('working_dir', None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
data = src.info.get('command_line', None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
end_block(fid, FIFF.FIFFB_MNE_ENV)
_write_source_spaces_to_fid(fid, src)
end_block(fid, FIFF.FIFFB_MNE)
def _write_one_source_space(fid, this, verbose=None):
"""Write one source space."""
from scipy import sparse
if this['type'] == 'surf':
src_type = FIFF.FIFFV_MNE_SPACE_SURFACE
elif this['type'] == 'vol':
src_type = FIFF.FIFFV_MNE_SPACE_VOLUME
elif this['type'] == 'discrete':
src_type = FIFF.FIFFV_MNE_SPACE_DISCRETE
else:
raise ValueError('Unknown source space type (%s)' % this['type'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE, src_type)
if this['id'] >= 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_ID, this['id'])
data = this.get('subject_his_id', None)
if data:
write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, data)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, this['coord_frame'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, this['np'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS, this['rr'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS, this['nn'])
# Which vertices are active
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION, this['inuse'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE, this['nuse'])
if this['ntri'] > 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI, this['ntri'])
write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES,
this['tris'] + 1)
if this['type'] != 'vol' and this['use_tris'] is not None:
# Use triangulation
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI, this['nuse_tri'])
write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES,
this['use_tris'] + 1)
if this['type'] == 'vol':
neighbor_vert = this.get('neighbor_vert', None)
if neighbor_vert is not None:
nneighbors = np.array([len(n) for n in neighbor_vert])
neighbors = np.concatenate(neighbor_vert)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS, nneighbors)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS, neighbors)
write_coord_trans(fid, this['src_mri_t'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS, this['shape'])
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_coord_trans(fid, this['mri_ras_t'])
write_coord_trans(fid, this['vox_mri_t'])
mri_volume_name = this.get('mri_volume_name', None)
if mri_volume_name is not None:
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, mri_volume_name)
mri_width, mri_height, mri_depth, nvox = _src_vol_dims(this)
interpolator = this.get('interpolator')
if interpolator is None:
interpolator = sparse.csr_matrix((nvox, this['np']))
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR,
interpolator)
if 'mri_file' in this and this['mri_file'] is not None:
write_string(fid, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE,
this['mri_file'])
write_int(fid, FIFF.FIFF_MRI_WIDTH, mri_width)
write_int(fid, FIFF.FIFF_MRI_HEIGHT, mri_height)
write_int(fid, FIFF.FIFF_MRI_DEPTH, mri_depth)
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
# Patch-related information
if this['nearest'] is not None:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST, this['nearest'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST,
this['nearest_dist'])
# Distances
if this['dist'] is not None:
# Save only upper triangular portion of the matrix
dists = this['dist'].copy()
dists = sparse.triu(dists, format=dists.format)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST, dists)
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT,
this['dist_limit'])
# Segmentation data
if this['type'] == 'vol' and ('seg_name' in this):
# Save the name of the segment
write_string(fid, FIFF.FIFF_COMMENT, this['seg_name'])
###############################################################################
# Creation and decimation
@verbose
def _check_spacing(spacing, verbose=None):
"""Check spacing parameter."""
# check to make sure our parameters are good, parse 'spacing'
types = ('a string with values "ico#", "oct#", "all", or an int >= 2')
space_err = ('"spacing" must be %s, got type %s (%r)'
% (types, type(spacing), spacing))
if isinstance(spacing, str):
if spacing == 'all':
stype = 'all'
sval = ''
elif isinstance(spacing, str) and spacing[:3] in ('ico', 'oct'):
stype = spacing[:3]
sval = spacing[3:]
try:
sval = int(sval)
except Exception:
raise ValueError('%s subdivision must be an integer, got %r'
% (stype, sval))
lim = 0 if stype == 'ico' else 1
if sval < lim:
raise ValueError('%s subdivision must be >= %s, got %s'
% (stype, lim, sval))
else:
raise ValueError(space_err)
else:
stype = 'spacing'
sval = _ensure_int(spacing, 'spacing', types)
if sval < 2:
raise ValueError('spacing must be >= 2, got %d' % (sval,))
if stype == 'all':
logger.info('Include all vertices')
ico_surf = None
src_type_str = 'all'
else:
src_type_str = '%s = %s' % (stype, sval)
if stype == 'ico':
logger.info('Icosahedron subdivision grade %s' % sval)
ico_surf = _get_ico_surface(sval)
elif stype == 'oct':
logger.info('Octahedron subdivision grade %s' % sval)
ico_surf = _tessellate_sphere_surf(sval)
else:
assert stype == 'spacing'
logger.info('Approximate spacing %s mm' % sval)
ico_surf = sval
return stype, sval, ico_surf, src_type_str
@verbose
def setup_source_space(subject, spacing='oct6', surface='white',
subjects_dir=None, add_dist=True, n_jobs=None, *,
verbose=None):
"""Set up bilateral hemisphere surface-based source space with subsampling.
Parameters
----------
%(subject)s
spacing : str
The spacing to use. Can be ``'ico#'`` for a recursively subdivided
icosahedron, ``'oct#'`` for a recursively subdivided octahedron,
``'all'`` for all points, or an integer to use approximate
distance-based spacing (in mm).
.. versionchanged:: 0.18
Support for integers for distance-based spacing.
surface : str
The surface to use.
%(subjects_dir)s
add_dist : bool | str
Add distance and patch information to the source space. This takes some
time so precomputing it is recommended. Can also be 'patch' to only
compute patch information (requires SciPy 1.3+).
.. versionchanged:: 0.20
Support for add_dist='patch'.
%(n_jobs)s
Ignored if ``add_dist=='patch'``.
%(verbose)s
Returns
-------
src : SourceSpaces
The source space for each hemisphere.
See Also
--------
setup_volume_source_space
"""
cmd = ('setup_source_space(%s, spacing=%s, surface=%s, '
'subjects_dir=%s, add_dist=%s, verbose=%s)'
% (subject, spacing, surface, subjects_dir, add_dist, verbose))
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surfs = [op.join(subjects_dir, subject, 'surf', hemi + surface)
for hemi in ['lh.', 'rh.']]
for surf, hemi in zip(surfs, ['LH', 'RH']):
if surf is not None and not op.isfile(surf):
raise IOError('Could not find the %s surface %s'
% (hemi, surf))
logger.info('Setting up the source space with the following parameters:\n')
logger.info('SUBJECTS_DIR = %s' % subjects_dir)
logger.info('Subject = %s' % subject)
logger.info('Surface = %s' % surface)
stype, sval, ico_surf, src_type_str = _check_spacing(spacing)
logger.info('')
del spacing
logger.info('>>> 1. Creating the source space...\n')
# mne_make_source_space ... actually make the source spaces
src = []
# pre-load ico/oct surf (once) for speed, if necessary
if stype not in ('spacing', 'all'):
logger.info('Doing the %shedral vertex picking...'
% (dict(ico='icosa', oct='octa')[stype],))
for hemi, surf in zip(['lh', 'rh'], surfs):
logger.info('Loading %s...' % surf)
# Setup the surface spacing in the MRI coord frame
if stype != 'all':
logger.info('Mapping %s %s -> %s (%d) ...'
