1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
|
# Authors: Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Many of the computations in this code were derived from Matti Hämäläinen's
# C code.
from copy import deepcopy
from functools import partial, lru_cache
from collections import OrderedDict
from glob import glob
from os import path as op
from struct import pack
import time
import warnings
import numpy as np
from .channels.channels import _get_meg_system
from .fixes import (_serialize_volume_info, _get_read_geometry, jit,
prange, bincount)
from .io.constants import FIFF
from .io.pick import pick_types
from .parallel import parallel_func
from .transforms import (transform_surface_to, _pol_to_cart, _cart_to_sph,
_get_trans, apply_trans, Transform, _frame_to_str,
apply_volume_registration)
from .utils import (logger, verbose, get_subjects_dir, warn, _check_fname,
_check_option, _ensure_int, _TempDir, run_subprocess,
_check_freesurfer_home, _hashable_ndarray, fill_doc,
_validate_type, _require_version, _pl)
###############################################################################
# AUTOMATED SURFACE FINDING
@verbose
def get_head_surf(subject, source=('bem', 'head'), subjects_dir=None,
on_defects='raise', verbose=None):
"""Load the subject head surface.
Parameters
----------
subject : str
Subject name.
source : str | list of str
Type to load. Common choices would be ``'bem'`` or ``'head'``. We first
try loading ``'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'``, and
then look for ``'$SUBJECT*$SOURCE.fif'`` in the same directory by going
through all files matching the pattern. The head surface will be read
from the first file containing a head surface. Can also be a list
to try multiple strings.
subjects_dir : str, or None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
Returns
-------
surf : dict
The head surface.
"""
return _get_head_surface(subject=subject, source=source,
subjects_dir=subjects_dir, on_defects=on_defects)
# TODO this should be refactored with mne._freesurfer._get_head_surface
def _get_head_surface(subject, source, subjects_dir, on_defects,
raise_error=True):
"""Load the subject head surface."""
from .bem import read_bem_surfaces
# Load the head surface from the BEM
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if not isinstance(subject, str):
raise TypeError('subject must be a string, not %s.' % (type(subject,)))
# use realpath to allow for linked surfaces (c.f. MNE manual 196-197)
if isinstance(source, str):
source = [source]
surf = None
for this_source in source:
this_head = op.realpath(op.join(subjects_dir, subject, 'bem',
'%s-%s.fif' % (subject, this_source)))
if op.exists(this_head):
surf = read_bem_surfaces(this_head, True,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
on_defects=on_defects,
verbose=False)
else:
# let's do a more sophisticated search
path = op.join(subjects_dir, subject, 'bem')
if not op.isdir(path):
raise IOError('Subject bem directory "%s" does not exist.'
% path)
files = sorted(glob(op.join(path, '%s*%s.fif'
% (subject, this_source))))
for this_head in files:
try:
surf = read_bem_surfaces(this_head, True,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
on_defects=on_defects,
verbose=False)
except ValueError:
pass
else:
break
if surf is not None:
break
if surf is None:
if raise_error:
raise IOError('No file matching "%s*%s" and containing a head '
'surface found.' % (subject, this_source))
else:
return surf
logger.info('Using surface from %s.' % this_head)
return surf
@verbose
def get_meg_helmet_surf(info, trans=None, verbose=None):
"""Load the MEG helmet associated with the MEG sensors.
Parameters
----------
%(info_not_none)s
trans : dict
The head<->MRI transformation, usually obtained using
read_trans(). Can be None, in which case the surface will
be in head coordinates instead of MRI coordinates.
%(verbose)s
Returns
-------
surf : dict
The MEG helmet as a surface.
Notes
-----
A built-in helmet is loaded if possible. If not, a helmet surface
will be approximated based on the sensor locations.
"""
from scipy.spatial import ConvexHull, Delaunay
from .bem import read_bem_surfaces, _fit_sphere
system, have_helmet = _get_meg_system(info)
if have_helmet:
logger.info('Getting helmet for system %s' % system)
fname = op.join(op.split(__file__)[0], 'data', 'helmets',
system + '.fif.gz')
surf = read_bem_surfaces(fname, False, FIFF.FIFFV_MNE_SURF_MEG_HELMET,
verbose=False)
else:
rr = np.array([info['chs'][pick]['loc'][:3]
for pick in pick_types(info, meg=True, ref_meg=False,
exclude=())])
logger.info('Getting helmet for system %s (derived from %d MEG '
'channel locations)' % (system, len(rr)))
hull = ConvexHull(rr)
rr = rr[np.unique(hull.simplices)]
R, center = _fit_sphere(rr, disp=False)
sph = _cart_to_sph(rr - center)[:, 1:]
# add a point at the front of the helmet (where the face should be):
# 90 deg az and maximal el (down from Z/up axis)
front_sph = [[np.pi / 2., sph[:, 1].max()]]
sph = np.concatenate((sph, front_sph))
xy = _pol_to_cart(sph[:, ::-1])
tris = Delaunay(xy).simplices
# remove the frontal point we added from the simplices
tris = tris[(tris != len(sph) - 1).all(-1)]
tris = _reorder_ccw(rr, tris)
surf = dict(rr=rr, tris=tris)
complete_surface_info(surf, copy=False, verbose=False)
# Ignore what the file says, it's in device coords and we want MRI coords
surf['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
dev_head_t = info['dev_head_t']
if dev_head_t is None:
dev_head_t = Transform('meg', 'head')
transform_surface_to(surf, 'head', dev_head_t)
if trans is not None:
transform_surface_to(surf, 'mri', trans)
return surf
def _reorder_ccw(rrs, tris):
"""Reorder tris of a convex hull to be wound counter-clockwise."""
# This ensures that rendering with front-/back-face culling works properly
com = np.mean(rrs, axis=0)
rr_tris = rrs[tris]
dirs = np.sign((np.cross(rr_tris[:, 1] - rr_tris[:, 0],
rr_tris[:, 2] - rr_tris[:, 0]) *
(rr_tris[:, 0] - com)).sum(-1)).astype(int)
return np.array([t[::d] for d, t in zip(dirs, tris)])
###############################################################################
# EFFICIENCY UTILITIES
def fast_cross_3d(x, y):
"""Compute cross product between list of 3D vectors.
Much faster than np.cross() when the number of cross products
becomes large (>= 500). This is because np.cross() methods become
less memory efficient at this stage.
Parameters
----------
x : array
Input array 1, shape (..., 3).
y : array
Input array 2, shape (..., 3).
Returns
-------
z : array, shape (..., 3)
Cross product of x and y along the last dimension.
Notes
-----
x and y must broadcast against each other.
