File: test_cluster_level.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (718 lines) | stat: -rw-r--r-- 30,502 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# Authors: Eric Larson <larson.eric.d@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause

from functools import partial
import os

import numpy as np
from scipy import sparse, linalg, stats
from numpy.testing import (assert_equal, assert_array_equal,
                           assert_array_almost_equal, assert_allclose)
import pytest

from mne import (SourceEstimate, VolSourceEstimate, MixedSourceEstimate,
                 SourceSpaces)
from mne.stats import ttest_ind_no_p, combine_adjacency
from mne.stats.cluster_level import (permutation_cluster_test, f_oneway,
                                     permutation_cluster_1samp_test,
                                     spatio_temporal_cluster_test,
                                     spatio_temporal_cluster_1samp_test,
                                     ttest_1samp_no_p, summarize_clusters_stc)
from mne.utils import (catch_logging, check_version, requires_sklearn,
                       _record_warnings)


n_space = 50


def _get_conditions():
    noise_level = 20
    n_time_1 = 20
    n_time_2 = 13
    normfactor = np.hanning(20).sum()
    rng = np.random.RandomState(42)
    condition1_1d = rng.randn(n_time_1, n_space) * noise_level
    for c in condition1_1d:
        c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor

    condition2_1d = rng.randn(n_time_2, n_space) * noise_level
    for c in condition2_1d:
        c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor

    pseudoekp = 10 * np.hanning(25)[None, :]
    condition1_1d[:, 25:] += pseudoekp
    condition2_1d[:, 25:] -= pseudoekp

    condition1_2d = condition1_1d[:, :, np.newaxis]
    condition2_2d = condition2_1d[:, :, np.newaxis]
    return condition1_1d, condition2_1d, condition1_2d, condition2_2d


def test_thresholds(numba_conditional):
    """Test automatic threshold calculations."""
    # within subjects
    rng = np.random.RandomState(0)
    X = rng.randn(10, 1, 1) + 0.08
    want_thresh = -stats.t.ppf(0.025, len(X) - 1)
    assert 0.03 < stats.ttest_1samp(X[:, 0, 0], 0)[1] < 0.05
    my_fun = partial(ttest_1samp_no_p)
    with catch_logging() as log:
        with pytest.warns(RuntimeWarning, match='threshold is only valid'):
            out = permutation_cluster_1samp_test(
                X, stat_fun=my_fun, seed=0, verbose=True, out_type='mask')
    log = log.getvalue()
    assert str(want_thresh)[:6] in log
    assert len(out[1]) == 1  # 1 cluster
    assert_allclose(out[2], 0.033203, atol=1e-6)
    # between subjects
    Y = rng.randn(10, 1, 1)
    Z = rng.randn(10, 1, 1) - 0.7
    X = [X, Y, Z]
    want_thresh = stats.f.ppf(1. - 0.05, 2, sum(len(a) for a in X) - len(X))
    p = stats.f_oneway(*X)[1]
    assert 0.03 < p < 0.05
    my_fun = partial(f_oneway)  # just to make the check fail
    with catch_logging() as log:
        with pytest.warns(RuntimeWarning, match='threshold is only valid'):
            out = permutation_cluster_test(X, tail=1, stat_fun=my_fun,
                                           seed=0, verbose=True,
                                           out_type='mask')
    log = log.getvalue()
    assert str(want_thresh)[:6] in log
    assert len(out[1]) == 1  # 1 cluster
    assert_allclose(out[2], 0.041992, atol=1e-6)
    with pytest.warns(RuntimeWarning, match='Ignoring argument "tail"'):
        permutation_cluster_test(X, tail=0, out_type='mask')