% (hemi, subject, stype, sval))
s = _create_surf_spacing(surf, hemi, subject, stype, ico_surf,
subjects_dir)
logger.info('loaded %s %d/%d selected to source space (%s)'
% (op.split(surf)[1], s['nuse'], s['np'], src_type_str))
src.append(s)
logger.info('') # newline after both subject types are run
# Fill in source space info
hemi_ids = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
for s, s_id in zip(src, hemi_ids):
# Add missing fields
s.update(dict(dist=None, dist_limit=None, nearest=None, type='surf',
nearest_dist=None, pinfo=None, patch_inds=None, id=s_id,
coord_frame=FIFF.FIFFV_COORD_MRI))
s['rr'] /= 1000.0
del s['tri_area']
del s['tri_cent']
del s['tri_nn']
del s['neighbor_tri']
# upconvert to object format from lists
src = SourceSpaces(src, dict(working_dir=os.getcwd(), command_line=cmd))
if add_dist:
dist_limit = 0. if add_dist == 'patch' else np.inf
add_source_space_distances(src, dist_limit=dist_limit,
n_jobs=n_jobs, verbose=verbose)
# write out if requested, then return the data
logger.info('You are now one step closer to computing the gain matrix')
return src
def _check_volume_labels(volume_label, mri, name='volume_label'):
_validate_type(mri, 'path-like', 'mri when %s is not None' % (name,))
mri = _check_fname(mri, overwrite='read', must_exist=True)
if isinstance(volume_label, str):
volume_label = [volume_label]
_validate_type(volume_label, (list, tuple, dict), name) # should be
if not isinstance(volume_label, dict):
# Turn it into a dict
if not mri.endswith('aseg.mgz'):
raise RuntimeError(
'Must use a *aseg.mgz file unless %s is a dict, got %s'
% (name, op.basename(mri)))
lut, _ = read_freesurfer_lut()
use_volume_label = dict()
for label in volume_label:
if label not in lut:
raise ValueError(
'Volume %r not found in file %s. Double check '
'FreeSurfer lookup table.%s'
% (label, mri, _suggest(label, lut)))
use_volume_label[label] = lut[label]
volume_label = use_volume_label
for label, id_ in volume_label.items():
_validate_type(label, str, 'volume_label keys')
_validate_type(id_, 'int-like', 'volume_labels[%r]' % (label,))
volume_label = {k: _ensure_int(v) for k, v in volume_label.items()}
return volume_label
@verbose
def setup_volume_source_space(subject=None, pos=5.0, mri=None,
sphere=None, bem=None,
surface=None, mindist=5.0, exclude=0.0,
subjects_dir=None, volume_label=None,
add_interpolator=True, sphere_units='m',
single_volume=False, verbose=None):
"""Set up a volume source space with grid spacing or discrete source space.
Parameters
----------
subject : str | None
Subject to process. If None, the path to the MRI volume must be
absolute to get a volume source space. If a subject name
is provided the T1.mgz file will be found automatically.
Defaults to None.
pos : float | dict
Positions to use for sources. If float, a grid will be constructed
with the spacing given by ``pos`` in mm, generating a volume source
space. If dict, pos['rr'] and pos['nn'] will be used as the source
space locations (in meters) and normals, respectively, creating a
discrete source space.
.. note:: For a discrete source space (``pos`` is a dict),
``mri`` must be None.
mri : str | None
The filename of an MRI volume (mgh or mgz) to create the
interpolation matrix over. Source estimates obtained in the
volume source space can then be morphed onto the MRI volume
using this interpolator. If pos is a dict, this cannot be None.
If subject name is provided, ``pos`` is a float or ``volume_label``
are not provided then the ``mri`` parameter will default to 'T1.mgz'
or ``aseg.mgz``, respectively, else it will stay None.
sphere : ndarray, shape (4,) | ConductorModel | None
Define spherical source space bounds using origin and radius given
by (ox, oy, oz, rad) in ``sphere_units``.
Only used if ``bem`` and ``surface`` are both None. Can also be a
spherical ConductorModel, which will use the origin and radius.
None (the default) uses a head-digitization fit.
bem : path-like | None | ConductorModel
Define source space bounds using a BEM file (specifically the inner
skull surface) or a ConductorModel for a 1-layer of 3-layers BEM.
surface : path-like | dict | None
Define source space bounds using a FreeSurfer surface file. Can
also be a dictionary with entries ``'rr'`` and ``'tris'``, such as
those returned by :func:`mne.read_surface`.
mindist : float
Exclude points closer than this distance (mm) to the bounding surface.
exclude : float
Exclude points closer than this distance (mm) from the center of mass
of the bounding surface.
%(subjects_dir)s
volume_label : str | dict | list | None
Region(s) of interest to use. None (default) will create a single
whole-brain source space. Otherwise, a separate source space will be
created for each entry in the list or dict (str will be turned into
a single-element list). If list of str, standard Freesurfer labels
are assumed. If dict, should be a mapping of region names to atlas
id numbers, allowing the use of other atlases.
.. versionchanged:: 0.21.0
Support for dict added.
add_interpolator : bool
If True and ``mri`` is not None, then an interpolation matrix
will be produced.
sphere_units : str
Defaults to ``"m"``.
.. versionadded:: 0.20
single_volume : bool
If True, multiple values of ``volume_label`` will be merged into a
a single source space instead of occupying multiple source spaces
(one for each sub-volume), i.e., ``len(src)`` will be ``1`` instead of
``len(volume_label)``. This can help conserve memory and disk space
when many labels are used.
.. versionadded:: 0.21
%(verbose)s
Returns
-------
src : SourceSpaces
A :class:`SourceSpaces` object containing one source space for each
entry of ``volume_labels``, or a single source space if
``volume_labels`` was not specified.
See Also
--------
setup_source_space
Notes
-----
Volume source spaces are related to an MRI image such as T1 and allow to
visualize source estimates overlaid on MRIs and to morph estimates
to a template brain for group analysis. Discrete source spaces
don't allow this. If you provide a subject name the T1 MRI will be
used by default.
When you work with a source space formed from a grid you need to specify
the domain in which the grid will be defined. There are three ways
of specifying this:
(i) sphere, (ii) bem model, and (iii) surface.
The default behavior is to use sphere model
(``sphere=(0.0, 0.0, 0.0, 90.0)``) if ``bem`` or ``surface`` is not
``None`` then ``sphere`` is ignored.
If you're going to use a BEM conductor model for forward model
it is recommended to pass it here.
To create a discrete source space, ``pos`` must be a dict, ``mri`` must be
None, and ``volume_label`` must be None. To create a whole brain volume
source space, ``pos`` must be a float and 'mri' must be provided.
To create a volume source space from label, ``pos`` must be a float,
``volume_label`` must be provided, and 'mri' must refer to a .mgh or .mgz
file with values corresponding to the freesurfer lookup-table (typically
``aseg.mgz``).
"""
subjects_dir = get_subjects_dir(subjects_dir)
_validate_type(
volume_label, (str, list, tuple, dict, None), 'volume_label')
_validate_type(bem, ('path-like', ConductorModel, None), 'bem')
_validate_type(surface, ('path-like', dict, None), 'surface')
if bem is not None and not isinstance(bem, ConductorModel):
bem = _check_fname(bem, overwrite='read', must_exist=True,
name='bem filename')
if surface is not None and not isinstance(surface, dict):
surface = _check_fname(surface, overwrite='read', must_exist=True,
name='surface filename')
if bem is not None and surface is not None:
raise ValueError('Only one of "bem" and "surface" should be '
'specified')
if mri is None and subject is not None:
if volume_label is not None:
mri = 'aseg.mgz'
elif _is_numeric(pos):
mri = 'T1.mgz'
if mri is not None:
mri = _check_mri(mri, subject, subjects_dir)
if isinstance(pos, dict):
raise ValueError('Cannot create interpolation matrix for '
'discrete source space, mri must be None if '
'pos is a dict')
if volume_label is not None:
volume_label = _check_volume_labels(volume_label, mri)
assert volume_label is None or isinstance(volume_label, dict)
sphere = _check_sphere(sphere, sphere_units=sphere_units)
# triage bounding argument
if bem is not None:
logger.info('BEM : %s', bem)
elif surface is not None:
if isinstance(surface, dict):
if not all(key in surface for key in ['rr', 'tris']):
raise KeyError('surface, if dict, must have entries "rr" '
'and "tris"')
# let's make sure we have geom info
complete_surface_info(surface, copy=False, verbose=False)
surf_extra = 'dict()'
else:
if not op.isfile(surface):
raise IOError('surface file "%s" not found' % surface)
surf_extra = surface
logger.info('Boundary surface file : %s', surf_extra)
else:
logger.info('Sphere : origin at (%.1f %.1f %.1f) mm'
% (1000 * sphere[0], 1000 * sphere[1], 1000 * sphere[2]))
logger.info(' radius : %.1f mm' % (1000 * sphere[3],))
# triage pos argument
if isinstance(pos, dict):
if not all(key in pos for key in ['rr', 'nn']):
raise KeyError('pos, if dict, must contain "rr" and "nn"')
pos_extra = 'dict()'
else: # pos should be float-like
try:
pos = float(pos)
except (TypeError, ValueError):
raise ValueError('pos must be a dict, or something that can be '
'cast to float()')
if not isinstance(pos, float):
logger.info('Source location file : %s', pos_extra)
logger.info('Assuming input in millimeters')
logger.info('Assuming input in MRI coordinates')
if isinstance(pos, float):
logger.info('grid : %.1f mm' % pos)
logger.info('mindist : %.1f mm' % mindist)
pos /= 1000.0 # convert pos from m to mm
if exclude > 0.0:
logger.info('Exclude : %.1f mm' % exclude)
vol_info = dict()
if mri is not None:
logger.info('MRI volume : %s' % mri)
logger.info('')
logger.info('Reading %s...' % mri)
vol_info = _get_mri_info_data(mri, data=volume_label is not None)
exclude /= 1000.0 # convert exclude from m to mm
logger.info('')
# Explicit list of points
if not isinstance(pos, float):
# Make the grid of sources
sp = [_make_discrete_source_space(pos)]
else:
# Load the brain surface as a template
if isinstance(bem, str):
# read bem surface in the MRI coordinate frame
surf = read_bem_surfaces(bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN,
verbose=False)
logger.info('Loaded inner skull from %s (%d nodes)'
% (bem, surf['np']))
elif bem is not None and bem.get('is_sphere') is False:
# read bem surface in the MRI coordinate frame
which = np.where([surf['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
for surf in bem['surfs']])[0]
if len(which) != 1:
raise ValueError('Could not get inner skull surface from BEM')
surf = bem['surfs'][which[0]]
assert surf['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
if surf['coord_frame'] != FIFF.FIFFV_COORD_MRI:
raise ValueError('BEM is not in MRI coordinates, got %s'
% (_coord_frame_name(surf['coord_frame']),))
logger.info('Taking inner skull from %s' % bem)
elif surface is not None:
if isinstance(surface, str):
# read the surface in the MRI coordinate frame
surf = read_surface(surface, return_dict=True)[-1]
else:
surf = surface
logger.info('Loaded bounding surface from %s (%d nodes)'
% (surface, surf['np']))
surf = deepcopy(surf)
surf['rr'] *= 1e-3 # must be converted to meters
else: # Load an icosahedron and use that as the surface
logger.info('Setting up the sphere...')