"""
assert x.ndim >= 1
assert y.ndim >= 1
assert x.shape[-1] == 3
assert y.shape[-1] == 3
if max(x.size, y.size) >= 500:
out = np.empty(np.broadcast(x, y).shape)
_jit_cross(out, x, y)
return out
else:
return np.cross(x, y)
@jit()
def _jit_cross(out, x, y):
out[..., 0] = x[..., 1] * y[..., 2]
out[..., 0] -= x[..., 2] * y[..., 1]
out[..., 1] = x[..., 2] * y[..., 0]
out[..., 1] -= x[..., 0] * y[..., 2]
out[..., 2] = x[..., 0] * y[..., 1]
out[..., 2] -= x[..., 1] * y[..., 0]
@jit()
def _fast_cross_nd_sum(a, b, c):
"""Fast cross and sum."""
return ((a[..., 1] * b[..., 2] - a[..., 2] * b[..., 1]) * c[..., 0] +
(a[..., 2] * b[..., 0] - a[..., 0] * b[..., 2]) * c[..., 1] +
(a[..., 0] * b[..., 1] - a[..., 1] * b[..., 0]) * c[..., 2])
@jit()
def _accumulate_normals(tris, tri_nn, npts):
"""Efficiently accumulate triangle normals."""
# this code replaces the following, but is faster (vectorized):
#
# this['nn'] = np.zeros((this['np'], 3))
# for p in xrange(this['ntri']):
# verts = this['tris'][p]
# this['nn'][verts, :] += this['tri_nn'][p, :]
#
nn = np.zeros((npts, 3))
for vi in range(3):
verts = tris[:, vi]
for idx in range(3): # x, y, z
nn[:, idx] += bincount(verts, weights=tri_nn[:, idx],
minlength=npts)
return nn
def _triangle_neighbors(tris, npts):
"""Efficiently compute vertex neighboring triangles."""
# this code replaces the following, but is faster (vectorized):
# neighbor_tri = [list() for _ in range(npts)]
# for ti, tri in enumerate(tris):
# for t in tri:
# neighbor_tri[t].append(ti)
from scipy.sparse import coo_matrix
rows = tris.ravel()
cols = np.repeat(np.arange(len(tris)), 3)
data = np.ones(len(cols))
csr = coo_matrix((data, (rows, cols)), shape=(npts, len(tris))).tocsr()
neighbor_tri = [csr.indices[start:stop]
for start, stop in zip(csr.indptr[:-1], csr.indptr[1:])]
assert len(neighbor_tri) == npts
return neighbor_tri
@jit()
def _triangle_coords(r, best, r1, nn, r12, r13, a, b, c): # pragma: no cover
"""Get coordinates of a vertex projected to a triangle."""
r1 = r1[best]
tri_nn = nn[best]
r12 = r12[best]
r13 = r13[best]
a = a[best]
b = b[best]
c = c[best]
rr = r - r1
z = np.sum(rr * tri_nn)
v1 = np.sum(rr * r12)
v2 = np.sum(rr * r13)
det = a * b - c * c
x = (b * v1 - c * v2) / det
y = (a * v2 - c * v1) / det
return x, y, z
def _project_onto_surface(rrs, surf, project_rrs=False, return_nn=False,
method='accurate'):
"""Project points onto (scalp) surface."""
if method == 'accurate':
surf_geom = _get_tri_supp_geom(surf)
pt_tris = np.empty((0,), int)
pt_lens = np.zeros(len(rrs) + 1, int)
out = _find_nearest_tri_pts(rrs, pt_tris, pt_lens,
reproject=True, **surf_geom)
if project_rrs: #
out += (np.einsum('ij,ijk->ik', out[0],
surf['rr'][surf['tris'][out[1]]]),)
if return_nn:
out += (surf_geom['nn'][out[1]],)
else: # nearest neighbor
assert project_rrs
idx = _compute_nearest(surf['rr'], rrs)
out = (None, None, surf['rr'][idx])
if return_nn:
surf_geom = _get_tri_supp_geom(surf)
nn = _accumulate_normals(surf['tris'].astype(int), surf_geom['nn'],
len(surf['rr']))
nn = nn[idx]
_normalize_vectors(nn)
out += (nn,)
return out
def _normal_orth(nn):
"""Compute orthogonal basis given a normal."""
assert nn.shape[-1:] == (3,)
prod = np.einsum('...i,...j->...ij', nn, nn)
_, u = np.linalg.eigh(np.eye(3) - prod)
u = u[..., ::-1]
# Make sure that ez is in the direction of nn
signs = np.sign(np.matmul(nn[..., np.newaxis, :], u[..., -1:]))
signs[signs == 0] = 1
u *= signs
return u.swapaxes(-1, -2)
@verbose
def complete_surface_info(surf, do_neighbor_vert=False, copy=True,
do_neighbor_tri=True, *, verbose=None):
"""Complete surface information.
Parameters
----------
surf : dict
The surface.
do_neighbor_vert : bool
If True (default False), add neighbor vertex information.
copy : bool
If True (default), make a copy. If False, operate in-place.
do_neighbor_tri : bool
If True (default), compute triangle neighbors.
%(verbose)s
Returns
-------
surf : dict
The transformed surface.
"""
if copy:
surf = deepcopy(surf)
# based on mne_source_space_add_geometry_info() in mne_add_geometry_info.c
# Main triangulation [mne_add_triangle_data()]
surf['ntri'] = surf.get('ntri', len(surf['tris']))
surf['np'] = surf.get('np', len(surf['rr']))
surf['tri_area'] = np.zeros(surf['ntri'])
r1 = surf['rr'][surf['tris'][:, 0], :]
r2 = surf['rr'][surf['tris'][:, 1], :]
r3 = surf['rr'][surf['tris'][:, 2], :]
surf['tri_cent'] = (r1 + r2 + r3) / 3.0
surf['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
# Triangle normals and areas
surf['tri_area'] = _normalize_vectors(surf['tri_nn']) / 2.0
zidx = np.where(surf['tri_area'] == 0)[0]
if len(zidx) > 0:
logger.info(' Warning: zero size triangles: %s' % zidx)
# Find neighboring triangles, accumulate vertex normals, normalize
logger.info(' Triangle neighbors and vertex normals...')
surf['nn'] = _accumulate_normals(surf['tris'].astype(int),
surf['tri_nn'], surf['np'])
_normalize_vectors(surf['nn'])
# Check for topological defects
if do_neighbor_tri:
surf['neighbor_tri'] = _triangle_neighbors(surf['tris'], surf['np'])
zero, fewer = list(), list()
for ni, n in enumerate(surf['neighbor_tri']):
if len(n) < 3:
if len(n) == 0:
zero.append(ni)
else:
fewer.append(ni)
surf['neighbor_tri'][ni] = np.array([], int)
if len(zero) > 0:
logger.info(' Vertices do not have any neighboring '
'triangles: [%s]' % ', '.join(str(z) for z in zero))
if len(fewer) > 0:
logger.info(' Vertices have fewer than three neighboring '
'triangles, removing neighbors: [%s]'
% ', '.join(str(f) for f in fewer))
# Determine the neighboring vertices and fix errors
if do_neighbor_vert is True:
logger.info(' Vertex neighbors...')
