1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
|
# Authors: Eric Larson <larson.eric.d@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
from functools import partial
import os
import numpy as np
from scipy import sparse, linalg, stats
from numpy.testing import (assert_equal, assert_array_equal,
assert_array_almost_equal, assert_allclose)
import pytest
from mne import (SourceEstimate, VolSourceEstimate, MixedSourceEstimate,
SourceSpaces)
from mne.stats import ttest_ind_no_p, combine_adjacency
from mne.stats.cluster_level import (permutation_cluster_test, f_oneway,
permutation_cluster_1samp_test,
spatio_temporal_cluster_test,
spatio_temporal_cluster_1samp_test,
ttest_1samp_no_p, summarize_clusters_stc)
from mne.utils import (catch_logging, check_version, requires_sklearn,
_record_warnings)
n_space = 50
def _get_conditions():
noise_level = 20
n_time_1 = 20
n_time_2 = 13
normfactor = np.hanning(20).sum()
rng = np.random.RandomState(42)
condition1_1d = rng.randn(n_time_1, n_space) * noise_level
for c in condition1_1d:
c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor
condition2_1d = rng.randn(n_time_2, n_space) * noise_level
for c in condition2_1d:
c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor
pseudoekp = 10 * np.hanning(25)[None, :]
condition1_1d[:, 25:] += pseudoekp
condition2_1d[:, 25:] -= pseudoekp
condition1_2d = condition1_1d[:, :, np.newaxis]
condition2_2d = condition2_1d[:, :, np.newaxis]
return condition1_1d, condition2_1d, condition1_2d, condition2_2d
def test_thresholds(numba_conditional):
"""Test automatic threshold calculations."""
# within subjects
rng = np.random.RandomState(0)
X = rng.randn(10, 1, 1) + 0.08
want_thresh = -stats.t.ppf(0.025, len(X) - 1)
assert 0.03 < stats.ttest_1samp(X[:, 0, 0], 0)[1] < 0.05
my_fun = partial(ttest_1samp_no_p)
with catch_logging() as log:
with pytest.warns(RuntimeWarning, match='threshold is only valid'):
out = permutation_cluster_1samp_test(
X, stat_fun=my_fun, seed=0, verbose=True, out_type='mask')
log = log.getvalue()
assert str(want_thresh)[:6] in log
assert len(out[1]) == 1 # 1 cluster
assert_allclose(out[2], 0.033203, atol=1e-6)
# between subjects
Y = rng.randn(10, 1, 1)
Z = rng.randn(10, 1, 1) - 0.7
X = [X, Y, Z]
want_thresh = stats.f.ppf(1. - 0.05, 2, sum(len(a) for a in X) - len(X))
p = stats.f_oneway(*X)[1]
assert 0.03 < p < 0.05
my_fun = partial(f_oneway) # just to make the check fail
with catch_logging() as log:
with pytest.warns(RuntimeWarning, match='threshold is only valid'):
out = permutation_cluster_test(X, tail=1, stat_fun=my_fun,
seed=0, verbose=True,
out_type='mask')
log = log.getvalue()
assert str(want_thresh)[:6] in log
assert len(out[1]) == 1 # 1 cluster
assert_allclose(out[2], 0.041992, atol=1e-6)
with pytest.warns(RuntimeWarning, match='Ignoring argument "tail"'):
permutation_cluster_test(X, tail=0, out_type='mask')
# nan handling in TFCE
X = np.repeat(X[0], 2, axis=1)
X[:, 1] = 0
with pytest.warns(RuntimeWarning, match='invalid value'): # NumPy
out = permutation_cluster_1samp_test(
X, seed=0, threshold=dict(start=0, step=0.1), out_type='mask')
assert (out[2] < 0.05).any()
assert not (out[2] < 0.05).all()
X[:, 0] = 0
with pytest.raises(RuntimeError, match='finite'):
with np.errstate(invalid='ignore'):
permutation_cluster_1samp_test(
X, seed=0, threshold=dict(start=0, step=0.1),
buffer_size=None, out_type='mask')
def test_cache_dir(tmp_path, numba_conditional):
"""Test use of cache dir."""
