File: test_parametric.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (165 lines) | stat: -rw-r--r-- 6,076 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from functools import partial
from itertools import product

import pytest
from numpy.testing import (assert_array_almost_equal, assert_allclose,
                           assert_array_less)
import numpy as np
import scipy.stats

import mne
from mne.stats.parametric import (f_mway_rm, f_threshold_mway_rm,
                                  _map_effects)

# hardcoded external test results, manually transferred
test_external = {
    # SPSS, manually conducted analysis
    'spss_fvals': np.array([2.568, 0.240, 1.756]),
    'spss_pvals_uncorrected': np.array([0.126, 0.788, 0.186]),
    'spss_pvals_corrected': np.array([0.126, 0.784, 0.192]),
    # R 15.2
    # data generated using this code http://goo.gl/7UcKb
    'r_fvals': np.array([2.567619, 0.24006, 1.756380]),
    'r_pvals_uncorrected': np.array([0.12557, 0.78776, 0.1864]),
    # and https://gist.github.com/dengemann/5539403
    'r_fvals_3way': np.array([
        0.74783999999999995,   # A
        0.20895,               # B
        0.21378,               # A:B
        0.99404000000000003,   # C
        0.094039999999999999,  # A:C
        0.11685,               # B:C
        2.78749]),              # A:B:C
    'r_fvals_1way': np.array([0.67571999999999999])
}


def generate_data(n_subjects, n_conditions):
    """Generate testing data."""
    rng = np.random.RandomState(42)
    data = rng.randn(n_subjects * n_conditions).reshape(
        n_subjects, n_conditions)
    return data


def test_map_effects():
    """Test ANOVA effects parsing."""
    selection, names = _map_effects(n_factors=2, effects='A')
    assert names == ['A']

    selection, names = _map_effects(n_factors=2, effects=['A', 'A:B'])
    assert names == ['A', 'A:B']

    selection, names = _map_effects(n_factors=3, effects='A*B')
    assert names == ['A', 'B', 'A:B']

    # XXX this might be wrong?
    selection, names = _map_effects(n_factors=3, effects='A*C')
    assert names == ['A', 'B', 'A:B', 'C', 'A:C']

    pytest.raises(ValueError, _map_effects, n_factors=2, effects='C')

    pytest.raises(ValueError, _map_effects, n_factors=27, effects='all')


def test_f_twoway_rm():
    """Test 2-way anova."""
    rng = np.random.RandomState(42)
    iter_params = product([4, 10], [2, 15], [4, 6, 8],
                          ['A', 'B', 'A:B'],
                          [False, True])
    _effects = {
        4: [2, 2],
        6: [2, 3],
        8: [2, 4]
    }
    for params in iter_params:
        n_subj, n_obs, n_levels, effects, correction = params
        data = rng.random_sample([n_subj, n_levels, n_obs])
        fvals, pvals = f_mway_rm(data, _effects[n_levels], effects,
                                 correction=correction)
        assert (fvals >= 0).all()
        if pvals.any():
            assert ((0 <= pvals) & (1 >= pvals)).all()
        n_effects = len(_map_effects(n_subj, effects)[0])
        assert fvals.size == n_obs * n_effects
        if n_effects == 1:  # test for principle of least surprise ...
            assert fvals.ndim == 1

        fvals_ = f_threshold_mway_rm(n_subj, _effects[n_levels], effects)
        assert (fvals_ >= 0).all()
        assert fvals_.size == n_effects

    # check time-frequency input
    n_subj, n_freqs, n_times, n_levels = (5, 10, 101, 4)
    data = rng.random_sample([n_subj, n_levels, n_freqs, n_times])
    fvals, pvals = f_mway_rm(data, _effects[n_levels])
    assert fvals.shape[1:] == pvals.shape[1:] == (n_freqs, n_times)

    data = rng.random_sample([n_subj, n_levels, 1])
    pytest.raises(ValueError, f_mway_rm, data, _effects[n_levels],
                  effects='C', correction=correction)
    data = rng.random_sample([n_subj, n_levels, n_obs, 3])
    # check for dimension handling
    f_mway_rm(data, _effects[n_levels], effects, correction=correction)

    # now check against external software results
    test_data = generate_data(n_subjects=20, n_conditions=6)
    fvals, pvals = f_mway_rm(test_data, [2, 3])

    assert_array_almost_equal(fvals, test_external['spss_fvals'], 3)
    assert_array_almost_equal(pvals, test_external['spss_pvals_uncorrected'],
                              3)
    assert_array_almost_equal(fvals, test_external['r_fvals'], 4)
    assert_array_almost_equal(pvals, test_external['r_pvals_uncorrected'], 3)

    _, pvals = f_mway_rm(test_data, [2, 3], correction=True)
    assert_array_almost_equal(pvals, test_external['spss_pvals_corrected'], 3)

    test_data = generate_data(n_subjects=20, n_conditions=8)
    fvals, _ = f_mway_rm(test_data, [2, 2, 2])
    assert_array_almost_equal(fvals, test_external['r_fvals_3way'], 5)

    fvals, _ = f_mway_rm(test_data, [8], 'A')
    assert_array_almost_equal(fvals, test_external['r_fvals_1way'], 5)


@pytest.mark.parametrize('kind, kwargs', [
    ('1samp', {}),
    ('ind', {}),  # equal_var=True is the default
    ('ind', dict(equal_var=True)),
    ('ind', dict(equal_var=False)),
])
@pytest.mark.parametrize('sigma', (0., 1e-3,))
@pytest.mark.parametrize('seed', [0, 42, 1337])
def test_ttest_equiv(kind, kwargs, sigma, seed):
    """Test t-test equivalence."""
    rng = np.random.RandomState(seed)

    def theirs(*a, **kw):
        f = getattr(scipy.stats, 'ttest_%s' % (kind,))
        if kind == '1samp':
            func = partial(f, popmean=0, **kwargs)
        else:
            func = partial(f, **kwargs)
        return func(*a, **kw)[0]

    ours = partial(getattr(mne.stats, 'ttest_%s_no_p' % (kind,)),
                   sigma=sigma, **kwargs)

    X = rng.randn(3, 4, 5)
    if kind == 'ind':
        X = [X, rng.randn(30, 4, 5)]  # should differ based on equal_var
        got = ours(*X)
        want = theirs(*X)
    else:
        got = ours(X)
        want = theirs(X)
    if sigma == 0.:
        assert_allclose(got, want, rtol=1e-7, atol=1e-6)
    else:
        assert not np.allclose(got, want, rtol=1e-7, atol=1e-6)
        # should mostly be similar, but uniformly smaller because we add
        # something to the divisor (var)
        assert_allclose(got, want, rtol=2e-1, atol=1e-2)
        assert_array_less(np.abs(got), np.abs(want))