surf['neighbor_vert'] = [_get_surf_neighbors(surf, k)
for k in range(surf['np'])]
return surf
def _get_surf_neighbors(surf, k):
"""Calculate the surface neighbors based on triangulation."""
verts = set()
for v in surf['tris'][surf['neighbor_tri'][k]].flat:
verts.add(v)
verts.remove(k)
verts = np.array(sorted(verts))
assert np.all(verts < surf['np'])
nneighbors = len(verts)
nneigh_max = len(surf['neighbor_tri'][k])
if nneighbors > nneigh_max:
raise RuntimeError('Too many neighbors for vertex %d' % k)
elif nneighbors != nneigh_max:
logger.info(' Incorrect number of distinct neighbors for vertex'
' %d (%d instead of %d) [fixed].' % (k, nneighbors,
nneigh_max))
return verts
def _normalize_vectors(rr):
"""Normalize surface vertices."""
size = np.linalg.norm(rr, axis=1)
mask = (size > 0)
rr[mask] /= size[mask, np.newaxis] # operate in-place
return size
class _CDist(object):
"""Wrapper for cdist that uses a Tree-like pattern."""
def __init__(self, xhs):
self._xhs = xhs
def query(self, rr):
from scipy.spatial.distance import cdist
nearest = list()
dists = list()
for r in rr:
d = cdist(r[np.newaxis, :], self._xhs)
idx = np.argmin(d)
nearest.append(idx)
dists.append(d[0, idx])
return np.array(dists), np.array(nearest)
def _compute_nearest(xhs, rr, method='BallTree', return_dists=False):
"""Find nearest neighbors.
Parameters
----------
xhs : array, shape=(n_samples, n_dim)
Points of data set.
rr : array, shape=(n_query, n_dim)
Points to find nearest neighbors for.
method : str
The query method. If scikit-learn and scipy<1.0 are installed,
it will fall back to the slow brute-force search.
return_dists : bool
If True, return associated distances.
Returns
-------
nearest : array, shape=(n_query,)
Index of nearest neighbor in xhs for every point in rr.
distances : array, shape=(n_query,)
The distances. Only returned if return_dists is True.
"""
if xhs.size == 0 or rr.size == 0:
if return_dists:
return np.array([], int), np.array([])
return np.array([], int)
tree = _DistanceQuery(xhs, method=method)
out = tree.query(rr)
return out[::-1] if return_dists else out[1]
def _safe_query(rr, func, reduce=False, **kwargs):
if len(rr) == 0:
return np.array([]), np.array([], int)
out = func(rr)
out = [out[0][:, 0], out[1][:, 0]] if reduce else out
return out
class _DistanceQuery(object):
"""Wrapper for fast distance queries."""
def __init__(self, xhs, method='BallTree', allow_kdtree=False):
assert method in ('BallTree', 'cKDTree', 'cdist')
# Fastest for our problems: balltree
if method == 'BallTree':
try:
from sklearn.neighbors import BallTree
except ImportError:
logger.info('Nearest-neighbor searches will be significantly '
'faster if scikit-learn is installed.')
method = 'cKDTree'
else:
self.query = partial(_safe_query, func=BallTree(xhs).query,
reduce=True, return_distance=True)
# Then cKDTree
if method == 'cKDTree':
try:
from scipy.spatial import cKDTree
except ImportError:
method = 'cdist'
else:
self.query = cKDTree(xhs).query
# KDTree is really only faster for huge (~100k) sets,
# (e.g., with leafsize=2048), and it's slower for small (~5k)
# sets. We can add it later if we think it will help.
# Then the worst: cdist
if method == 'cdist':
self.query = _CDist(xhs).query
self.data = xhs
@verbose
def _points_outside_surface(rr, surf, n_jobs=None, verbose=None):
"""Check whether points are outside a surface.
Parameters
----------
rr : ndarray
Nx3 array of points to check.
surf : dict
Surface with entries "rr" and "tris".
Returns
-------
outside : ndarray
1D logical array of size N for which points are outside the surface.
"""
rr = np.atleast_2d(rr)
assert rr.shape[1] == 3
parallel, p_fun, n_jobs = parallel_func(_get_solids, n_jobs)
tot_angles = parallel(p_fun(surf['rr'][tris], rr)
for tris in np.array_split(surf['tris'], n_jobs))
return np.abs(np.sum(tot_angles, axis=0) / (2 * np.pi) - 1.0) > 1e-5
def _surface_to_polydata(surf):
import pyvista as pv
vertices = np.array(surf['rr'])
if 'tris' not in surf:
return pv.PolyData(vertices)
else:
triangles = np.array(surf['tris'])
triangles = np.c_[np.full(len(triangles), 3), triangles]
return pv.PolyData(vertices, triangles)
def _polydata_to_surface(pd, normals=True):
from pyvista import PolyData
if not isinstance(pd, PolyData):
pd = PolyData(pd)
out = dict(rr=pd.points, tris=pd.faces.reshape(-1, 4)[:, 1:])
if normals:
out['nn'] = pd.point_normals
return out
class _CheckInside(object):
"""Efficiently check if points are inside a surface."""
@verbose
def __init__(self, surf, *, mode='old', verbose=None):
assert mode in ('pyvista', 'old')
self.mode = mode
t0 = time.time()
self.surf = surf
if self.mode == 'pyvista':
self._init_pyvista()
else:
self._init_old()
logger.debug(
f'Setting up {mode} interior check for {len(self.surf["rr"])} '
f'points took {(time.time() - t0) * 1000:0.1f} ms')
def _init_old(self):
from scipy.spatial import Delaunay
self.inner_r = None
self.cm = self.surf['rr'].mean(0)
# We could use Delaunay or ConvexHull here, Delaunay is slightly slower
# to construct but faster to evaluate
# See https://stackoverflow.com/questions/16750618/whats-an-efficient-way-to-find-if-a-point-lies-in-the-convex-hull-of-a-point-cl # noqa
self.del_tri = Delaunay(self.surf['rr'])
if self.del_tri.find_simplex(self.cm) >= 0:
# Immediately cull some points from the checks
dists = np.linalg.norm(self.surf['rr'] - self.cm, axis=-1)
self.inner_r = dists.min()
self.outer_r = dists.max()
def _init_pyvista(self):
if not isinstance(self.surf, dict):
self.pdata = self.surf
self.surf = _polydata_to_surface(self.pdata)
else:
self.pdata = _surface_to_polydata(self.surf).clean()
@verbose
def __call__(self, rr, n_jobs=None, verbose=None):
n_orig = len(rr)
logger.info(f'Checking surface interior status for '
f'{n_orig} point{_pl(n_orig, " ")}...')