tempdir = str(tmp_path)
orig_dir = os.getenv('MNE_CACHE_DIR', None)
orig_size = os.getenv('MNE_MEMMAP_MIN_SIZE', None)
rng = np.random.RandomState(0)
X = rng.randn(9, 2, 10)
try:
os.environ['MNE_MEMMAP_MIN_SIZE'] = '1K'
os.environ['MNE_CACHE_DIR'] = tempdir
# Fix error for #1507: in-place when memmapping
with catch_logging() as log_file:
permutation_cluster_1samp_test(
X, buffer_size=None, n_jobs=2, n_permutations=1, seed=0,
stat_fun=ttest_1samp_no_p, verbose=False, out_type='mask')
assert 'independently' not in log_file.getvalue()
# ensure that non-independence yields warning
stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
if check_version('numpy', '1.17'):
random_state = np.random.default_rng(0)
else:
random_state = 0
with pytest.warns(RuntimeWarning, match='independently'):
permutation_cluster_1samp_test(
X, buffer_size=10, n_jobs=2, n_permutations=1,
seed=random_state, stat_fun=stat_fun, verbose=False,
out_type='mask')
finally:
if orig_dir is not None:
os.environ['MNE_CACHE_DIR'] = orig_dir
else:
del os.environ['MNE_CACHE_DIR']
if orig_size is not None:
os.environ['MNE_MEMMAP_MIN_SIZE'] = orig_size
else:
del os.environ['MNE_MEMMAP_MIN_SIZE']
def test_permutation_large_n_samples(numba_conditional):
"""Test that non-replacement works with large N."""
X = np.random.RandomState(0).randn(72, 1) + 1
for n_samples in (11, 72):
tails = (0, 1) if n_samples <= 20 else (0,)
for tail in tails:
H0 = permutation_cluster_1samp_test(
X[:n_samples], threshold=1e-4, tail=tail, out_type='mask')[-1]
assert H0.shape == (1024,)
assert len(np.unique(H0)) >= 1024 - (H0 == 0).sum()
def test_permutation_step_down_p(numba_conditional):
"""Test cluster level permutations with step_down_p."""
rng = np.random.RandomState(0)
# subjects, time points, spatial points
X = rng.randn(9, 2, 10)
# add some significant points
X[:, 0:2, 0:2] += 2 # span two time points and two spatial points
X[:, 1, 5:9] += 0.5 # span four time points with 4x smaller amplitude
thresh = 2
# make sure it works when we use ALL points in step-down
t, clusters, p, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=1.0, out_type='mask')
# make sure using step-down will actually yield improvements sometimes
t, clusters, p_old, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=0.0, out_type='mask')
assert_equal(np.sum(p_old < 0.05), 1) # just spatial cluster
p_min = np.min(p_old)
assert_allclose(p_min, 0.003906, atol=1e-6)
t, clusters, p_new, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=0.05, out_type='mask')
assert_equal(np.sum(p_new < 0.05), 2) # time one rescued
assert np.all(p_old >= p_new)
p_next = p_new[(p_new > 0.004) & (p_new < 0.05)][0]
assert_allclose(p_next, 0.015625, atol=1e-6)
def test_cluster_permutation_test(numba_conditional):
"""Test cluster level permutations tests."""
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
for condition1, condition2 in zip((condition1_1d, condition1_2d),
(condition2_1d, condition2_2d)):
T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
[condition1, condition2], n_permutations=100, tail=1, seed=1,
buffer_size=None, out_type='mask')
p_min = np.min(cluster_p_values)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
assert_allclose(p_min, 0.01, atol=1e-6)
# test with 2 jobs and buffer_size enabled
buffer_size = condition1.shape[1] // 10
T_obs, clusters, cluster_p_values_buff, hist =\
permutation_cluster_test([condition1, condition2],
n_permutations=100, tail=1, seed=1,
n_jobs=2, buffer_size=buffer_size,
out_type='mask')
assert_array_equal(cluster_p_values, cluster_p_values_buff)
def stat_fun(X, Y):
return stats.f_oneway(X, Y)[0]
with pytest.warns(RuntimeWarning, match='is only valid'):
permutation_cluster_test([condition1, condition2], n_permutations=1,
stat_fun=stat_fun, out_type='mask')
@pytest.mark.parametrize('stat_fun', [
ttest_1samp_no_p,
partial(ttest_1samp_no_p, sigma=1e-1)
])
def test_cluster_permutation_t_test(numba_conditional, stat_fun):
"""Test cluster level permutations T-test."""