surf = dict(R=sphere[3], r0=sphere[:3])
# Make the grid of sources in MRI space
sp = _make_volume_source_space(
surf, pos, exclude, mindist, mri, volume_label,
vol_info=vol_info, single_volume=single_volume)
del sphere
assert isinstance(sp, list)
assert len(sp) == 1 if (volume_label is None or
single_volume) else len(volume_label)
# Compute an interpolation matrix to show data in MRI_VOXEL coord frame
if mri is not None:
if add_interpolator:
_add_interpolator(sp)
elif sp[0]['type'] == 'vol':
# If there is no interpolator, it's actually a discrete source space
sp[0]['type'] = 'discrete'
# do some cleaning
if volume_label is None and 'seg_name' in sp[0]:
del sp[0]['seg_name']
for s in sp:
if 'vol_dims' in s:
del s['vol_dims']
# Save it
sp = _complete_vol_src(sp, subject)
return sp
def _complete_vol_src(sp, subject=None):
for s in sp:
s.update(dict(nearest=None, dist=None, use_tris=None, patch_inds=None,
dist_limit=None, pinfo=None, ntri=0, nearest_dist=None,
nuse_tri=0, tris=None, subject_his_id=subject))
sp = SourceSpaces(sp, dict(working_dir=os.getcwd(), command_line='None'))
return sp
def _make_voxel_ras_trans(move, ras, voxel_size):
"""Make a transformation from MRI_VOXEL to MRI surface RAS (i.e. MRI)."""
assert voxel_size.ndim == 1
assert voxel_size.size == 3
rot = ras.T * voxel_size[np.newaxis, :]
assert rot.ndim == 2
assert rot.shape[0] == 3
assert rot.shape[1] == 3
trans = np.c_[np.r_[rot, np.zeros((1, 3))], np.r_[move, 1.0]]
t = Transform('mri_voxel', 'mri', trans)
return t
def _make_discrete_source_space(pos, coord_frame='mri'):
"""Use a discrete set of source locs/oris to make src space.
Parameters
----------
pos : dict
Must have entries "rr" and "nn". Data should be in meters.
coord_frame : str
The coordinate frame in which the positions are given; default: 'mri'.
The frame must be one defined in transforms.py:_str_to_frame
Returns
-------
src : dict
The source space.
"""
# Check that coordinate frame is valid
if coord_frame not in _str_to_frame: # will fail if coord_frame not string
raise KeyError('coord_frame must be one of %s, not "%s"'
% (list(_str_to_frame.keys()), coord_frame))
coord_frame = _str_to_frame[coord_frame] # now an int
# process points (copy and cast)
rr = np.array(pos['rr'], float)
nn = np.array(pos['nn'], float)
if not (rr.ndim == nn.ndim == 2 and nn.shape[0] == nn.shape[0] and
rr.shape[1] == nn.shape[1] and np.isfinite(rr).all() and
np.isfinite(nn).all()):
raise RuntimeError('"rr" and "nn" must both be finite 2D arrays with '
'the same number of rows and 3 columns')
npts = rr.shape[0]
_normalize_vectors(nn)
nz = np.sum(np.sum(nn * nn, axis=1) == 0)
if nz != 0:
raise RuntimeError('%d sources have zero length normal' % nz)
logger.info('Positions (in meters) and orientations')
logger.info('%d sources' % npts)
# Ready to make the source space
sp = dict(coord_frame=coord_frame, type='discrete', nuse=npts, np=npts,
inuse=np.ones(npts, int), vertno=np.arange(npts), rr=rr, nn=nn,
id=FIFF.FIFFV_MNE_SURF_UNKNOWN)
return sp
def _make_volume_source_space(surf, grid, exclude, mindist, mri=None,
volume_labels=None, do_neighbors=True,
n_jobs=None, vol_info={}, single_volume=False):
"""Make a source space which covers the volume bounded by surf."""
# Figure out the grid size in the MRI coordinate frame
if 'rr' in surf:
mins = np.min(surf['rr'], axis=0)
maxs = np.max(surf['rr'], axis=0)
cm = np.mean(surf['rr'], axis=0) # center of mass
maxdist = np.linalg.norm(surf['rr'] - cm, axis=1).max()
else:
mins = surf['r0'] - surf['R']
maxs = surf['r0'] + surf['R']
cm = surf['r0'].copy()
maxdist = surf['R']
# Define the sphere which fits the surface
logger.info('Surface CM = (%6.1f %6.1f %6.1f) mm'
% (1000 * cm[0], 1000 * cm[1], 1000 * cm[2]))
logger.info('Surface fits inside a sphere with radius %6.1f mm'
% (1000 * maxdist))
logger.info('Surface extent:')
for c, mi, ma in zip('xyz', mins, maxs):
logger.info(' %s = %6.1f ... %6.1f mm'
% (c, 1000 * mi, 1000 * ma))
maxn = np.array([np.floor(np.abs(m) / grid) + 1 if m > 0 else -
np.floor(np.abs(m) / grid) - 1 for m in maxs], int)
minn = np.array([np.floor(np.abs(m) / grid) + 1 if m > 0 else -
np.floor(np.abs(m) / grid) - 1 for m in mins], int)
logger.info('Grid extent:')
for c, mi, ma in zip('xyz', minn, maxn):
logger.info(' %s = %6.1f ... %6.1f mm'
% (c, 1000 * mi * grid, 1000 * ma * grid))
# Now make the initial grid
ns = tuple(maxn - minn + 1)
npts = np.prod(ns)
nrow = ns[0]
ncol = ns[1]
nplane = nrow * ncol
# x varies fastest, then y, then z (can use unravel to do this)
rr = np.meshgrid(np.arange(minn[2], maxn[2] + 1),
np.arange(minn[1], maxn[1] + 1),
np.arange(minn[0], maxn[0] + 1), indexing='ij')
x, y, z = rr[2].ravel(), rr[1].ravel(), rr[0].ravel()
rr = np.array([x * grid, y * grid, z * grid]).T
sp = dict(np=npts, nn=np.zeros((npts, 3)), rr=rr,
inuse=np.ones(npts, bool), type='vol', nuse=npts,
coord_frame=FIFF.FIFFV_COORD_MRI, id=FIFF.FIFFV_MNE_SURF_UNKNOWN,
shape=ns)
sp['nn'][:, 2] = 1.0
assert sp['rr'].shape[0] == npts
logger.info('%d sources before omitting any.', sp['nuse'])
# Exclude infeasible points
dists = np.linalg.norm(sp['rr'] - cm, axis=1)
bads = np.where(np.logical_or(dists < exclude, dists > maxdist))[0]
sp['inuse'][bads] = False
sp['nuse'] -= len(bads)
logger.info('%d sources after omitting infeasible sources not within '
'%0.1f - %0.1f mm.',
sp['nuse'], 1000 * exclude, 1000 * maxdist)
if 'rr' in surf:
_filter_source_spaces(surf, mindist, None, [sp], n_jobs)
else: # sphere
vertno = np.where(sp['inuse'])[0]
bads = (np.linalg.norm(sp['rr'][vertno] - surf['r0'], axis=-1) >=
surf['R'] - mindist / 1000.)
sp['nuse'] -= bads.sum()
sp['inuse'][vertno[bads]] = False
sp['vertno'] = np.where(sp['inuse'])[0]
del vertno
del surf
logger.info('%d sources remaining after excluding the sources outside '
'the surface and less than %6.1f mm inside.'