t0 = time.time()
if self.mode == 'pyvista':
inside = self._call_pyvista(rr)
else:
inside = self._call_old(rr, n_jobs)
n = inside.sum()
logger.info(
f' Total {n}/{n_orig} point{_pl(n, " ")} inside the surface')
logger.info(
f'Interior check completed in {(time.time() - t0) * 1000:0.1f} ms')
return inside
def _call_pyvista(self, rr):
pdata = _surface_to_polydata(dict(rr=rr))
out = pdata.select_enclosed_points(self.pdata, check_surface=False)
return out['SelectedPoints'].astype(bool)
def _call_old(self, rr, n_jobs):
n_orig = len(rr)
prec = int(np.ceil(np.log10(max(n_orig, 10))))
inside = np.ones(n_orig, bool) # innocent until proven guilty
idx = np.arange(n_orig)
# Limit to indices that can plausibly be outside the surf
# but are not definitely outside it
if self.inner_r is not None:
dists = np.linalg.norm(rr - self.cm, axis=-1)
in_mask = dists < self.inner_r
n = (in_mask).sum()
n_pad = str(n).rjust(prec)
logger.info(
f' Found {n_pad}/{n_orig} point{_pl(n, " ")} '
f'inside an interior sphere of radius '
f'{1000 * self.inner_r:6.1f} mm')
out_mask = dists > self.outer_r
inside[out_mask] = False
n = (out_mask).sum()
n_pad = str(n).rjust(prec)
logger.info(
f' Found {n_pad}/{n_orig} point{_pl(n, " ")} '
f'outside an exterior sphere of radius '
f'{1000 * self.outer_r:6.1f} mm')
mask = (~in_mask) & (~out_mask) # not definitely inside or outside
idx = idx[mask]
rr = rr[mask]
# Use qhull as our first pass (*much* faster than our check)
del_outside = self.del_tri.find_simplex(rr) < 0
n = sum(del_outside)
inside[idx[del_outside]] = False
idx = idx[~del_outside]
rr = rr[~del_outside]
n_pad = str(n).rjust(prec)
check_pad = str(len(del_outside)).rjust(prec)
logger.info(
f' Found {n_pad}/{check_pad} point{_pl(n, " ")} outside using '
'surface Qhull')
# use our more accurate check
solid_outside = _points_outside_surface(rr, self.surf, n_jobs)
n = np.sum(solid_outside)
n_pad = str(n).rjust(prec)
check_pad = str(len(solid_outside)).rjust(prec)
logger.info(
f' Found {n_pad}/{check_pad} point{_pl(n, " ")} outside using '
'solid angles')
inside[idx[solid_outside]] = False
return inside
###############################################################################
# Handle freesurfer
def _fread3(fobj):
"""Read 3 bytes and adjust."""
b1, b2, b3 = np.fromfile(fobj, ">u1", 3)
return (b1 << 16) + (b2 << 8) + b3
def _fread3_many(fobj, n):
"""Read 3-byte ints from an open binary file object."""
b1, b2, b3 = np.fromfile(fobj, ">u1",
3 * n).reshape(-1, 3).astype(np.int64).T
return (b1 << 16) + (b2 << 8) + b3
def read_curvature(filepath, binary=True):
"""Load in curvature values from the ?h.curv file.
Parameters
----------
filepath : str
Input path to the .curv file.
binary : bool
Specify if the output array is to hold binary values. Defaults to True.
Returns
-------
curv : array, shape=(n_vertices,)
The curvature values loaded from the user given file.
"""
with open(filepath, "rb") as fobj:
magic = _fread3(fobj)
if magic == 16777215:
vnum = np.fromfile(fobj, ">i4", 3)[0]
curv = np.fromfile(fobj, ">f4", vnum)
else:
vnum = magic
_fread3(fobj)
curv = np.fromfile(fobj, ">i2", vnum) / 100
if binary:
return 1 - np.array(curv != 0, np.int64)
else:
return curv
@verbose
def read_surface(fname, read_metadata=False, return_dict=False,
file_format='auto', verbose=None):
"""Load a Freesurfer surface mesh in triangular format.
Parameters
----------
fname : str
The name of the file containing the surface.
read_metadata : bool
Read metadata as key-value pairs. Only works when reading a FreeSurfer
surface file. For .obj files this dictionary will be empty.
Valid keys:
* 'head' : array of int
* 'valid' : str
* 'filename' : str
* 'volume' : array of int, shape (3,)
* 'voxelsize' : array of float, shape (3,)
* 'xras' : array of float, shape (3,)
* 'yras' : array of float, shape (3,)
* 'zras' : array of float, shape (3,)
* 'cras' : array of float, shape (3,)
.. versionadded:: 0.13.0
return_dict : bool
If True, a dictionary with surface parameters is returned.
file_format : 'auto' | 'freesurfer' | 'obj'
File format to use. Can be 'freesurfer' to read a FreeSurfer surface
file, or 'obj' to read a Wavefront .obj file (common format for
importing in other software), or 'auto' to attempt to infer from the
file name. Defaults to 'auto'.
.. versionadded:: 0.21.0
%(verbose)s
Returns
-------
rr : array, shape=(n_vertices, 3)
Coordinate points.
tris : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
volume_info : dict-like
If read_metadata is true, key-value pairs found in the geometry file.
surf : dict
The surface parameters. Only returned if ``return_dict`` is True.
See Also
--------
write_surface
read_tri
"""
fname = _check_fname(fname, 'read', True)
_check_option('file_format', file_format, ['auto', 'freesurfer', 'obj'])
if file_format == 'auto':
_, ext = op.splitext(fname)
if ext.lower() == '.obj':
file_format = 'obj'
else:
file_format = 'freesurfer'
if file_format == 'freesurfer':
ret = _get_read_geometry()(fname, read_metadata=read_metadata)
elif file_format == 'obj':
ret = _read_wavefront_obj(fname)
if read_metadata:
ret += (dict(),)
if return_dict:
ret += (_rr_tris_dict(ret[0], ret[1]),)
return ret
def _rr_tris_dict(rr, tris):
return dict(rr=rr, tris=tris, ntri=len(tris), use_tris=tris, np=len(rr))
def _read_mri_surface(fname):
surf = read_surface(fname, return_dict=True)[2]
surf['rr'] /= 1000.
surf.update(coord_frame=FIFF.FIFFV_COORD_MRI)
return surf
def _read_wavefront_obj(fname):
"""Read a surface form a Wavefront .obj file.