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
# use a very large sigma to make sure Ts are not independent
for condition1, p in ((condition1_1d, 0.01),
(condition1_2d, 0.01)):
# these are so significant we can get away with fewer perms
T_obs, clusters, cluster_p_values, hist =\
permutation_cluster_1samp_test(condition1, n_permutations=100,
tail=0, seed=1, out_type='mask',
buffer_size=None)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
p_min = np.min(cluster_p_values)
assert_allclose(p_min, p, atol=1e-6)
T_obs_pos, c_1, cluster_p_values_pos, _ =\
permutation_cluster_1samp_test(condition1, n_permutations=100,
tail=1, threshold=1.67, seed=1,
stat_fun=stat_fun, out_type='mask',
buffer_size=None)
T_obs_neg, _, cluster_p_values_neg, _ =\
permutation_cluster_1samp_test(-condition1, n_permutations=100,
tail=-1, threshold=-1.67,
seed=1, stat_fun=stat_fun,
buffer_size=None, out_type='mask')
assert_array_equal(T_obs_pos, -T_obs_neg)
assert_array_equal(cluster_p_values_pos < 0.05,
cluster_p_values_neg < 0.05)
# test with 2 jobs and buffer_size enabled
buffer_size = condition1.shape[1] // 10
with _record_warnings(): # sometimes "independently"
T_obs_neg_buff, _, cluster_p_values_neg_buff, _ = \
permutation_cluster_1samp_test(
-condition1, n_permutations=100, tail=-1, out_type='mask',
threshold=-1.67, seed=1, n_jobs=2, stat_fun=stat_fun,
buffer_size=buffer_size)
assert_array_equal(T_obs_neg, T_obs_neg_buff)
assert_array_equal(cluster_p_values_neg, cluster_p_values_neg_buff)
# Bad stat_fun
with pytest.raises(TypeError, match='must be .* ndarray'):
permutation_cluster_1samp_test(
condition1, threshold=1, stat_fun=lambda x: None,
out_type='mask')
with pytest.raises(ValueError, match='not compatible'):
permutation_cluster_1samp_test(
condition1, threshold=1, stat_fun=lambda x: stat_fun(x)[:-1],
out_type='mask')
@requires_sklearn
def test_cluster_permutation_with_adjacency(numba_conditional, monkeypatch):
"""Test cluster level permutations with adjacency matrix."""
from sklearn.feature_extraction.image import grid_to_graph
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
n_pts = condition1_1d.shape[1]
# we don't care about p-values in any of these, so do fewer permutations
args = dict(seed=None, max_step=1, exclude=None, out_type='mask',
step_down_p=0, t_power=1, threshold=1.67,
check_disjoint=False, n_permutations=50)
did_warn = False
for X1d, X2d, func, spatio_temporal_func in \
[(condition1_1d, condition1_2d,
permutation_cluster_1samp_test,
spatio_temporal_cluster_1samp_test),
([condition1_1d, condition2_1d],
[condition1_2d, condition2_2d],
permutation_cluster_test,
spatio_temporal_cluster_test)]:
out = func(X1d, **args)
adjacency = grid_to_graph(1, n_pts)
out_adjacency = func(X1d, adjacency=adjacency, **args)
assert_array_equal(out[0], out_adjacency[0])
for a, b in zip(out_adjacency[1], out[1]):
assert_array_equal(out[0][a], out[0][b])
assert np.all(a[b])
# test spatio-temporal w/o time adjacency (repeat spatial pattern)
adjacency_2 = sparse.coo_matrix(
linalg.block_diag(adjacency.asfptype().todense(),
adjacency.asfptype().todense()))
# nesting here is time then space:
adjacency_2a = combine_adjacency(np.eye(2), adjacency)
assert_array_equal(adjacency_2.toarray().astype(bool),
adjacency_2a.toarray().astype(bool))
if isinstance(X1d, list):
X1d_2 = [np.concatenate((x, x), axis=1) for x in X1d]
else:
X1d_2 = np.concatenate((X1d, X1d), axis=1)
out_adjacency_2 = func(X1d_2, adjacency=adjacency_2, **args)
# make sure we were operating on the same values
split = len(out[0])
assert_array_equal(out[0], out_adjacency_2[0][:split])
assert_array_equal(out[0], out_adjacency_2[0][split:])
# make sure we really got 2x the number of original clusters
n_clust_orig = len(out[1])
assert len(out_adjacency_2[1]) == 2 * n_clust_orig
# Make sure that we got the old ones back
data_1 = {np.sum(out[0][b[:n_pts]]) for b in out[1]}