    # nan handling in TFCE
    X = np.repeat(X[0], 2, axis=1)
    X[:, 1] = 0
    with pytest.warns(RuntimeWarning, match='invalid value'):  # NumPy
        out = permutation_cluster_1samp_test(
            X, seed=0, threshold=dict(start=0, step=0.1), out_type='mask')
    assert (out[2] < 0.05).any()
    assert not (out[2] < 0.05).all()
    X[:, 0] = 0
    with pytest.raises(RuntimeError, match='finite'):
        with np.errstate(invalid='ignore'):
            permutation_cluster_1samp_test(
                X, seed=0, threshold=dict(start=0, step=0.1),
                buffer_size=None, out_type='mask')


def test_cache_dir(tmp_path, numba_conditional):
    """Test use of cache dir."""
    tempdir = str(tmp_path)
    orig_dir = os.getenv('MNE_CACHE_DIR', None)
    orig_size = os.getenv('MNE_MEMMAP_MIN_SIZE', None)
    rng = np.random.RandomState(0)
    X = rng.randn(9, 2, 10)
    try:
        os.environ['MNE_MEMMAP_MIN_SIZE'] = '1K'
        os.environ['MNE_CACHE_DIR'] = tempdir
        # Fix error for #1507: in-place when memmapping
        with catch_logging() as log_file:
            permutation_cluster_1samp_test(
                X, buffer_size=None, n_jobs=2, n_permutations=1, seed=0,
                stat_fun=ttest_1samp_no_p, verbose=False, out_type='mask')
        assert 'independently' not in log_file.getvalue()
        # ensure that non-independence yields warning
        stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
        if check_version('numpy', '1.17'):
            random_state = np.random.default_rng(0)
        else:
            random_state = 0
        with pytest.warns(RuntimeWarning, match='independently'):
            permutation_cluster_1samp_test(
                X, buffer_size=10, n_jobs=2, n_permutations=1,
                seed=random_state, stat_fun=stat_fun, verbose=False,
                out_type='mask')
    finally:
        if orig_dir is not None:
            os.environ['MNE_CACHE_DIR'] = orig_dir
        else:
            del os.environ['MNE_CACHE_DIR']
        if orig_size is not None:
            os.environ['MNE_MEMMAP_MIN_SIZE'] = orig_size
        else:
            del os.environ['MNE_MEMMAP_MIN_SIZE']


def test_permutation_large_n_samples(numba_conditional):
    """Test that non-replacement works with large N."""
    X = np.random.RandomState(0).randn(72, 1) + 1
    for n_samples in (11, 72):
        tails = (0, 1) if n_samples <= 20 else (0,)
        for tail in tails:
            H0 = permutation_cluster_1samp_test(
                X[:n_samples], threshold=1e-4, tail=tail, out_type='mask')[-1]
            assert H0.shape == (1024,)
            assert len(np.unique(H0)) >= 1024 - (H0 == 0).sum()


def test_permutation_step_down_p(numba_conditional):
    """Test cluster level permutations with step_down_p."""
    rng = np.random.RandomState(0)
    # subjects, time points, spatial points
    X = rng.randn(9, 2, 10)
    # add some significant points
    X[:, 0:2, 0:2] += 2  # span two time points and two spatial points
    X[:, 1, 5:9] += 0.5  # span four time points with 4x smaller amplitude
    thresh = 2
    # make sure it works when we use ALL points in step-down
    t, clusters, p, H0 = \
        permutation_cluster_1samp_test(X, threshold=thresh,
                                       step_down_p=1.0, out_type='mask')
    # make sure using step-down will actually yield improvements sometimes
    t, clusters, p_old, H0 = \
        permutation_cluster_1samp_test(X, threshold=thresh,
                                       step_down_p=0.0, out_type='mask')
    assert_equal(np.sum(p_old < 0.05), 1)  # just spatial cluster
    p_min = np.min(p_old)
    assert_allclose(p_min, 0.003906, atol=1e-6)
    t, clusters, p_new, H0 = \
        permutation_cluster_1samp_test(X, threshold=thresh,
                                       step_down_p=0.05, out_type='mask')
    assert_equal(np.sum(p_new < 0.05), 2)  # time one rescued
    assert np.all(p_old >= p_new)
    p_next = p_new[(p_new > 0.004) & (p_new < 0.05)][0]
    assert_allclose(p_next, 0.015625, atol=1e-6)