Parameters
----------
fname : str
Name of the .obj file to read.
Returns
-------
coords : ndarray, shape (n_points, 3)
The XYZ coordinates of each vertex.
faces : ndarray, shape (n_faces, 3)
For each face of the mesh, the integer indices of the vertices that
make up the face.
"""
coords = []
faces = []
with open(fname) as f:
for line in f:
line = line.strip()
if len(line) == 0 or line[0] == "#":
continue
split = line.split()
if split[0] == "v": # vertex
coords.append([float(item) for item in split[1:]])
elif split[0] == "f": # face
dat = [int(item.split("/")[0]) for item in split[1:]]
if len(dat) != 3:
raise RuntimeError('Only triangle faces allowed.')
# In .obj files, indexing starts at 1
faces.append([d - 1 for d in dat])
return np.array(coords), np.array(faces)
def _read_patch(fname):
"""Load a FreeSurfer binary patch file.
Parameters
----------
fname : str
The filename.
Returns
-------
rrs : ndarray, shape (n_vertices, 3)
The points.
tris : ndarray, shape (n_tris, 3)
The patches. Not all vertices will be present.
"""
# This is adapted from PySurfer PR #269, Bruce Fischl's read_patch.m,
# and PyCortex (BSD)
patch = dict()
with open(fname, 'r') as fid:
ver = np.fromfile(fid, dtype='>i4', count=1)[0]
if ver != -1:
raise RuntimeError(f'incorrect version # {ver} (not -1) found')
npts = np.fromfile(fid, dtype='>i4', count=1)[0]
dtype = np.dtype(
[('vertno', '>i4'), ('x', '>f'), ('y', '>f'), ('z', '>f')])
recs = np.fromfile(fid, dtype=dtype, count=npts)
# numpy to dict
patch = {key: recs[key] for key in dtype.fields.keys()}
patch['vertno'] -= 1
# read surrogate surface
rrs, tris = read_surface(
op.join(op.dirname(fname), op.basename(fname)[:3] + 'sphere'))
orig_tris = tris
is_vert = patch['vertno'] > 0 # negative are edges, ignored for now
verts = patch['vertno'][is_vert]
# eliminate invalid tris and zero out unused rrs
mask = np.zeros((len(rrs),), dtype=bool)
mask[verts] = True
rrs[~mask] = 0.
tris = tris[mask[tris].all(1)]
for ii, key in enumerate(['x', 'y', 'z']):
rrs[verts, ii] = patch[key][is_vert]
return rrs, tris, orig_tris
##############################################################################
# SURFACE CREATION
def _get_ico_surface(grade, patch_stats=False):
"""Return an icosahedral surface of the desired grade."""
# always use verbose=False since users don't need to know we're pulling
# these from a file
from .bem import read_bem_surfaces
ico_file_name = op.join(op.dirname(__file__), 'data',
'icos.fif.gz')
ico = read_bem_surfaces(ico_file_name, patch_stats, s_id=9000 + grade,
verbose=False)
return ico
def _tessellate_sphere_surf(level, rad=1.0):
"""Return a surface structure instead of the details."""
rr, tris = _tessellate_sphere(level)
npt = len(rr) # called "npt" instead of "np" because of numpy...
ntri = len(tris)
nn = rr.copy()
rr *= rad
s = dict(rr=rr, np=npt, tris=tris, use_tris=tris, ntri=ntri, nuse=npt,
nn=nn, inuse=np.ones(npt, int))
return s
def _norm_midpt(ai, bi, rr):
"""Get normalized midpoint."""
c = rr[ai]
c += rr[bi]
_normalize_vectors(c)
return c
def _tessellate_sphere(mylevel):
"""Create a tessellation of a unit sphere."""
# Vertices of a unit octahedron
rr = np.array([[1, 0, 0], [-1, 0, 0], # xplus, xminus
[0, 1, 0], [0, -1, 0], # yplus, yminus
[0, 0, 1], [0, 0, -1]], float) # zplus, zminus
tris = np.array([[0, 4, 2], [2, 4, 1], [1, 4, 3], [3, 4, 0],
[0, 2, 5], [2, 1, 5], [1, 3, 5], [3, 0, 5]], int)
# A unit octahedron
if mylevel < 1:
raise ValueError('oct subdivision must be >= 1')
# Reverse order of points in each triangle
# for counter-clockwise ordering
tris = tris[:, [2, 1, 0]]
# Subdivide each starting triangle (mylevel - 1) times
for _ in range(1, mylevel):
r"""
Subdivide each triangle in the old approximation and normalize
the new points thus generated to lie on the surface of the unit
sphere.
Each input triangle with vertices labelled [0,1,2] as shown
below will be turned into four new triangles:
Make new points
a = (0+2)/2
b = (0+1)/2
c = (1+2)/2
1
/\ Normalize a, b, c
/ \
b/____\c Construct new triangles
/\ /\ [0,b,a]
/ \ / \ [b,1,c]
/____\/____\ [a,b,c]
0 a 2 [a,c,2]
"""
# use new method: first make new points (rr)
a = _norm_midpt(tris[:, 0], tris[:, 2], rr)
b = _norm_midpt(tris[:, 0], tris[:, 1], rr)
c = _norm_midpt(tris[:, 1], tris[:, 2], rr)
lims = np.cumsum([len(rr), len(a), len(b), len(c)])
aidx = np.arange(lims[0], lims[1])
bidx = np.arange(lims[1], lims[2])
cidx = np.arange(lims[2], lims[3])
rr = np.concatenate((rr, a, b, c))
# now that we have our points, make new triangle definitions
tris = np.array((np.c_[tris[:, 0], bidx, aidx],
np.c_[bidx, tris[:, 1], cidx],
np.c_[aidx, bidx, cidx],
np.c_[aidx, cidx, tris[:, 2]]), int).swapaxes(0, 1)
tris = np.reshape(tris, (np.prod(tris.shape[:2]), 3))
# Copy the resulting approximation into standard table
rr_orig = rr
rr = np.empty_like(rr)
nnode = 0
for k, tri in enumerate(tris):
for j in range(3):
coord = rr_orig[tri[j]]
# this is faster than cdist (no need for sqrt)
similarity = np.dot(rr[:nnode], coord)
idx = np.where(similarity > 0.99999)[0]
if len(idx) > 0:
tris[k, j] = idx[0]
else:
rr[nnode] = coord
tris[k, j] = nnode
nnode += 1
rr = rr[:nnode].copy()
return rr, tris
def _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir):
"""Load a surf and use the subdivided icosahedron to get points."""