data_2 = {np.sum(out_adjacency_2[0][a]) for a in
out_adjacency_2[1][:]}
assert len(data_1.intersection(data_2)) == len(data_1)
# now use the other algorithm
if isinstance(X1d, list):
X1d_3 = [np.reshape(x, (-1, 2, n_space)) for x in X1d_2]
else:
X1d_3 = np.reshape(X1d_2, (-1, 2, n_space))
out_adjacency_3 = spatio_temporal_func(
X1d_3, n_permutations=50, adjacency=adjacency,
max_step=0, threshold=1.67, check_disjoint=True)
# make sure we were operating on the same values
split = len(out[0])
assert_array_equal(out[0], out_adjacency_3[0][0])
assert_array_equal(out[0], out_adjacency_3[0][1])
# make sure we really got 2x the number of original clusters
assert len(out_adjacency_3[1]) == 2 * n_clust_orig
# Make sure that we got the old ones back
data_1 = {np.sum(out[0][b[:n_pts]]) for b in out[1]}
data_2 = {np.sum(out_adjacency_3[0][a[0], a[1]]) for a in
out_adjacency_3[1]}
assert len(data_1.intersection(data_2)) == len(data_1)
# test new versus old method
out_adjacency_4 = spatio_temporal_func(
X1d_3, n_permutations=50, adjacency=adjacency,
max_step=2, threshold=1.67)
out_adjacency_5 = spatio_temporal_func(
X1d_3, n_permutations=50, adjacency=adjacency,
max_step=1, threshold=1.67)
# clusters could be in a different order
sums_4 = [np.sum(out_adjacency_4[0][a])
for a in out_adjacency_4[1]]
sums_5 = [np.sum(out_adjacency_4[0][a])
for a in out_adjacency_5[1]]
sums_4 = np.sort(sums_4)
sums_5 = np.sort(sums_5)
assert_array_almost_equal(sums_4, sums_5)
monkeypatch.delenv('MNE_FORCE_SERIAL', raising=False)
with pytest.raises(ValueError, match='must not be less'):
spatio_temporal_func(
X1d_3, n_permutations=1, adjacency=adjacency,
max_step=1, threshold=1.67, n_jobs=-1000)
# not enough TFCE params
with pytest.raises(KeyError, match='threshold, if dict, must have'):
spatio_temporal_func(
X1d_3, adjacency=adjacency, threshold=dict(me='hello'))
# too extreme a start threshold
with _record_warnings() as w:
spatio_temporal_func(X1d_3, adjacency=adjacency,
threshold=dict(start=10, step=1))
if not did_warn:
assert len(w) == 1
did_warn = True
with pytest.raises(ValueError, match='threshold.*<= 0 for tail == -1'):
spatio_temporal_func(
X1d_3, adjacency=adjacency, tail=-1,
threshold=dict(start=1, step=-1))
with pytest.warns(RuntimeWarning, match='threshold.* is more extreme'):
spatio_temporal_func(
X1d_3, adjacency=adjacency, tail=1,
threshold=dict(start=100, step=1))
bad_con = adjacency.todense()
with pytest.raises(ValueError, match='must be a SciPy sparse matrix'):
spatio_temporal_func(
X1d_3, n_permutations=50, adjacency=bad_con,
max_step=1, threshold=1.67)
bad_con = adjacency.tocsr()[:-1, :-1].tocoo()
with pytest.raises(ValueError, match='adjacency.*the correct size'):
spatio_temporal_func(
X1d_3, n_permutations=50, adjacency=bad_con,
max_step=1, threshold=1.67)
with pytest.raises(TypeError, match='must be a'):
spatio_temporal_func(
X1d_3, adjacency=adjacency, threshold=[])
with pytest.raises(ValueError, match='Invalid value for the \'tail\''):
# sometimes ignoring tail
with _record_warnings():
spatio_temporal_func(
X1d_3, adjacency=adjacency, tail=2)
# make sure it actually found a significant point
out_adjacency_6 = spatio_temporal_func(
X1d_3, n_permutations=50, adjacency=adjacency, max_step=1,
threshold=dict(start=1, step=1))
assert np.min(out_adjacency_6[2]) < 0.05
with pytest.raises(ValueError, match='not compatible'):
with pytest.warns(RuntimeWarning, match='No clusters'):
spatio_temporal_func(
X1d_3, n_permutations=50, adjacency=adjacency,
threshold=1e-3, stat_fun=lambda *x: f_oneway(*x)[:-1],
buffer_size=None)
@pytest.mark.parametrize('threshold', [
0.1,
pytest.param(dict(start=0., step=0.5), id='TFCE'),
])
@pytest.mark.parametrize('kind', ('1samp', 'ind'))
def test_permutation_cluster_signs(threshold, kind):
"""Test cluster signs."""