def test_cluster_permutation_test(numba_conditional):
    """Test cluster level permutations tests."""
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()
    for condition1, condition2 in zip((condition1_1d, condition1_2d),
                                      (condition2_1d, condition2_2d)):
        T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
            [condition1, condition2], n_permutations=100, tail=1, seed=1,
            buffer_size=None, out_type='mask')
        p_min = np.min(cluster_p_values)
        assert_equal(np.sum(cluster_p_values < 0.05), 1)
        assert_allclose(p_min, 0.01, atol=1e-6)

        # test with 2 jobs and buffer_size enabled
        buffer_size = condition1.shape[1] // 10
        T_obs, clusters, cluster_p_values_buff, hist =\
            permutation_cluster_test([condition1, condition2],
                                     n_permutations=100, tail=1, seed=1,
                                     n_jobs=2, buffer_size=buffer_size,
                                     out_type='mask')
        assert_array_equal(cluster_p_values, cluster_p_values_buff)

    def stat_fun(X, Y):
        return stats.f_oneway(X, Y)[0]

    with pytest.warns(RuntimeWarning, match='is only valid'):
        permutation_cluster_test([condition1, condition2], n_permutations=1,
                                 stat_fun=stat_fun, out_type='mask')


@pytest.mark.parametrize('stat_fun', [
    ttest_1samp_no_p,
    partial(ttest_1samp_no_p, sigma=1e-1)
])
def test_cluster_permutation_t_test(numba_conditional, stat_fun):
    """Test cluster level permutations T-test."""
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()

    # use a very large sigma to make sure Ts are not independent
    for condition1, p in ((condition1_1d, 0.01),
                          (condition1_2d, 0.01)):
        # these are so significant we can get away with fewer perms
        T_obs, clusters, cluster_p_values, hist =\
            permutation_cluster_1samp_test(condition1, n_permutations=100,
                                           tail=0, seed=1, out_type='mask',
                                           buffer_size=None)
        assert_equal(np.sum(cluster_p_values < 0.05), 1)
        p_min = np.min(cluster_p_values)
        assert_allclose(p_min, p, atol=1e-6)

        T_obs_pos, c_1, cluster_p_values_pos, _ =\
            permutation_cluster_1samp_test(condition1, n_permutations=100,
                                           tail=1, threshold=1.67, seed=1,
                                           stat_fun=stat_fun, out_type='mask',
                                           buffer_size=None)

        T_obs_neg, _, cluster_p_values_neg, _ =\
            permutation_cluster_1samp_test(-condition1, n_permutations=100,
                                           tail=-1, threshold=-1.67,
                                           seed=1, stat_fun=stat_fun,
                                           buffer_size=None, out_type='mask')
        assert_array_equal(T_obs_pos, -T_obs_neg)
        assert_array_equal(cluster_p_values_pos < 0.05,
                           cluster_p_values_neg < 0.05)

        # test with 2 jobs and buffer_size enabled
        buffer_size = condition1.shape[1] // 10
        with _record_warnings():  # sometimes "independently"
            T_obs_neg_buff, _, cluster_p_values_neg_buff, _ = \
                permutation_cluster_1samp_test(
                    -condition1, n_permutations=100, tail=-1, out_type='mask',
                    threshold=-1.67, seed=1, n_jobs=2, stat_fun=stat_fun,
                    buffer_size=buffer_size)

        assert_array_equal(T_obs_neg, T_obs_neg_buff)
        assert_array_equal(cluster_p_values_neg, cluster_p_values_neg_buff)

        # Bad stat_fun
        with pytest.raises(TypeError, match='must be .* ndarray'):
            permutation_cluster_1samp_test(
                condition1, threshold=1, stat_fun=lambda x: None,
                out_type='mask')
        with pytest.raises(ValueError, match='not compatible'):
            permutation_cluster_1samp_test(
                condition1, threshold=1, stat_fun=lambda x: stat_fun(x)[:-1],
                out_type='mask')