# Based on load_source_space_surf_spacing() in load_source_space.c
surf = read_surface(surf, return_dict=True)[-1]
do_neighbor_vert = (stype == 'spacing')
complete_surface_info(surf, do_neighbor_vert, copy=False)
if stype == 'all':
surf['inuse'] = np.ones(surf['np'], int)
surf['use_tris'] = None
elif stype == 'spacing':
_decimate_surface_spacing(surf, ico_surf)
surf['use_tris'] = None
del surf['neighbor_vert']
else: # ico or oct
# ## from mne_ico_downsample.c ## #
surf_name = op.join(subjects_dir, subject, 'surf', hemi + '.sphere')
logger.info('Loading geometry from %s...' % surf_name)
from_surf = read_surface(surf_name, return_dict=True)[-1]
_normalize_vectors(from_surf['rr'])
if from_surf['np'] != surf['np']:
raise RuntimeError('Mismatch between number of surface vertices, '
'possible parcellation error?')
_normalize_vectors(ico_surf['rr'])
# Make the maps
mmap = _compute_nearest(from_surf['rr'], ico_surf['rr'])
nmap = len(mmap)
surf['inuse'] = np.zeros(surf['np'], int)
for k in range(nmap):
if surf['inuse'][mmap[k]]:
# Try the nearest neighbors
neigh = _get_surf_neighbors(surf, mmap[k])
was = mmap[k]
inds = np.where(np.logical_not(surf['inuse'][neigh]))[0]
if len(inds) == 0:
raise RuntimeError('Could not find neighbor for vertex '
'%d / %d' % (k, nmap))
else:
mmap[k] = neigh[inds[-1]]
logger.info(' Source space vertex moved from %d to %d '
'because of double occupation', was, mmap[k])
elif mmap[k] < 0 or mmap[k] > surf['np']:
raise RuntimeError('Map number out of range (%d), this is '
'probably due to inconsistent surfaces. '
'Parts of the FreeSurfer reconstruction '
'need to be redone.' % mmap[k])
surf['inuse'][mmap[k]] = True
logger.info('Setting up the triangulation for the decimated '
'surface...')
surf['use_tris'] = np.array([mmap[ist] for ist in ico_surf['tris']],
np.int32)
if surf['use_tris'] is not None:
surf['nuse_tri'] = len(surf['use_tris'])
else:
surf['nuse_tri'] = 0
surf['nuse'] = np.sum(surf['inuse'])
surf['vertno'] = np.where(surf['inuse'])[0]
# set some final params
sizes = _normalize_vectors(surf['nn'])
surf['inuse'][sizes <= 0] = False
surf['nuse'] = np.sum(surf['inuse'])
surf['subject_his_id'] = subject
return surf
def _decimate_surface_spacing(surf, spacing):
assert isinstance(spacing, int)
assert spacing > 0
logger.info(' Decimating...')
d = np.full(surf['np'], 10000, int)
# A mysterious algorithm follows
for k in range(surf['np']):
neigh = surf['neighbor_vert'][k]
d[k] = min(np.min(d[neigh]) + 1, d[k])
if d[k] >= spacing:
d[k] = 0
d[neigh] = np.minimum(d[neigh], d[k] + 1)
if spacing == 2.0:
for k in range(surf['np'] - 1, -1, -1):
for n in surf['neighbor_vert'][k]:
d[k] = min(d[k], d[n] + 1)
d[n] = min(d[n], d[k] + 1)
for k in range(surf['np']):
if d[k] > 0:
neigh = surf['neighbor_vert'][k]
n = np.sum(d[neigh] == 0)
if n <= 2:
d[k] = 0
d[neigh] = np.minimum(d[neigh], d[k] + 1)
surf['inuse'] = np.zeros(surf['np'], int)
surf['inuse'][d == 0] = 1
return surf
@verbose
def write_surface(fname, coords, faces, create_stamp='', volume_info=None,
file_format='auto', overwrite=False, *, verbose=None):
"""Write a triangular Freesurfer surface mesh.
Accepts the same data format as is returned by read_surface().
Parameters
----------
fname : str
File to write.
coords : array, shape=(n_vertices, 3)
Coordinate points.
faces : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
create_stamp : str
Comment that is written to the beginning of the file. Can not contain
line breaks.
volume_info : dict-like or None
Key-value pairs to encode at the end of the file.
Valid keys:
* 'head' : array of int
* 'valid' : str
* 'filename' : str
* 'volume' : array of int, shape (3,)
* 'voxelsize' : array of float, shape (3,)
* 'xras' : array of float, shape (3,)
* 'yras' : array of float, shape (3,)
* 'zras' : array of float, shape (3,)
* 'cras' : array of float, shape (3,)
.. versionadded:: 0.13.0
file_format : 'auto' | 'freesurfer' | 'obj'
File format to use. Can be 'freesurfer' to write a FreeSurfer surface
file, or 'obj' to write a Wavefront .obj file (common format for
importing in other software), or 'auto' to attempt to infer from the
file name. Defaults to 'auto'.
.. versionadded:: 0.21.0
%(overwrite)s
%(verbose)s
See Also
--------
read_surface
read_tri
"""
fname = _check_fname(fname, overwrite=overwrite)
_check_option('file_format', file_format, ['auto', 'freesurfer', 'obj'])
if file_format == 'auto':
_, ext = op.splitext(fname)
if ext.lower() == '.obj':
file_format = 'obj'
else:
file_format = 'freesurfer'
if file_format == 'freesurfer':
try:
import nibabel as nib
has_nibabel = True
except ImportError:
has_nibabel = False
if has_nibabel:
nib.freesurfer.io.write_geometry(fname, coords, faces,
create_stamp=create_stamp,
volume_info=volume_info)
return
if len(create_stamp.splitlines()) > 1:
raise ValueError("create_stamp can only contain one line")
with open(fname, 'wb') as fid:
fid.write(pack('>3B', 255, 255, 254))
strs = ['%s\n' % create_stamp, '\n']
strs = [s.encode('utf-8') for s in strs]
fid.writelines(strs)
vnum = len(coords)
fnum = len(faces)
fid.write(pack('>2i', vnum, fnum))
fid.write(np.array(coords, dtype='>f4').tobytes())
fid.write(np.array(faces, dtype='>i4').tobytes())
# Add volume info, if given
if volume_info is not None and len(volume_info) > 0:
fid.write(_serialize_volume_info(volume_info))
elif file_format == 'obj':
with open(fname, 'w') as fid:
for line in create_stamp.splitlines():
fid.write(f'# {line}\n')
for v in coords:
fid.write(f'v {v[0]} {v[1]} {v[2]}\n')
for f in faces:
fid.write(f'f {f[0] + 1} {f[1] + 1} {f[2] + 1}\n')
###############################################################################
# Decimation
def _decimate_surface_vtk(points, triangles, n_triangles):
"""Aux function."""