% (sp['nuse'], mindist))
# Restrict sources to volume of interest
if volume_labels is None:
sp['seg_name'] = 'the whole brain'
sps = [sp]
else:
if not do_neighbors:
raise RuntimeError('volume_label cannot be None unless '
'do_neighbors is True')
sps = list()
orig_sp = sp
# reduce the sizes when we deepcopy
for volume_label, id_ in volume_labels.items():
# this saves us some memory
memodict = dict()
for key in ('rr', 'nn'):
if key in orig_sp:
arr = orig_sp[key]
memodict[id(arr)] = arr
sp = deepcopy(orig_sp, memodict)
good = _get_atlas_values(vol_info, sp['rr'][sp['vertno']]) == id_
n_good = good.sum()
logger.info(' Selected %d voxel%s from %s'
% (n_good, _pl(n_good), volume_label))
if n_good == 0:
warn('Found no usable vertices in volume label '
f'{repr(volume_label)} (id={id_}) using a '
f'{grid * 1000:0.1f} mm grid')
# Update source info
sp['inuse'][sp['vertno'][~good]] = False
sp['vertno'] = sp['vertno'][good]
sp['nuse'] = sp['inuse'].sum()
sp['seg_name'] = volume_label
sp['mri_file'] = mri
sps.append(sp)
del orig_sp
assert len(sps) == len(volume_labels)
# This will undo some of the work above, but the calculations are
# pretty trivial so allow it
if single_volume:
for sp in sps[1:]:
sps[0]['inuse'][sp['vertno']] = True
sp = sps[0]
sp['seg_name'] = '+'.join(s['seg_name'] for s in sps)
sps = sps[:1]
sp['vertno'] = np.where(sp['inuse'])[0]
sp['nuse'] = len(sp['vertno'])
del sp, volume_labels
if not do_neighbors:
return sps
k = np.arange(npts)
neigh = np.empty((26, npts), int)
neigh.fill(-1)
# Figure out each neighborhood:
# 6-neighborhood first
idxs = [z > minn[2], x < maxn[0], y < maxn[1],
x > minn[0], y > minn[1], z < maxn[2]]
offsets = [-nplane, 1, nrow, -1, -nrow, nplane]
for n, idx, offset in zip(neigh[:6], idxs, offsets):
n[idx] = k[idx] + offset
# Then the rest to complete the 26-neighborhood
# First the plane below
idx1 = z > minn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[6, idx2] = k[idx2] + 1 - nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[7, idx3] = k[idx3] + 1 + nrow - nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[8, idx2] = k[idx2] + nrow - nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[9, idx3] = k[idx3] - 1 + nrow - nplane
neigh[10, idx2] = k[idx2] - 1 - nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[11, idx3] = k[idx3] - 1 - nrow - nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[12, idx2] = k[idx2] - nrow - nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[13, idx3] = k[idx3] + 1 - nrow - nplane
# Then the same plane
idx1 = np.logical_and(x < maxn[0], y < maxn[1])
neigh[14, idx1] = k[idx1] + 1 + nrow
idx1 = x > minn[0]
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[15, idx2] = k[idx2] - 1 + nrow
idx2 = np.logical_and(idx1, y > minn[1])
neigh[16, idx2] = k[idx2] - 1 - nrow
idx1 = np.logical_and(y > minn[1], x < maxn[0])
neigh[17, idx1] = k[idx1] + 1 - nrow - nplane
# Finally one plane above
idx1 = z < maxn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[18, idx2] = k[idx2] + 1 + nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[19, idx3] = k[idx3] + 1 + nrow + nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[20, idx2] = k[idx2] + nrow + nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[21, idx3] = k[idx3] - 1 + nrow + nplane
neigh[22, idx2] = k[idx2] - 1 + nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[23, idx3] = k[idx3] - 1 - nrow + nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[24, idx2] = k[idx2] - nrow + nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[25, idx3] = k[idx3] + 1 - nrow + nplane
# Omit unused vertices from the neighborhoods
logger.info('Adjusting the neighborhood info.')
r0 = minn * grid
voxel_size = grid * np.ones(3)
ras = np.eye(3)
src_mri_t = _make_voxel_ras_trans(r0, ras, voxel_size)
neigh_orig = neigh
for sp in sps:
# remove non source-space points
neigh = neigh_orig.copy()
neigh[:, np.logical_not(sp['inuse'])] = -1
# remove these points from neigh
old_shape = neigh.shape
neigh = neigh.ravel()
checks = np.where(neigh >= 0)[0]
removes = np.logical_not(np.in1d(checks, sp['vertno']))
neigh[checks[removes]] = -1
neigh.shape = old_shape
neigh = neigh.T
# Thought we would need this, but C code keeps -1 vertices, so we will:
# neigh = [n[n >= 0] for n in enumerate(neigh[vertno])]
sp['neighbor_vert'] = neigh
# Set up the volume data (needed for creating the interpolation matrix)
sp['src_mri_t'] = src_mri_t
sp['vol_dims'] = maxn - minn + 1
for key in ('mri_width', 'mri_height', 'mri_depth', 'mri_volume_name',
'vox_mri_t', 'mri_ras_t'):
if key in vol_info:
sp[key] = vol_info[key]
_print_coord_trans(sps[0]['src_mri_t'], 'Source space : ')
for key in ('vox_mri_t', 'mri_ras_t'):
if key in sps[0]:
_print_coord_trans(sps[0][key], 'MRI volume : ')
return sps
def _vol_vertex(width, height, jj, kk, pp):
return jj + width * kk + pp * (width * height)
def _src_vol_dims(s):
w, h, d = [s[f'mri_{key}'] for key in ('width', 'height', 'depth')]
return w, h, d, np.prod([w, h, d])
def _add_interpolator(sp):
"""Compute a sparse matrix to interpolate the data into an MRI volume."""
# extract transformation information from mri
from scipy import sparse
mri_width, mri_height, mri_depth, nvox = _src_vol_dims(sp[0])
#
# Convert MRI voxels from destination (MRI volume) to source (volume
# source space subset) coordinates
#
combo_trans = combine_transforms(sp[0]['vox_mri_t'],
invert_transform(sp[0]['src_mri_t']),
'mri_voxel', 'mri_voxel')
logger.info('Setting up volume interpolation ...')
inuse = np.zeros(sp[0]['np'], bool)
for s_ in sp:
np.logical_or(inuse, s_['inuse'], out=inuse)
interp = _grid_interp(
sp[0]['vol_dims'], (mri_width, mri_height, mri_depth),
combo_trans['trans'], order=1, inuse=inuse)
assert isinstance(interp, sparse.csr_matrix)
# Compose the sparse matrices
for si, s in enumerate(sp):
if len(sp) == 1: # no need to do these gymnastics
this_interp = interp
else: # limit it rows that have any contribution from inuse
# This is the same as the following, but more efficient:
# any_ = np.asarray(
# interp[:, s['inuse'].astype(bool)].sum(1)
# )[:, 0].astype(bool)
any_ = np.zeros(interp.indices.size + 1, np.int64)
any_[1:] = s['inuse'][interp.indices]
np.cumsum(any_, out=any_)
any_ = np.diff(any_[interp.indptr]) > 0
assert any_.shape == (interp.shape[0],)
indptr = np.empty_like(interp.indptr)
indptr[0] = 0
indptr[1:] = np.diff(interp.indptr)
indptr[1:][~any_] = 0
np.cumsum(indptr, out=indptr)
mask = np.repeat(any_, np.diff(interp.indptr))
indices = interp.indices[mask]
data = interp.data[mask]
assert data.shape == indices.shape == (indptr[-1],)
this_interp = sparse.csr_matrix(
(data, indices, indptr), shape=interp.shape)
s['interpolator'] = this_interp
logger.info(' %d/%d nonzero values for %s'
% (len(s['interpolator'].data), nvox, s['seg_name']))
logger.info('[done]')
def _grid_interp(from_shape, to_shape, trans, order=1, inuse=None):
"""Compute a grid-to-grid linear or nearest interpolation given."""