@requires_sklearn
def test_cluster_permutation_with_adjacency(numba_conditional, monkeypatch):
    """Test cluster level permutations with adjacency matrix."""
    from sklearn.feature_extraction.image import grid_to_graph
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()

    n_pts = condition1_1d.shape[1]
    # we don't care about p-values in any of these, so do fewer permutations
    args = dict(seed=None, max_step=1, exclude=None, out_type='mask',
                step_down_p=0, t_power=1, threshold=1.67,
                check_disjoint=False, n_permutations=50)

    did_warn = False
    for X1d, X2d, func, spatio_temporal_func in \
            [(condition1_1d, condition1_2d,
              permutation_cluster_1samp_test,
              spatio_temporal_cluster_1samp_test),
             ([condition1_1d, condition2_1d],
              [condition1_2d, condition2_2d],
              permutation_cluster_test,
              spatio_temporal_cluster_test)]:
        out = func(X1d, **args)
        adjacency = grid_to_graph(1, n_pts)
        out_adjacency = func(X1d, adjacency=adjacency, **args)
        assert_array_equal(out[0], out_adjacency[0])
        for a, b in zip(out_adjacency[1], out[1]):
            assert_array_equal(out[0][a], out[0][b])
            assert np.all(a[b])

        # test spatio-temporal w/o time adjacency (repeat spatial pattern)
        adjacency_2 = sparse.coo_matrix(
            linalg.block_diag(adjacency.asfptype().todense(),
                              adjacency.asfptype().todense()))
        # nesting here is time then space:
        adjacency_2a = combine_adjacency(np.eye(2), adjacency)
        assert_array_equal(adjacency_2.toarray().astype(bool),
                           adjacency_2a.toarray().astype(bool))

        if isinstance(X1d, list):
            X1d_2 = [np.concatenate((x, x), axis=1) for x in X1d]
        else:
            X1d_2 = np.concatenate((X1d, X1d), axis=1)

        out_adjacency_2 = func(X1d_2, adjacency=adjacency_2, **args)
        # make sure we were operating on the same values
        split = len(out[0])
        assert_array_equal(out[0], out_adjacency_2[0][:split])
        assert_array_equal(out[0], out_adjacency_2[0][split:])

        # make sure we really got 2x the number of original clusters
        n_clust_orig = len(out[1])
        assert len(out_adjacency_2[1]) == 2 * n_clust_orig

        # Make sure that we got the old ones back
        data_1 = {np.sum(out[0][b[:n_pts]]) for b in out[1]}
        data_2 = {np.sum(out_adjacency_2[0][a]) for a in
                  out_adjacency_2[1][:]}
        assert len(data_1.intersection(data_2)) == len(data_1)

        # now use the other algorithm
        if isinstance(X1d, list):
            X1d_3 = [np.reshape(x, (-1, 2, n_space)) for x in X1d_2]
        else:
            X1d_3 = np.reshape(X1d_2, (-1, 2, n_space))

        out_adjacency_3 = spatio_temporal_func(
            X1d_3, n_permutations=50, adjacency=adjacency,
            max_step=0, threshold=1.67, check_disjoint=True)
        # make sure we were operating on the same values
        split = len(out[0])
        assert_array_equal(out[0], out_adjacency_3[0][0])
        assert_array_equal(out[0], out_adjacency_3[0][1])

        # make sure we really got 2x the number of original clusters
        assert len(out_adjacency_3[1]) == 2 * n_clust_orig

        # Make sure that we got the old ones back
        data_1 = {np.sum(out[0][b[:n_pts]]) for b in out[1]}
        data_2 = {np.sum(out_adjacency_3[0][a[0], a[1]]) for a in
                  out_adjacency_3[1]}
        assert len(data_1.intersection(data_2)) == len(data_1)