try:
from vtkmodules.util.numpy_support import \
numpy_to_vtk, numpy_to_vtkIdTypeArray
from vtkmodules.vtkCommonDataModel import vtkPolyData, vtkCellArray
from vtkmodules.vtkCommonCore import vtkPoints
from vtkmodules.vtkFiltersCore import vtkQuadricDecimation
except ImportError:
raise ValueError('This function requires the VTK package to be '
'installed')
if triangles.max() > len(points) - 1:
raise ValueError('The triangles refer to undefined points. '
'Please check your mesh.')
src = vtkPolyData()
vtkpoints = vtkPoints()
with warnings.catch_warnings(record=True):
warnings.simplefilter('ignore')
vtkpoints.SetData(numpy_to_vtk(points.astype(np.float64)))
src.SetPoints(vtkpoints)
vtkcells = vtkCellArray()
triangles_ = np.pad(
triangles, ((0, 0), (1, 0)), 'constant', constant_values=3)
with warnings.catch_warnings(record=True):
warnings.simplefilter('ignore')
idarr = numpy_to_vtkIdTypeArray(triangles_.ravel().astype(np.int64))
vtkcells.SetCells(triangles.shape[0], idarr)
src.SetPolys(vtkcells)
# vtkDecimatePro was not very good, even with SplittingOff and
# PreserveTopologyOn
decimate = vtkQuadricDecimation()
decimate.VolumePreservationOn()
decimate.SetInputData(src)
reduction = 1 - (float(n_triangles) / len(triangles))
decimate.SetTargetReduction(reduction)
decimate.Update()
out = _polydata_to_surface(decimate.GetOutput(), normals=False)
return out['rr'], out['tris']
def _decimate_surface_sphere(rr, tris, n_triangles):
_check_freesurfer_home()
map_ = {}
ico_levels = [20, 80, 320, 1280, 5120, 20480]
map_.update({n_tri: ('ico', ii) for ii, n_tri in enumerate(ico_levels)})
oct_levels = 2 ** (2 * np.arange(7) + 3)
map_.update({n_tri: ('oct', ii) for ii, n_tri in enumerate(oct_levels, 1)})
_check_option('n_triangles', n_triangles, sorted(map_),
extra=' when method="sphere"')
func_map = dict(ico=_get_ico_surface, oct=_tessellate_sphere_surf)
kind, level = map_[n_triangles]
logger.info('Decimating using Freesurfer spherical %s%s downsampling'
% (kind, level))
ico_surf = func_map[kind](level)
assert len(ico_surf['tris']) == n_triangles
tempdir = _TempDir()
orig = op.join(tempdir, 'lh.temp')
write_surface(orig, rr, tris)
logger.info(' Extracting main mesh component ...')
run_subprocess(
['mris_extract_main_component', orig, orig],
verbose='error')
logger.info(' Smoothing ...')
smooth = orig + '.smooth'
run_subprocess(
['mris_smooth', '-nw', orig, smooth],
verbose='error')
logger.info(' Inflating ...')
inflated = orig + '.inflated'
run_subprocess(
['mris_inflate', '-no-save-sulc', smooth, inflated],
verbose='error')
logger.info(' Sphere ...')
qsphere = orig + '.qsphere'
run_subprocess(
['mris_sphere', '-q', inflated, qsphere], verbose='error')
sphere_rr, _ = read_surface(qsphere)
norms = np.linalg.norm(sphere_rr, axis=1, keepdims=True)
sphere_rr /= norms
idx = _compute_nearest(sphere_rr, ico_surf['rr'], method='cKDTree')
n_dup = len(idx) - len(np.unique(idx))
if n_dup:
raise RuntimeError('Could not reduce to %d triangles using ico, '
'%d/%d vertices were duplicates'
% (n_triangles, n_dup, len(idx)))
logger.info('[done]')
return rr[idx], ico_surf['tris']
@verbose
def decimate_surface(points, triangles, n_triangles, method='quadric', *,
verbose=None):
"""Decimate surface data.
Parameters
----------
points : ndarray
The surface to be decimated, a 3 x number of points array.
triangles : ndarray
The surface to be decimated, a 3 x number of triangles array.
n_triangles : int
The desired number of triangles.
method : str
Can be "quadric" or "sphere". "sphere" will inflate the surface to a
sphere using Freesurfer and downsample to an icosahedral or
octahedral mesh.
.. versionadded:: 0.20
%(verbose)s
Returns
-------
points : ndarray
The decimated points.
triangles : ndarray
The decimated triangles.
Notes
-----
**"quadric" mode**
This requires VTK. If an odd target number was requested,
the ``'decimation'`` algorithm used results in the
next even number of triangles. For example a reduction request
to 30001 triangles may result in 30000 triangles.
**"sphere" mode**
This requires Freesurfer to be installed and available in the
environment. The destination number of triangles must be one of
``[20, 80, 320, 1280, 5120, 20480]`` for ico (0-5) downsampling or one of
``[8, 32, 128, 512, 2048, 8192, 32768]`` for oct (1-7) downsampling.
This mode is slower, but could be more suitable for decimating meshes for
BEM creation (recommended ``n_triangles=5120``) due to better topological
property preservation.
"""
n_triangles = _ensure_int(n_triangles)
method_map = dict(quadric=_decimate_surface_vtk,
sphere=_decimate_surface_sphere)
_check_option('method', method, sorted(method_map))
if n_triangles > len(triangles):
raise ValueError('Requested n_triangles (%s) exceeds number of '
'original triangles (%s)'
% (n_triangles, len(triangles)))
return method_map[method](points, triangles, n_triangles)
###############################################################################
# Geometry
@jit()
def _get_tri_dist(p, q, p0, q0, a, b, c, dist): # pragma: no cover
"""Get the distance to a triangle edge."""
p1 = p - p0
q1 = q - q0
out = p1 * p1 * a
out += q1 * q1 * b
out += p1 * q1 * c
out += dist * dist
return np.sqrt(out)
def _get_tri_supp_geom(surf):
"""Create supplementary geometry information using tris and rrs."""
r1 = surf['rr'][surf['tris'][:, 0], :]
r12 = surf['rr'][surf['tris'][:, 1], :] - r1
r13 = surf['rr'][surf['tris'][:, 2], :] - r1
r1213 = np.ascontiguousarray(np.array([r12, r13]).swapaxes(0, 1))
a = np.einsum('ij,ij->i', r12, r12)
b = np.einsum('ij,ij->i', r13, r13)
c = np.einsum('ij,ij->i', r12, r13)
mat = np.ascontiguousarray(np.rollaxis(np.array([[b, -c], [-c, a]]), 2))
norm = (a * b - c * c)
norm[norm == 0] = 1. # avoid divide by zero
mat /= norm[:, np.newaxis, np.newaxis]
nn = fast_cross_3d(r12, r13)
_normalize_vectors(nn)
return dict(r1=r1, r12=r12, r13=r13, r1213=r1213,
a=a, b=b, c=c, mat=mat, nn=nn)
@jit(parallel=True)
def _find_nearest_tri_pts(rrs, pt_triss, pt_lens,
a, b, c, nn, r1, r12, r13, r1213, mat,
run_all=True, reproject=False): # pragma: no cover
"""Find nearest point mapping to a set of triangles.