from scipy import sparse
from_shape = np.array(from_shape, int)
to_shape = np.array(to_shape, int)
trans = np.array(trans, np.float64) # to -> from
assert trans.shape == (4, 4) and np.array_equal(trans[3], [0, 0, 0, 1])
assert from_shape.shape == to_shape.shape == (3,)
shape = (np.prod(to_shape), np.prod(from_shape))
if inuse is None:
inuse = np.ones(shape[1], bool)
assert inuse.dtype == bool
assert inuse.shape == (shape[1],)
data, indices, indptr = _grid_interp_jit(
from_shape, to_shape, trans, order, inuse)
data = np.concatenate(data)
indices = np.concatenate(indices)
indptr = np.cumsum(indptr)
interp = sparse.csr_matrix((data, indices, indptr), shape=shape)
return interp
# This is all set up to do jit, but it's actually slower!
def _grid_interp_jit(from_shape, to_shape, trans, order, inuse):
# Loop over slices to save (lots of) memory
# Note that it is the slowest incrementing index
# This is equivalent to using mgrid and reshaping, but faster
assert order in (0, 1)
data = list()
indices = list()
nvox = np.prod(to_shape)
indptr = np.zeros(nvox + 1, np.int32)
mri_width, mri_height, mri_depth = to_shape
r0__ = np.empty((4, mri_height, mri_width), np.float64)
r0__[0, :, :] = np.arange(mri_width)
r0__[1, :, :] = np.arange(mri_height).reshape(1, mri_height, 1)
r0__[3, :, :] = 1
r0_ = np.reshape(r0__, (4, mri_width * mri_height))
width, height, _ = from_shape
trans = np.ascontiguousarray(trans)
maxs = (from_shape - 1).reshape(1, 3)
for p in range(mri_depth):
r0_[2] = p
# Transform our vertices from their MRI space into our source space's
# frame (this is labeled as FIFFV_MNE_COORD_MRI_VOXEL, but it's
# really a subset of the entire volume!)
r0 = (trans @ r0_)[:3].T
if order == 0:
rx = np.round(r0).astype(np.int32)
keep = np.where(np.logical_and(np.all(rx >= 0, axis=1),
np.all(rx <= maxs, axis=1)))[0]
indptr[keep + p * mri_height * mri_width + 1] = 1
indices.append(_vol_vertex(width, height, *rx[keep].T))
data.append(np.ones(len(keep)))
continue
rn = np.floor(r0).astype(np.int32)
good = np.where(np.logical_and(np.all(rn >= -1, axis=1),
np.all(rn <= maxs, axis=1)))[0]
if len(good) == 0:
continue
rns = rn[good]
r0s = r0[good]
jj_g, kk_g, pp_g = (rns >= 0).T
jjp1_g, kkp1_g, ppp1_g = (rns < maxs).T # same as rns + 1 <= maxs
# now we take each MRI voxel *in this space*, and figure out how
# to make its value the weighted sum of voxels in the volume source
# space. This is a trilinear interpolation based on the
# fact that we know we're interpolating from one volumetric grid
# into another.
jj = rns[:, 0]
kk = rns[:, 1]
pp = rns[:, 2]
vss = np.empty((len(jj), 8), np.int32)
jjp1 = jj + 1
kkp1 = kk + 1
ppp1 = pp + 1
mask = np.empty((len(jj), 8), bool)
vss[:, 0] = _vol_vertex(width, height, jj, kk, pp)
mask[:, 0] = jj_g & kk_g & pp_g
vss[:, 1] = _vol_vertex(width, height, jjp1, kk, pp)
mask[:, 1] = jjp1_g & kk_g & pp_g
vss[:, 2] = _vol_vertex(width, height, jjp1, kkp1, pp)
mask[:, 2] = jjp1_g & kkp1_g & pp_g
vss[:, 3] = _vol_vertex(width, height, jj, kkp1, pp)
mask[:, 3] = jj_g & kkp1_g & pp_g
vss[:, 4] = _vol_vertex(width, height, jj, kk, ppp1)
mask[:, 4] = jj_g & kk_g & ppp1_g
vss[:, 5] = _vol_vertex(width, height, jjp1, kk, ppp1)
mask[:, 5] = jjp1_g & kk_g & ppp1_g
vss[:, 6] = _vol_vertex(width, height, jjp1, kkp1, ppp1)
mask[:, 6] = jjp1_g & kkp1_g & ppp1_g
vss[:, 7] = _vol_vertex(width, height, jj, kkp1, ppp1)
mask[:, 7] = jj_g & kkp1_g & ppp1_g
# figure out weights for each vertex
xf = r0s[:, 0] - rns[:, 0].astype(np.float64)
yf = r0s[:, 1] - rns[:, 1].astype(np.float64)
zf = r0s[:, 2] - rns[:, 2].astype(np.float64)
omxf = 1.0 - xf
omyf = 1.0 - yf
omzf = 1.0 - zf
this_w = np.empty((len(good), 8), np.float64)
this_w[:, 0] = omxf * omyf * omzf
this_w[:, 1] = xf * omyf * omzf
this_w[:, 2] = xf * yf * omzf
this_w[:, 3] = omxf * yf * omzf
this_w[:, 4] = omxf * omyf * zf
this_w[:, 5] = xf * omyf * zf
this_w[:, 6] = xf * yf * zf
this_w[:, 7] = omxf * yf * zf
# eliminate zeros
mask[this_w <= 0] = False
# eliminate rows where none of inuse are actually present
row_mask = mask.copy()
row_mask[mask] = inuse[vss[mask]]
mask[~(row_mask.any(axis=-1))] = False
# construct the parts we need
indices.append(vss[mask])
indptr[good + p * mri_height * mri_width + 1] = mask.sum(1)
data.append(this_w[mask])
return data, indices, indptr
def _pts_in_hull(pts, hull, tolerance=1e-12):
return np.all([np.dot(eq[:-1], pts.T) + eq[-1] <= tolerance
for eq in hull.equations], axis=0)
@verbose
def _filter_source_spaces(surf, limit, mri_head_t, src, n_jobs=None,
verbose=None):
"""Remove all source space points closer than a given limit (in mm)."""
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD and mri_head_t is None:
raise RuntimeError('Source spaces are in head coordinates and no '
'coordinate transform was provided!')
# How close are the source points to the surface?
out_str = 'Source spaces are in '
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
inv_trans = invert_transform(mri_head_t)
out_str += 'head coordinates.'
elif src[0]['coord_frame'] == FIFF.FIFFV_COORD_MRI:
out_str += 'MRI coordinates.'
else:
out_str += 'unknown (%d) coordinates.' % src[0]['coord_frame']
logger.info(out_str)
out_str = 'Checking that the sources are inside the surface'
if limit > 0.0:
out_str += ' and at least %6.1f mm away' % (limit)
logger.info(out_str + ' (will take a few...)')