        # test new versus old method
        out_adjacency_4 = spatio_temporal_func(
            X1d_3, n_permutations=50, adjacency=adjacency,
            max_step=2, threshold=1.67)
        out_adjacency_5 = spatio_temporal_func(
            X1d_3, n_permutations=50, adjacency=adjacency,
            max_step=1, threshold=1.67)

        # clusters could be in a different order
        sums_4 = [np.sum(out_adjacency_4[0][a])
                  for a in out_adjacency_4[1]]
        sums_5 = [np.sum(out_adjacency_4[0][a])
                  for a in out_adjacency_5[1]]
        sums_4 = np.sort(sums_4)
        sums_5 = np.sort(sums_5)
        assert_array_almost_equal(sums_4, sums_5)

        monkeypatch.delenv('MNE_FORCE_SERIAL', raising=False)
        with pytest.raises(ValueError, match='must not be less'):
            spatio_temporal_func(
                X1d_3, n_permutations=1, adjacency=adjacency,
                max_step=1, threshold=1.67, n_jobs=-1000)

        # not enough TFCE params
        with pytest.raises(KeyError, match='threshold, if dict, must have'):
            spatio_temporal_func(
                X1d_3, adjacency=adjacency, threshold=dict(me='hello'))

        # too extreme a start threshold
        with _record_warnings() as w:
            spatio_temporal_func(X1d_3, adjacency=adjacency,
                                 threshold=dict(start=10, step=1))
        if not did_warn:
            assert len(w) == 1
            did_warn = True

        with pytest.raises(ValueError, match='threshold.*<= 0 for tail == -1'):
            spatio_temporal_func(
                X1d_3, adjacency=adjacency, tail=-1,
                threshold=dict(start=1, step=-1))
        with pytest.warns(RuntimeWarning, match='threshold.* is more extreme'):
            spatio_temporal_func(
                X1d_3, adjacency=adjacency, tail=1,
                threshold=dict(start=100, step=1))
        bad_con = adjacency.todense()
        with pytest.raises(ValueError, match='must be a SciPy sparse matrix'):
            spatio_temporal_func(
                X1d_3, n_permutations=50, adjacency=bad_con,
                max_step=1, threshold=1.67)
        bad_con = adjacency.tocsr()[:-1, :-1].tocoo()
        with pytest.raises(ValueError, match='adjacency.*the correct size'):
            spatio_temporal_func(
                X1d_3, n_permutations=50, adjacency=bad_con,
                max_step=1, threshold=1.67)
        with pytest.raises(TypeError, match='must be a'):
            spatio_temporal_func(
                X1d_3, adjacency=adjacency, threshold=[])
        with pytest.raises(ValueError, match='Invalid value for the \'tail\''):
            # sometimes ignoring tail
            with _record_warnings():
                spatio_temporal_func(
                    X1d_3, adjacency=adjacency, tail=2)

        # make sure it actually found a significant point
        out_adjacency_6 = spatio_temporal_func(
            X1d_3, n_permutations=50, adjacency=adjacency, max_step=1,
            threshold=dict(start=1, step=1))
        assert np.min(out_adjacency_6[2]) < 0.05

        with pytest.raises(ValueError, match='not compatible'):
            with pytest.warns(RuntimeWarning, match='No clusters'):
                spatio_temporal_func(
                    X1d_3, n_permutations=50, adjacency=adjacency,
                    threshold=1e-3, stat_fun=lambda *x: f_oneway(*x)[:-1],
                    buffer_size=None)