# difference between two conditions for 3 subjects x 2 vertices x 2 times
X = np.array([[[-10, 5], [-2, -7]],
[[-4, 5], [-8, -0]],
[[-6, 3], [-4, -2]]], float)
want_signs = np.sign(np.mean(X, axis=0))
n_permutations = 1
if kind == '1samp':
func = permutation_cluster_1samp_test
stat_fun = ttest_1samp_no_p
use_X = X
else:
assert kind == 'ind'
func = permutation_cluster_test
stat_fun = ttest_ind_no_p
use_X = [X, np.random.RandomState(0).randn(*X.shape) * 0.1]
tobs, clu, clu_pvalues, _ = func(
use_X, n_permutations=n_permutations, threshold=threshold, tail=0,
stat_fun=stat_fun, out_type='mask')
clu_signs = np.zeros(X.shape[1:])
used = np.zeros(X.shape[1:])
assert len(clu) == len(clu_pvalues)
for c, p in zip(clu, clu_pvalues):
assert not used[c].any()
assert len(np.unique(np.sign(tobs[c]))) == 1
clu_signs[c] = np.sign(tobs[c])[0]
used[c] = True
assert used.all()
assert clu_signs.all()
assert_array_equal(np.sign(tobs), want_signs)
assert_array_equal(clu_signs, want_signs)
@requires_sklearn
def test_permutation_adjacency_equiv(numba_conditional):
"""Test cluster level permutations with and without adjacency."""
from sklearn.feature_extraction.image import grid_to_graph
rng = np.random.RandomState(0)
# subjects, time points, spatial points
n_time = 2
n_space = 4
X = rng.randn(6, n_time, n_space)
# add some significant points
X[:, :, 0:2] += 10 # span two time points and two spatial points
X[:, 1, 3] += 20 # span one time point
max_steps = [1, 1, 1, 2, 1]
# This will run full algorithm in two ways, then the ST-algorithm in 2 ways
# All of these should give the same results
adjs = [None,
grid_to_graph(n_time, n_space),
grid_to_graph(1, n_space),
grid_to_graph(1, n_space),
None]
stat_map = None
thresholds = [2, 2, 2, 2, dict(start=0.01, step=1.0)]
sig_counts = [2, 2, 2, 2, 5]
stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
cs = None
ps = None
for thresh, count, max_step, adj in zip(thresholds, sig_counts,
max_steps, adjs):
t, clusters, p, H0 = \
permutation_cluster_1samp_test(
X, threshold=thresh, adjacency=adj, n_jobs=2,
max_step=max_step, stat_fun=stat_fun, seed=0, out_type='mask')
# make sure our output datatype is correct
assert isinstance(clusters[0], np.ndarray)
assert clusters[0].dtype == bool
assert_array_equal(clusters[0].shape, X.shape[1:])
# make sure all comparisons were done; for TFCE, no perm
# should come up empty
inds = np.where(p < 0.05)[0]
assert_equal(len(inds), count)
assert_allclose(p[inds], 0.03125, atol=1e-6)
if isinstance(thresh, dict):
assert_equal(len(clusters), n_time * n_space)
assert np.all(H0 != 0)
continue
this_cs = [clusters[ii] for ii in inds]
this_ps = p[inds]
this_stat_map = np.zeros((n_time, n_space), dtype=bool)
for ci, c in enumerate(this_cs):
if isinstance(c, tuple):
this_c = np.zeros((n_time, n_space), bool)
for x, y in zip(c[0], c[1]):
this_stat_map[x, y] = True
this_c[x, y] = True
this_cs[ci] = this_c
c = this_c
this_stat_map[c] = True
if cs is None:
ps = this_ps
cs = this_cs
if stat_map is None:
stat_map = this_stat_map
assert_array_equal(ps, this_ps)
assert len(cs) == len(this_cs)
for c1, c2 in zip(cs, this_cs):
assert_array_equal(c1, c2)
assert_array_equal(stat_map, this_stat_map)
@requires_sklearn
def test_spatio_temporal_cluster_adjacency(numba_conditional):
"""Test spatio-temporal cluster permutations."""