# fit a sphere to a surf quickly
check_inside = _CheckInside(surf)
# Check that the source is inside surface (often the inner skull)
for s in src:
vertno = np.where(s['inuse'])[0] # can't trust s['vertno'] this deep
# Convert all points here first to save time
r1s = s['rr'][vertno]
if s['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
r1s = apply_trans(inv_trans['trans'], r1s)
inside = check_inside(r1s, n_jobs)
omit_outside = (~inside).sum()
# vectorized nearest using BallTree (or cdist)
omit_limit = 0
if limit > 0.0:
# only check "inside" points
idx = np.where(inside)[0]
check_r1s = r1s[idx]
if check_inside.inner_r is not None:
# ... and those that are at least inner_sphere + limit away
mask = (np.linalg.norm(check_r1s - check_inside.cm, axis=-1) >=
check_inside.inner_r - limit / 1000.)
idx = idx[mask]
check_r1s = check_r1s[mask]
dists = _compute_nearest(
surf['rr'], check_r1s, return_dists=True, method='cKDTree')[1]
close = (dists < limit / 1000.0)
omit_limit = np.sum(close)
inside[idx[close]] = False
s['inuse'][vertno[~inside]] = False
del vertno
s['nuse'] -= (omit_outside + omit_limit)
s['vertno'] = np.where(s['inuse'])[0]
if omit_outside > 0:
extras = [omit_outside]
extras += ['s', 'they are'] if omit_outside > 1 else ['', 'it is']
logger.info(' %d source space point%s omitted because %s '
'outside the inner skull surface.' % tuple(extras))
if omit_limit > 0:
extras = [omit_limit]
extras += ['s'] if omit_outside > 1 else ['']
extras += [limit]
logger.info(' %d source space point%s omitted because of the '
'%6.1f-mm distance limit.' % tuple(extras))
# Adjust the patch inds as well if necessary
if omit_limit + omit_outside > 0:
_adjust_patch_info(s)
return check_inside
@verbose
def _adjust_patch_info(s, verbose=None):
"""Adjust patch information in place after vertex omission."""
if s.get('patch_inds') is not None:
if s['nearest'] is None:
# This shouldn't happen, but if it does, we can probably come
# up with a more clever solution
raise RuntimeError('Cannot adjust patch information properly, '
'please contact the mne-python developers')
_add_patch_info(s)
@verbose
def _ensure_src(src, kind=None, extra='', verbose=None):
"""Ensure we have a source space."""
_check_option(
'kind', kind, (None, 'surface', 'volume', 'mixed', 'discrete'))
msg = 'src must be a string or instance of SourceSpaces%s' % (extra,)
if _path_like(src):
src = str(src)
if not op.isfile(src):
raise IOError('Source space file "%s" not found' % src)
logger.info('Reading %s...' % src)
src = read_source_spaces(src, verbose=False)
if not isinstance(src, SourceSpaces):
raise ValueError('%s, got %s (type %s)' % (msg, src, type(src)))
if kind is not None:
if src.kind != kind and src.kind == 'mixed':
if kind == 'surface':
src = src[:2]
elif kind == 'volume':
src = src[2:]
if src.kind != kind:
raise ValueError('Source space must contain %s type, got '
'%s' % (kind, src.kind))
return src
def _ensure_src_subject(src, subject):
src_subject = src._subject
if subject is None:
subject = src_subject
if subject is None:
raise ValueError('source space is too old, subject must be '
'provided')
elif src_subject is not None and subject != src_subject:
raise ValueError('Mismatch between provided subject "%s" and subject '
'name "%s" in the source space'
% (subject, src_subject))
return subject
_DIST_WARN_LIMIT = 10242 # warn for anything larger than ICO-5
@verbose
def add_source_space_distances(src, dist_limit=np.inf, n_jobs=None, *,
verbose=None):
"""Compute inter-source distances along the cortical surface.
This function will also try to add patch info for the source space.
It will only occur if the ``dist_limit`` is sufficiently high that all
points on the surface are within ``dist_limit`` of a point in the
source space.
Parameters
----------
src : instance of SourceSpaces
The source spaces to compute distances for.
dist_limit : float
The upper limit of distances to include (in meters).
Note: if limit < np.inf, scipy > 0.13 (bleeding edge as of
10/2013) must be installed. If 0, then only patch (nearest vertex)
information is added.
%(n_jobs)s
Ignored if ``dist_limit==0.``.
%(verbose)s
Returns
-------
src : instance of SourceSpaces
The original source spaces, with distance information added.
The distances are stored in src[n]['dist'].
Note: this function operates in-place.
Notes
-----
This function can be memory- and CPU-intensive. On a high-end machine
(2012) running 6 jobs in parallel, an ico-5 (10242 per hemi) source space
takes about 10 minutes to compute all distances (``dist_limit = np.inf``).
With ``dist_limit = 0.007``, computing distances takes about 1 minute.
We recommend computing distances once per source space and then saving
the source space to disk, as the computed distances will automatically be
stored along with the source space data for future use.
"""
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import dijkstra
src = _ensure_src(src)
dist_limit = float(dist_limit)
if dist_limit < 0:
raise ValueError('dist_limit must be non-negative, got %s'
% (dist_limit,))
patch_only = (dist_limit == 0)
if patch_only and not check_version('scipy', '1.3'):
raise RuntimeError('scipy >= 1.3 is required to calculate patch '
'information only, consider upgrading SciPy or '
'using dist_limit=np.inf when running '
'add_source_space_distances')
if src.kind != 'surface':
raise RuntimeError('Currently all source spaces must be of surface '
'type')
parallel, p_fun, n_jobs = parallel_func(_do_src_distances, n_jobs)
min_dists = list()
min_idxs = list()
msg = 'patch information' if patch_only else 'source space distances'
logger.info('Calculating %s (limit=%s mm)...' % (msg, 1000 * dist_limit))
max_n = max(s['nuse'] for s in src)
if not patch_only and max_n > _DIST_WARN_LIMIT:
warn('Computing distances for %d source space points (in one '
'hemisphere) will be very slow, consider using add_dist=False'
% (max_n,))
for s in src:
adjacency = mesh_dist(s['tris'], s['rr'])
if patch_only:
min_dist, _, min_idx = dijkstra(
adjacency, indices=s['vertno'],
min_only=True, return_predecessors=True)
min_dists.append(min_dist.astype(np.float32))
min_idxs.append(min_idx)
for key in ('dist', 'dist_limit'):
s[key] = None
else:
d = parallel(p_fun(adjacency, s['vertno'], r, dist_limit)
for r in np.array_split(np.arange(len(s['vertno'])),
n_jobs))
# deal with indexing so we can add patch info
min_idx = np.array([dd[1] for dd in d])
min_dist = np.array([dd[2] for dd in d])
midx = np.argmin(min_dist, axis=0)
range_idx = np.arange(len(s['rr']))
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
min_dists.append(min_dist)
min_idxs.append(min_idx)
# convert to sparse representation
d = np.concatenate([dd[0] for dd in d]).ravel() # already float32
idx = d > 0
d = d[idx]
i, j = np.meshgrid(s['vertno'], s['vertno'])
i = i.ravel()[idx]
j = j.ravel()[idx]
s['dist'] = csr_matrix(
(d, (i, j)), shape=(s['np'], s['np']), dtype=np.float32)
s['dist_limit'] = np.array([dist_limit], np.float32)
# Let's see if our distance was sufficient to allow for patch info
if not any(np.any(np.isinf(md)) for md in min_dists):
# Patch info can be added!
for s, min_dist, min_idx in zip(src, min_dists, min_idxs):
s['nearest'] = min_idx
s['nearest_dist'] = min_dist
_add_patch_info(s)
else:
logger.info('Not adding patch information, dist_limit too small')
return src
def _do_src_distances(con, vertno, run_inds, limit):
"""Compute source space distances in chunks."""
from scipy.sparse.csgraph import dijkstra
func = partial(dijkstra, limit=limit)
chunk_size = 20 # save memory by chunking (only a little slower)
lims = np.r_[np.arange(0, len(run_inds), chunk_size), len(run_inds)]
n_chunks = len(lims) - 1
# eventually we want this in float32, so save memory by only storing 32-bit
d = np.empty((len(run_inds), len(vertno)), np.float32)
min_dist = np.empty((n_chunks, con.shape[0]))
min_idx = np.empty((n_chunks, con.shape[0]), np.int32)
range_idx = np.arange(con.shape[0])
for li, (l1, l2) in enumerate(zip(lims[:-1], lims[1:])):
idx = vertno[run_inds[l1:l2]]
out = func(con, indices=idx)
midx = np.argmin(out, axis=0)
min_idx[li] = idx[midx]
min_dist[li] = out[midx, range_idx]
d[l1:l2] = out[:, vertno]
midx = np.argmin(min_dist, axis=0)
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
d[d == np.inf] = 0 # scipy will give us np.inf for uncalc. distances
return d, min_idx, min_dist
# XXX this should probably be deprecated because it returns surface Labels,
# and probably isn't the way to go moving forward
# XXX this also assumes that the first two source spaces are surf without
# checking, which might not be the case (could be all volumes)
@fill_doc
def get_volume_labels_from_src(src, subject, subjects_dir):
"""Return a list of Label of segmented volumes included in the src space.
Parameters
----------
src : instance of SourceSpaces
The source space containing the volume regions.