@pytest.mark.parametrize('threshold', [
    0.1,
    pytest.param(dict(start=0., step=0.5), id='TFCE'),
])
@pytest.mark.parametrize('kind', ('1samp', 'ind'))
def test_permutation_cluster_signs(threshold, kind):
    """Test cluster signs."""
    # difference between two conditions for 3 subjects x 2 vertices x 2 times
    X = np.array([[[-10, 5], [-2, -7]],
                  [[-4, 5], [-8, -0]],
                  [[-6, 3], [-4, -2]]], float)
    want_signs = np.sign(np.mean(X, axis=0))
    n_permutations = 1
    if kind == '1samp':
        func = permutation_cluster_1samp_test
        stat_fun = ttest_1samp_no_p
        use_X = X
    else:
        assert kind == 'ind'
        func = permutation_cluster_test
        stat_fun = ttest_ind_no_p
        use_X = [X, np.random.RandomState(0).randn(*X.shape) * 0.1]
    tobs, clu, clu_pvalues, _ = func(
        use_X, n_permutations=n_permutations, threshold=threshold, tail=0,
        stat_fun=stat_fun, out_type='mask')
    clu_signs = np.zeros(X.shape[1:])
    used = np.zeros(X.shape[1:])
    assert len(clu) == len(clu_pvalues)
    for c, p in zip(clu, clu_pvalues):
        assert not used[c].any()
        assert len(np.unique(np.sign(tobs[c]))) == 1
        clu_signs[c] = np.sign(tobs[c])[0]
        used[c] = True
    assert used.all()
    assert clu_signs.all()
    assert_array_equal(np.sign(tobs), want_signs)
    assert_array_equal(clu_signs, want_signs)


@requires_sklearn
def test_permutation_adjacency_equiv(numba_conditional):
    """Test cluster level permutations with and without adjacency."""
    from sklearn.feature_extraction.image import grid_to_graph
    rng = np.random.RandomState(0)
    # subjects, time points, spatial points
    n_time = 2
    n_space = 4
    X = rng.randn(6, n_time, n_space)
    # add some significant points
    X[:, :, 0:2] += 10  # span two time points and two spatial points
    X[:, 1, 3] += 20  # span one time point
    max_steps = [1, 1, 1, 2, 1]
    # This will run full algorithm in two ways, then the ST-algorithm in 2 ways
    # All of these should give the same results
    adjs = [None,
            grid_to_graph(n_time, n_space),
            grid_to_graph(1, n_space),
            grid_to_graph(1, n_space),
            None]
    stat_map = None
    thresholds = [2, 2, 2, 2, dict(start=0.01, step=1.0)]
    sig_counts = [2, 2, 2, 2, 5]
    stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)

    cs = None
    ps = None
    for thresh, count, max_step, adj in zip(thresholds, sig_counts,
                                            max_steps, adjs):
        t, clusters, p, H0 = \
            permutation_cluster_1samp_test(
                X, threshold=thresh, adjacency=adj, n_jobs=2,
                max_step=max_step, stat_fun=stat_fun, seed=0, out_type='mask')
        # make sure our output datatype is correct
        assert isinstance(clusters[0], np.ndarray)
        assert clusters[0].dtype == bool
        assert_array_equal(clusters[0].shape, X.shape[1:])

        # make sure all comparisons were done; for TFCE, no perm
        # should come up empty
        inds = np.where(p < 0.05)[0]
        assert_equal(len(inds), count)
        assert_allclose(p[inds], 0.03125, atol=1e-6)
        if isinstance(thresh, dict):
            assert_equal(len(clusters), n_time * n_space)
            assert np.all(H0 != 0)
            continue
        this_cs = [clusters[ii] for ii in inds]
        this_ps = p[inds]
        this_stat_map = np.zeros((n_time, n_space), dtype=bool)
        for ci, c in enumerate(this_cs):
            if isinstance(c, tuple):
                this_c = np.zeros((n_time, n_space), bool)
                for x, y in zip(c[0], c[1]):
                    this_stat_map[x, y] = True
                    this_c[x, y] = True
                this_cs[ci] = this_c
                c = this_c
            this_stat_map[c] = True
        if cs is None:
            ps = this_ps
            cs = this_cs
        if stat_map is None:
            stat_map = this_stat_map
        assert_array_equal(ps, this_ps)
        assert len(cs) == len(this_cs)
        for c1, c2 in zip(cs, this_cs):
            assert_array_equal(c1, c2)
        assert_array_equal(stat_map, this_stat_map)