from sklearn.feature_extraction.image import grid_to_graph
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
rng = np.random.RandomState(0)
noise1_2d = rng.randn(condition1_2d.shape[0], condition1_2d.shape[1], 10)
data1_2d = np.transpose(np.dstack((condition1_2d, noise1_2d)), [0, 2, 1])
noise2_d2 = rng.randn(condition2_2d.shape[0], condition2_2d.shape[1], 10)
data2_2d = np.transpose(np.dstack((condition2_2d, noise2_d2)), [0, 2, 1])
adj = grid_to_graph(data1_2d.shape[-1], 1)
threshold = dict(start=4.0, step=2)
T_obs, clusters, p_values_adj, hist = \
spatio_temporal_cluster_test([data1_2d, data2_2d], adjacency=adj,
n_permutations=50, tail=1, seed=1,
threshold=threshold, buffer_size=None)
buffer_size = data1_2d.size // 10
T_obs, clusters, p_values_no_adj, hist = \
spatio_temporal_cluster_test([data1_2d, data2_2d],
n_permutations=50, tail=1, seed=1,
threshold=threshold, n_jobs=2,
buffer_size=buffer_size)
assert_equal(np.sum(p_values_adj < 0.05), np.sum(p_values_no_adj < 0.05))
# make sure results are the same without buffer_size
T_obs, clusters, p_values2, hist2 = \
spatio_temporal_cluster_test([data1_2d, data2_2d],
n_permutations=50, tail=1, seed=1,
threshold=threshold, n_jobs=2,
buffer_size=None)
assert_array_equal(p_values_no_adj, p_values2)
pytest.raises(ValueError, spatio_temporal_cluster_test,
[data1_2d, data2_2d], tail=1, threshold=-2.)
pytest.raises(ValueError, spatio_temporal_cluster_test,
[data1_2d, data2_2d], tail=-1, threshold=2.)
pytest.raises(ValueError, spatio_temporal_cluster_test,
[data1_2d, data2_2d], tail=0, threshold=-1)
def ttest_1samp(X):
"""Return T-values."""
return stats.ttest_1samp(X, 0)[0]
@pytest.mark.parametrize('kind', ('surface', 'volume', 'mixed'))
def test_summarize_clusters(kind):
"""Test cluster summary stcs."""
src_surf = SourceSpaces(
[dict(vertno=np.arange(10242), type='surf') for _ in range(2)])
assert src_surf.kind == 'surface'
src_vol = SourceSpaces(
[dict(vertno=np.arange(10), type='vol')])
assert src_vol.kind == 'volume'
if kind == 'surface':
src = src_surf
klass = SourceEstimate
elif kind == 'volume':
src = src_vol
klass = VolSourceEstimate
else:
assert kind == 'mixed'
src = src_surf + src_vol
klass = MixedSourceEstimate
n_vertices = sum(len(s['vertno']) for s in src)
clu = (np.random.random([1, n_vertices]),
[(np.array([0]), np.array([0, 2, 4]))],
np.array([0.02, 0.1]),
np.array([12, -14, 30]))
kwargs = dict()
if kind == 'volume':
with pytest.raises(ValueError, match='did not match'):
summarize_clusters_stc(clu)
assert len(src) == 1
kwargs['vertices'] = [src[0]['vertno']]
elif kind == 'mixed':
kwargs['vertices'] = src
stc_sum = summarize_clusters_stc(clu, **kwargs)
assert isinstance(stc_sum, klass)
assert stc_sum.data.shape[1] == 2
clu[2][0] = 0.3
with pytest.raises(RuntimeError, match='No significant'):
summarize_clusters_stc(clu, **kwargs)
def test_permutation_test_H0(numba_conditional):
"""Test that H0 is populated properly during testing."""