%(subject)s
subjects_dir : str
Freesurfer folder of the subjects.
Returns
-------
labels_aseg : list of Label
List of Label of segmented volumes included in src space.
"""
from . import Label
from ._freesurfer import get_volume_labels_from_aseg
# Read the aseg file
aseg_fname = op.join(subjects_dir, subject, 'mri', 'aseg.mgz')
all_labels_aseg = get_volume_labels_from_aseg(
aseg_fname, return_colors=True)
# Create a list of Label
if len(src) < 2:
raise ValueError('No vol src space in src')
if any(np.any(s['type'] != 'vol') for s in src[2:]):
raise ValueError('source spaces have to be of vol type')
labels_aseg = list()
for nr in range(2, len(src)):
vertices = src[nr]['vertno']
pos = src[nr]['rr'][src[nr]['vertno'], :]
roi_str = src[nr]['seg_name']
try:
ind = all_labels_aseg[0].index(roi_str)
color = np.array(all_labels_aseg[1][ind]) / 255
except ValueError:
pass
if 'left' in roi_str.lower():
hemi = 'lh'
roi_str = roi_str.replace('Left-', '') + '-lh'
elif 'right' in roi_str.lower():
hemi = 'rh'
roi_str = roi_str.replace('Right-', '') + '-rh'
else:
hemi = 'both'
label = Label(vertices=vertices, pos=pos, hemi=hemi,
name=roi_str, color=color,
subject=subject)
labels_aseg.append(label)
return labels_aseg
def _get_hemi(s):
"""Get a hemisphere from a given source space."""
if s['type'] != 'surf':
raise RuntimeError('Only surface source spaces supported')
if s['id'] == FIFF.FIFFV_MNE_SURF_LEFT_HEMI:
return 'lh', 0, s['id']
elif s['id'] == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI:
return 'rh', 1, s['id']
else:
raise ValueError('unknown surface ID %s' % s['id'])
def _get_vertex_map_nn(fro_src, subject_from, subject_to, hemi, subjects_dir,
to_neighbor_tri=None):
"""Get a nearest-neigbor vertex match for a given hemi src.
The to_neighbor_tri can optionally be passed in to avoid recomputation
if it's already available.
"""
# adapted from mne_make_source_space.c, knowing accurate=False (i.e.
# nearest-neighbor mode should be used)
logger.info('Mapping %s %s -> %s (nearest neighbor)...'
% (hemi, subject_from, subject_to))
regs = [op.join(subjects_dir, s, 'surf', '%s.sphere.reg' % hemi)
for s in (subject_from, subject_to)]
reg_fro, reg_to = [read_surface(r, return_dict=True)[-1] for r in regs]
if to_neighbor_tri is not None:
reg_to['neighbor_tri'] = to_neighbor_tri
if 'neighbor_tri' not in reg_to:
reg_to['neighbor_tri'] = _triangle_neighbors(reg_to['tris'],
reg_to['np'])
morph_inuse = np.zeros(len(reg_to['rr']), int)
best = np.zeros(fro_src['np'], int)
ones = _compute_nearest(reg_to['rr'], reg_fro['rr'][fro_src['vertno']])
for v, one in zip(fro_src['vertno'], ones):
# if it were actually a proper morph map, we would do this, but since
# we know it's nearest neighbor list, we don't need to:
# this_mm = mm[v]
# one = this_mm.indices[this_mm.data.argmax()]
if morph_inuse[one]:
# Try the nearest neighbors
neigh = _get_surf_neighbors(reg_to, one) # on demand calc
was = one
one = neigh[np.where(~morph_inuse[neigh])[0]]
if len(one) == 0:
raise RuntimeError('vertex %d would be used multiple times.'
% one)
one = one[0]
logger.info('Source space vertex moved from %d to %d because of '
'double occupation.' % (was, one))
best[v] = one
morph_inuse[one] = True
return best
@verbose
def morph_source_spaces(src_from, subject_to, surf='white', subject_from=None,
subjects_dir=None, verbose=None):
"""Morph an existing source space to a different subject.
.. warning:: This can be used in place of morphing source estimates for
multiple subjects, but there may be consequences in terms
of dipole topology.
Parameters
----------
src_from : instance of SourceSpaces
Surface source spaces to morph.
subject_to : str
The destination subject.
surf : str
The brain surface to use for the new source space.
subject_from : str | None
The "from" subject. For most source spaces this shouldn't need
to be provided, since it is stored in the source space itself.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment.
%(verbose)s
Returns
-------
src : instance of SourceSpaces
The morphed source spaces.
Notes
-----
.. versionadded:: 0.10.0
"""
# adapted from mne_make_source_space.c
src_from = _ensure_src(src_from)
subject_from = _ensure_src_subject(src_from, subject_from)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
src_out = list()
for fro in src_from:
hemi, idx, id_ = _get_hemi(fro)
to = op.join(subjects_dir, subject_to, 'surf', '%s.%s' % (hemi, surf,))
logger.info('Reading destination surface %s' % (to,))
to = read_surface(to, return_dict=True, verbose=False)[-1]
complete_surface_info(to, copy=False)
# Now we morph the vertices to the destination
# The C code does something like this, but with a nearest-neighbor
# mapping instead of the weighted one::
#
# >>> mm = read_morph_map(subject_from, subject_to, subjects_dir)
#
# Here we use a direct NN calculation, since picking the max from the
# existing morph map (which naively one might expect to be equivalent)
# differs for ~3% of vertices.
best = _get_vertex_map_nn(fro, subject_from, subject_to, hemi,
subjects_dir, to['neighbor_tri'])
for key in ('neighbor_tri', 'tri_area', 'tri_cent', 'tri_nn',
'use_tris'):
del to[key]
to['vertno'] = np.sort(best[fro['vertno']])
to['inuse'] = np.zeros(len(to['rr']), int)
to['inuse'][to['vertno']] = True
to['use_tris'] = best[fro['use_tris']]
to.update(nuse=len(to['vertno']), nuse_tri=len(to['use_tris']),
nearest=None, nearest_dist=None, patch_inds=None, pinfo=None,
dist=None, id=id_, dist_limit=None, type='surf',
coord_frame=FIFF.FIFFV_COORD_MRI, subject_his_id=subject_to,
rr=to['rr'] / 1000.)
src_out.append(to)
logger.info('[done]\n')
info = dict(working_dir=os.getcwd(), command_line=_get_call_line())
return SourceSpaces(src_out, info=info)
@verbose
def _get_morph_src_reordering(vertices, src_from, subject_from, subject_to,
subjects_dir=None, verbose=None):
"""Get the reordering indices for a morphed source space.
Parameters
----------
vertices : list
The vertices for the left and right hemispheres.
src_from : instance of SourceSpaces
The original source space.
subject_from : str
The source subject.
subject_to : str
The destination subject.
%(subjects_dir)s
%(verbose)s
Returns
-------
data_idx : ndarray, shape (n_vertices,)
The array used to reshape the data.
from_vertices : list
The right and left hemisphere vertex numbers for the "from" subject.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
from_vertices = list()
data_idxs = list()
offset = 0
for ii, hemi in enumerate(('lh', 'rh')):
# Get the mapping from the original source space to the destination
# subject's surface vertex numbers
best = _get_vertex_map_nn(src_from[ii], subject_from, subject_to,
hemi, subjects_dir)
full_mapping = best[src_from[ii]['vertno']]
# Tragically, we might not have all of our vertno left (e.g. because
# some are omitted during fwd calc), so we must do some indexing magic:
# From all vertices, a subset could be chosen by fwd calc:
used_vertices = np.in1d(full_mapping, vertices[ii])
from_vertices.append(src_from[ii]['vertno'][used_vertices])
remaining_mapping = full_mapping[used_vertices]
if not np.array_equal(np.sort(remaining_mapping), vertices[ii]) or \
not np.in1d(vertices[ii], full_mapping).all():
raise RuntimeError('Could not map vertices, perhaps the wrong '
'subject "%s" was provided?' % subject_from)
# And our data have been implicitly remapped by the forced ascending
# vertno order in source spaces
implicit_mapping = np.argsort(remaining_mapping) # happens to data
data_idx = np.argsort(implicit_mapping) # to reverse the mapping
data_idx += offset # hemisphere offset
data_idxs.append(data_idx)
offset += len(implicit_mapping)
data_idx = np.concatenate(data_idxs)
# this one is really just a sanity check for us, should never be violated
# by users
assert np.array_equal(np.sort(data_idx),
np.arange(sum(len(v) for v in vertices)))
return data_idx, from_vertices
def _compare_source_spaces(src0, src1, mode='exact', nearest=True,
dist_tol=1.5e-3):
"""Compare two source spaces.