@requires_sklearn
def test_spatio_temporal_cluster_adjacency(numba_conditional):
    """Test spatio-temporal cluster permutations."""
    from sklearn.feature_extraction.image import grid_to_graph
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()

    rng = np.random.RandomState(0)
    noise1_2d = rng.randn(condition1_2d.shape[0], condition1_2d.shape[1], 10)
    data1_2d = np.transpose(np.dstack((condition1_2d, noise1_2d)), [0, 2, 1])

    noise2_d2 = rng.randn(condition2_2d.shape[0], condition2_2d.shape[1], 10)
    data2_2d = np.transpose(np.dstack((condition2_2d, noise2_d2)), [0, 2, 1])

    adj = grid_to_graph(data1_2d.shape[-1], 1)

    threshold = dict(start=4.0, step=2)
    T_obs, clusters, p_values_adj, hist = \
        spatio_temporal_cluster_test([data1_2d, data2_2d], adjacency=adj,
                                     n_permutations=50, tail=1, seed=1,
                                     threshold=threshold, buffer_size=None)

    buffer_size = data1_2d.size // 10
    T_obs, clusters, p_values_no_adj, hist = \
        spatio_temporal_cluster_test([data1_2d, data2_2d],
                                     n_permutations=50, tail=1, seed=1,
                                     threshold=threshold, n_jobs=2,
                                     buffer_size=buffer_size)

    assert_equal(np.sum(p_values_adj < 0.05), np.sum(p_values_no_adj < 0.05))

    # make sure results are the same without buffer_size
    T_obs, clusters, p_values2, hist2 = \
        spatio_temporal_cluster_test([data1_2d, data2_2d],
                                     n_permutations=50, tail=1, seed=1,
                                     threshold=threshold, n_jobs=2,
                                     buffer_size=None)
    assert_array_equal(p_values_no_adj, p_values2)
    pytest.raises(ValueError, spatio_temporal_cluster_test,
                  [data1_2d, data2_2d], tail=1, threshold=-2.)
    pytest.raises(ValueError, spatio_temporal_cluster_test,
                  [data1_2d, data2_2d], tail=-1, threshold=2.)
    pytest.raises(ValueError, spatio_temporal_cluster_test,
                  [data1_2d, data2_2d], tail=0, threshold=-1)


def ttest_1samp(X):
    """Return T-values."""
    return stats.ttest_1samp(X, 0)[0]


@pytest.mark.parametrize('kind', ('surface', 'volume', 'mixed'))
def test_summarize_clusters(kind):
    """Test cluster summary stcs."""
    src_surf = SourceSpaces(
        [dict(vertno=np.arange(10242), type='surf') for _ in range(2)])
    assert src_surf.kind == 'surface'
    src_vol = SourceSpaces(
        [dict(vertno=np.arange(10), type='vol')])
    assert src_vol.kind == 'volume'
    if kind == 'surface':
        src = src_surf
        klass = SourceEstimate
    elif kind == 'volume':
        src = src_vol
        klass = VolSourceEstimate
    else:
        assert kind == 'mixed'
        src = src_surf + src_vol
        klass = MixedSourceEstimate
    n_vertices = sum(len(s['vertno']) for s in src)
    clu = (np.random.random([1, n_vertices]),
           [(np.array([0]), np.array([0, 2, 4]))],
           np.array([0.02, 0.1]),
           np.array([12, -14, 30]))
    kwargs = dict()
    if kind == 'volume':
        with pytest.raises(ValueError, match='did not match'):
            summarize_clusters_stc(clu)
        assert len(src) == 1
        kwargs['vertices'] = [src[0]['vertno']]
    elif kind == 'mixed':
        kwargs['vertices'] = src
    stc_sum = summarize_clusters_stc(clu, **kwargs)
    assert isinstance(stc_sum, klass)
    assert stc_sum.data.shape[1] == 2
    clu[2][0] = 0.3
    with pytest.raises(RuntimeError, match='No significant'):
        summarize_clusters_stc(clu, **kwargs)