rng = np.random.RandomState(0)
data = rng.rand(7, 10, 1) - 0.5
with pytest.warns(RuntimeWarning, match='No clusters found'):
t, clust, p, h0 = spatio_temporal_cluster_1samp_test(
data, threshold=100, n_permutations=1024, seed=rng)
assert_equal(len(h0), 0)
for n_permutations in (1024, 65, 64, 63):
t, clust, p, h0 = spatio_temporal_cluster_1samp_test(
data, threshold=0.1, n_permutations=n_permutations, seed=rng)
assert_equal(len(h0), min(n_permutations, 64))
assert isinstance(clust[0], tuple) # sets of indices
for tail, thresh in zip((-1, 0, 1), (-0.1, 0.1, 0.1)):
t, clust, p, h0 = spatio_temporal_cluster_1samp_test(
data, threshold=thresh, seed=rng, tail=tail, out_type='mask')
assert isinstance(clust[0], np.ndarray) # bool mask
# same as "128 if tail else 64"
assert_equal(len(h0), 2 ** (7 - (tail == 0))) # exact test
def test_tfce_thresholds(numba_conditional):
"""Test TFCE thresholds."""
rng = np.random.RandomState(0)
data = rng.randn(7, 10, 1) - 0.5
# if tail==-1, step must also be negative
with pytest.raises(ValueError, match='must be < 0 for tail == -1'):
permutation_cluster_1samp_test(
data, tail=-1, out_type='mask', threshold=dict(start=0, step=0.1))
# this works (smoke test)
permutation_cluster_1samp_test(data, tail=-1, out_type='mask',
threshold=dict(start=0, step=-0.1))
# thresholds must be monotonically increasing
with pytest.raises(ValueError, match='must be monotonically increasing'):
permutation_cluster_1samp_test(
data, tail=1, out_type='mask', threshold=dict(start=1, step=-0.5))
# Should work with 2D data too
permutation_cluster_1samp_test(X=data[..., 0],
threshold=dict(start=0, step=0.2))
# 1D gives slices, 2D+ gives boolean masks
@pytest.mark.parametrize('shape', ((11,), (11, 3), (11, 1, 2)))
@pytest.mark.parametrize('out_type', ('mask', 'indices'))
@pytest.mark.parametrize('adjacency', (None, 'sparse'))
def test_output_equiv(shape, out_type, adjacency):
"""Test equivalence of output types."""
rng = np.random.RandomState(0)
n_subjects = 10
data = rng.randn(n_subjects, *shape)
data -= data.mean(axis=0, keepdims=True)
data[:, 2:4] += 2
data[:, 6:9] += 2
want_mask = np.zeros(shape, int)
want_mask[2:4] = 1
want_mask[6:9] = 2
if adjacency is not None:
assert adjacency == 'sparse'
adjacency = combine_adjacency(*shape)
clusters = permutation_cluster_1samp_test(
X=data, n_permutations=1, adjacency=adjacency, out_type=out_type)[1]
got_mask = np.zeros_like(want_mask)
for n, clu in enumerate(clusters, 1):
if out_type == 'mask':
if len(shape) == 1 and adjacency is None:
assert isinstance(clu, tuple)
assert len(clu) == 1
assert isinstance(clu[0], slice)
else:
assert isinstance(clu, np.ndarray)
assert clu.dtype == bool
assert clu.shape == shape
got_mask[clu] = n
else:
assert isinstance(clu, tuple)
for c in clu:
assert isinstance(c, np.ndarray)
assert c.dtype.kind == 'i'
assert out_type == 'indices'
got_mask[np.ix_(*clu)] = n
assert_array_equal(got_mask, want_mask)
|