Note: this function is also used by forward/tests/test_make_forward.py
"""
from numpy.testing import (assert_allclose, assert_array_equal,
assert_equal, assert_, assert_array_less)
from scipy.spatial.distance import cdist
if mode != 'exact' and 'approx' not in mode: # 'nointerp' can be appended
raise RuntimeError('unknown mode %s' % mode)
for si, (s0, s1) in enumerate(zip(src0, src1)):
# first check the keys
a, b = set(s0.keys()), set(s1.keys())
assert_equal(a, b, str(a ^ b))
for name in ['nuse', 'ntri', 'np', 'type', 'id']:
a, b = s0[name], s1[name]
if name == 'id': # workaround for old NumPy bug
a, b = int(a), int(b)
assert_equal(a, b, name)
for name in ['subject_his_id']:
if name in s0 or name in s1:
assert_equal(s0[name], s1[name], name)
for name in ['interpolator']:
if name in s0 or name in s1:
assert name in s0, f'{name} in s1 but not s0'
assert name in s1, f'{name} in s1 but not s0'
n = np.prod(s0['interpolator'].shape)
diffs = (s0['interpolator'] - s1['interpolator']).data
if len(diffs) > 0 and 'nointerp' not in mode:
# 0.1%
assert_array_less(
np.sqrt(np.sum(diffs * diffs) / n), 0.001,
err_msg=f'{name} > 0.1%')
for name in ['nn', 'rr', 'nuse_tri', 'coord_frame', 'tris']:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
if mode == 'exact':
assert_array_equal(s0[name], s1[name], name)
else: # 'approx' in mode
atol = 1e-3 if name == 'nn' else 1e-4
assert_allclose(s0[name], s1[name], rtol=1e-3, atol=atol,
err_msg=name)
for name in ['seg_name']:
if name in s0 or name in s1:
assert_equal(s0[name], s1[name], name)
# these fields will exist if patch info was added
if nearest:
for name in ['nearest', 'nearest_dist', 'patch_inds']:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
atol = 0 if mode == 'exact' else 1e-6
assert_allclose(s0[name], s1[name],
atol=atol, err_msg=name)
for name in ['pinfo']:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
assert_(len(s0[name]) == len(s1[name]), name)
for p1, p2 in zip(s0[name], s1[name]):
assert_(all(p1 == p2), name)
if mode == 'exact':
for name in ['inuse', 'vertno', 'use_tris']:
assert_array_equal(s0[name], s1[name], err_msg=name)
for name in ['dist_limit']:
assert_(s0[name] == s1[name], name)
for name in ['dist']:
if s0[name] is not None:
assert_equal(s1[name].shape, s0[name].shape)
assert_(len((s0['dist'] - s1['dist']).data) == 0)
else: # 'approx' in mode:
# deal with vertno, inuse, and use_tris carefully
for ii, s in enumerate((s0, s1)):
assert_array_equal(s['vertno'], np.where(s['inuse'])[0],
'src%s[%s]["vertno"] != '
'np.where(src%s[%s]["inuse"])[0]'
% (ii, si, ii, si))
assert_equal(len(s0['vertno']), len(s1['vertno']))
agreement = np.mean(s0['inuse'] == s1['inuse'])
assert_(agreement >= 0.99, "%s < 0.99" % agreement)
if agreement < 1.0:
# make sure mismatched vertno are within 1.5mm
v0 = np.setdiff1d(s0['vertno'], s1['vertno'])
v1 = np.setdiff1d(s1['vertno'], s0['vertno'])
dists = cdist(s0['rr'][v0], s1['rr'][v1])
assert_allclose(np.min(dists, axis=1), np.zeros(len(v0)),
atol=dist_tol, err_msg='mismatched vertno')
if s0['use_tris'] is not None: # for "spacing"
assert_array_equal(s0['use_tris'].shape, s1['use_tris'].shape)
else:
assert_(s1['use_tris'] is None)
assert_(np.mean(s0['use_tris'] == s1['use_tris']) > 0.99)
# The above "if s0[name] is not None" can be removed once the sample
# dataset is updated to have a source space with distance info
for name in ['working_dir', 'command_line']:
if mode == 'exact':
assert_equal(src0.info[name], src1.info[name])
else: # 'approx' in mode:
if name in src0.info:
assert_(name in src1.info, '"%s" missing' % name)
else:
assert_(name not in src1.info, '"%s" should not exist' % name)
def _set_source_space_vertices(src, vertices):
"""Reset the list of source space vertices."""
assert len(src) == len(vertices)
for s, v in zip(src, vertices):
s['inuse'].fill(0)
s['nuse'] = len(v)
s['vertno'] = np.array(v)
s['inuse'][s['vertno']] = 1
s['use_tris'] = np.array([[]], int)
s['nuse_tri'] = np.array([0])
# This will fix 'patch_info' and 'pinfo'
_adjust_patch_info(s, verbose=False)
return src
def _get_src_nn(s, use_cps=True, vertices=None):
vertices = s['vertno'] if vertices is None else vertices
if use_cps and s.get('patch_inds') is not None:
nn = np.empty((len(vertices), 3))
for vp, p in enumerate(np.searchsorted(s['vertno'], vertices)):
assert s['vertno'][p] == vertices[vp]
# Project out the surface normal and compute SVD
nn[vp] = np.sum(
s['nn'][s['pinfo'][s['patch_inds'][p]], :], axis=0)
nn /= np.linalg.norm(nn, axis=-1, keepdims=True)
else:
nn = s['nn'][vertices, :]
return nn
@verbose
def compute_distance_to_sensors(src, info, picks=None, trans=None,
verbose=None):
"""Compute distances between vertices and sensors.
Parameters
----------
src : instance of SourceSpaces
The object with vertex positions for which to compute distances to
sensors.
%(info)s Must contain sensor positions to which distances shall
be computed.
%(picks_good_data)s
%(trans_not_none)s
%(verbose)s
Returns
-------
depth : array of shape (n_vertices, n_channels)
The Euclidean distances of source space vertices with respect to
sensors.
"""
from scipy.spatial.distance import cdist
assert isinstance(src, SourceSpaces)
_validate_type(info, (Info,), 'info')
# Load the head<->MRI transform if necessary
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_MRI:
src_trans, _ = _get_trans(trans, allow_none=False)
else:
src_trans = Transform('head', 'head') # Identity transform
# get vertex position in same coordinates as for sensors below
src_pos = np.vstack([
apply_trans(src_trans, s['rr'][s['inuse'].astype(bool)])
for s in src
])
# Select channels to be used for distance calculations
picks = _picks_to_idx(info, picks, 'data', exclude=())
# get sensor positions
sensor_pos = []
dev_to_head = None
for ch in picks:
# MEG channels are in device coordinates, translate them to head
if channel_type(info, ch) in ['mag', 'grad']:
if dev_to_head is None:
dev_to_head = _ensure_trans(info['dev_head_t'],
'meg', 'head')
sensor_pos.append(apply_trans(dev_to_head,
info['chs'][ch]['loc'][:3]))
else:
sensor_pos.append(info['chs'][ch]['loc'][:3])
sensor_pos = np.array(sensor_pos)
depths = cdist(src_pos, sensor_pos)
return depths
def get_decimated_surfaces(src):
"""Get the decimated surfaces from a source space.
Parameters
----------
src : instance of SourceSpaces | path-like
The source space with decimated surfaces.
Returns
-------
surfaces : list of dict
The decimated surfaces present in the source space. Each dict
which contains 'rr' and 'tris' keys for vertices positions and
triangle indices.
Notes
-----
.. versionadded:: 1.0
"""
src = _ensure_src(src)
surfaces = []
for s in src:
if s['type'] != 'surf':
continue
rr = s['rr']
use_tris = s['use_tris']
vertno = s['vertno']
ss = {}
ss['rr'] = rr[vertno]
reindex = np.full(len(rr), -1, int)
reindex[vertno] = np.arange(len(vertno))
ss['tris'] = reindex[use_tris]
assert (ss['tris'] >= 0).all()
surfaces.append(ss)
return surfaces
|