def test_permutation_test_H0(numba_conditional):
    """Test that H0 is populated properly during testing."""
    rng = np.random.RandomState(0)
    data = rng.rand(7, 10, 1) - 0.5
    with pytest.warns(RuntimeWarning, match='No clusters found'):
        t, clust, p, h0 = spatio_temporal_cluster_1samp_test(
            data, threshold=100, n_permutations=1024, seed=rng)
    assert_equal(len(h0), 0)

    for n_permutations in (1024, 65, 64, 63):
        t, clust, p, h0 = spatio_temporal_cluster_1samp_test(
            data, threshold=0.1, n_permutations=n_permutations, seed=rng)
        assert_equal(len(h0), min(n_permutations, 64))
        assert isinstance(clust[0], tuple)  # sets of indices
    for tail, thresh in zip((-1, 0, 1), (-0.1, 0.1, 0.1)):
        t, clust, p, h0 = spatio_temporal_cluster_1samp_test(
            data, threshold=thresh, seed=rng, tail=tail, out_type='mask')
        assert isinstance(clust[0], np.ndarray)  # bool mask
        # same as "128 if tail else 64"
        assert_equal(len(h0), 2 ** (7 - (tail == 0)))  # exact test


def test_tfce_thresholds(numba_conditional):
    """Test TFCE thresholds."""
    rng = np.random.RandomState(0)
    data = rng.randn(7, 10, 1) - 0.5

    # if tail==-1, step must also be negative
    with pytest.raises(ValueError, match='must be < 0 for tail == -1'):
        permutation_cluster_1samp_test(
            data, tail=-1, out_type='mask', threshold=dict(start=0, step=0.1))
    # this works (smoke test)
    permutation_cluster_1samp_test(data, tail=-1, out_type='mask',
                                   threshold=dict(start=0, step=-0.1))

    # thresholds must be monotonically increasing
    with pytest.raises(ValueError, match='must be monotonically increasing'):
        permutation_cluster_1samp_test(
            data, tail=1, out_type='mask', threshold=dict(start=1, step=-0.5))

    # Should work with 2D data too
    permutation_cluster_1samp_test(X=data[..., 0],
                                   threshold=dict(start=0, step=0.2))


# 1D gives slices, 2D+ gives boolean masks
@pytest.mark.parametrize('shape', ((11,), (11, 3), (11, 1, 2)))
@pytest.mark.parametrize('out_type', ('mask', 'indices'))
@pytest.mark.parametrize('adjacency', (None, 'sparse'))
def test_output_equiv(shape, out_type, adjacency):
    """Test equivalence of output types."""
    rng = np.random.RandomState(0)
    n_subjects = 10
    data = rng.randn(n_subjects, *shape)
    data -= data.mean(axis=0, keepdims=True)
    data[:, 2:4] += 2
    data[:, 6:9] += 2
    want_mask = np.zeros(shape, int)
    want_mask[2:4] = 1
    want_mask[6:9] = 2
    if adjacency is not None:
        assert adjacency == 'sparse'
        adjacency = combine_adjacency(*shape)
    clusters = permutation_cluster_1samp_test(
        X=data, n_permutations=1, adjacency=adjacency, out_type=out_type)[1]
    got_mask = np.zeros_like(want_mask)
    for n, clu in enumerate(clusters, 1):
        if out_type == 'mask':
            if len(shape) == 1 and adjacency is None:
                assert isinstance(clu, tuple)
                assert len(clu) == 1
                assert isinstance(clu[0], slice)
            else:
                assert isinstance(clu, np.ndarray)
                assert clu.dtype == bool
                assert clu.shape == shape
            got_mask[clu] = n
        else:
            assert isinstance(clu, tuple)
            for c in clu:
                assert isinstance(c, np.ndarray)
                assert c.dtype.kind == 'i'
            assert out_type == 'indices'
            got_mask[np.ix_(*clu)] = n
    assert_array_equal(got_mask, want_mask)