If run_all is False, if the point lies within a triangle, it stops.
If run_all is True, edges of other triangles are checked in case
those (somehow) are closer.
"""
# The following dense code is equivalent to the following:
# rr = r1[pt_tris] - to_pts[ii]
# v1s = np.sum(rr * r12[pt_tris], axis=1)
# v2s = np.sum(rr * r13[pt_tris], axis=1)
# aas = a[pt_tris]
# bbs = b[pt_tris]
# ccs = c[pt_tris]
# dets = aas * bbs - ccs * ccs
# pp = (bbs * v1s - ccs * v2s) / dets
# qq = (aas * v2s - ccs * v1s) / dets
# pqs = np.array(pp, qq)
weights = np.empty((len(rrs), 3))
tri_idx = np.empty(len(rrs), np.int64)
for ri in prange(len(rrs)):
rr = np.reshape(rrs[ri], (1, 3))
start, stop = pt_lens[ri:ri + 2]
if start == stop == 0: # use all
drs = rr - r1
tri_nn = nn
mats = mat
r1213s = r1213
reindex = False
else:
pt_tris = pt_triss[start:stop]
drs = rr - r1[pt_tris]
tri_nn = nn[pt_tris]
mats = mat[pt_tris]
r1213s = r1213[pt_tris]
reindex = True
use = np.ones(len(drs), np.int64)
pqs = np.empty((len(drs), 2))
dists = np.empty(len(drs))
dist = np.inf
# make life easier for numba var typing
p, q, pt = np.float64(0.), np.float64(1.), np.int64(0)
found = False
for ii in range(len(drs)):
pqs[ii] = np.dot(mats[ii], np.dot(r1213s[ii], drs[ii]))
dists[ii] = np.dot(drs[ii], tri_nn[ii])
pp, qq = pqs[ii]
if pp >= 0 and qq >= 0 and pp <= 1 and qq <= 1 and pp + qq < 1:
found = True
use[ii] = False
if np.abs(dists[ii]) < np.abs(dist):
p, q, pt, dist = pp, qq, ii, dists[ii]
# re-reference back to original numbers
if found and reindex:
pt = pt_tris[pt]
if not found or run_all:
# don't include ones that we might have found before
# these are the ones that we want to check the sides of
s = np.where(use)[0]
# Tough: must investigate the sides
if reindex:
use_pt_tris = pt_tris[s].astype(np.int64)
else:
use_pt_tris = s.astype(np.int64)
pp, qq, ptt, distt = _nearest_tri_edge(
use_pt_tris, rr[0], pqs[s], dists[s], a, b, c)
if np.abs(distt) < np.abs(dist):
p, q, pt, dist = pp, qq, ptt, distt
w = (1 - p - q, p, q)
if reproject:
# Calculate a linear interpolation between the vertex values to
# get coords of pt projected onto closest triangle
coords = _triangle_coords(rr[0], pt, r1, nn, r12, r13, a, b, c)
w = (1. - coords[0] - coords[1], coords[0], coords[1])
weights[ri] = w
tri_idx[ri] = pt
return weights, tri_idx
@jit()
def _nearest_tri_edge(pt_tris, to_pt, pqs, dist, a, b, c): # pragma: no cover
"""Get nearest location from a point to the edge of a set of triangles."""
# We might do something intelligent here. However, for now
# it is ok to do it in the hard way
aa = a[pt_tris]
bb = b[pt_tris]
cc = c[pt_tris]
pp = pqs[:, 0]
qq = pqs[:, 1]
# Find the nearest point from a triangle:
# Side 1 -> 2
p0 = np.minimum(np.maximum(pp + 0.5 * (qq * cc) / aa, 0.0), 1.0)
q0 = np.zeros_like(p0)
# Side 2 -> 3
t1 = (0.5 * ((2.0 * aa - cc) * (1.0 - pp) +
(2.0 * bb - cc) * qq) / (aa + bb - cc))
t1 = np.minimum(np.maximum(t1, 0.0), 1.0)
p1 = 1.0 - t1
q1 = t1
# Side 1 -> 3
q2 = np.minimum(np.maximum(qq + 0.5 * (pp * cc) / bb, 0.0), 1.0)
p2 = np.zeros_like(q2)
# figure out which one had the lowest distance
dist0 = _get_tri_dist(pp, qq, p0, q0, aa, bb, cc, dist)
dist1 = _get_tri_dist(pp, qq, p1, q1, aa, bb, cc, dist)
dist2 = _get_tri_dist(pp, qq, p2, q2, aa, bb, cc, dist)
pp = np.concatenate((p0, p1, p2))
qq = np.concatenate((q0, q1, q2))
dists = np.concatenate((dist0, dist1, dist2))
ii = np.argmin(np.abs(dists))
p, q, pt, dist = pp[ii], qq[ii], pt_tris[ii % len(pt_tris)], dists[ii]
return p, q, pt, dist
def mesh_edges(tris):
"""Return sparse matrix with edges as an adjacency matrix.
Parameters
----------
tris : array of shape [n_triangles x 3]
The triangles.
Returns
-------
edges : scipy.sparse.spmatrix
The adjacency matrix.
"""
tris = _hashable_ndarray(tris)
return _mesh_edges(tris=tris)
@lru_cache(maxsize=10)
def _mesh_edges(tris=None):
from scipy.sparse import coo_matrix
if np.max(tris) > len(np.unique(tris)):
raise ValueError(
'Cannot compute adjacency on a selection of triangles.')
npoints = np.max(tris) + 1
ones_ntris = np.ones(3 * len(tris))
a, b, c = tris.T
x = np.concatenate((a, b, c))
y = np.concatenate((b, c, a))
edges = coo_matrix((ones_ntris, (x, y)), shape=(npoints, npoints))
edges = edges.tocsr()
edges = edges + edges.T
return edges
def mesh_dist(tris, vert):
"""Compute adjacency matrix weighted by distances.
It generates an adjacency matrix where the entries are the distances
between neighboring vertices.
Parameters
----------
tris : array (n_tris x 3)
Mesh triangulation.
vert : array (n_vert x 3)
Vertex locations.
Returns
-------
dist_matrix : scipy.sparse.csr_matrix
Sparse matrix with distances between adjacent vertices.
"""
from scipy.sparse import csr_matrix
edges = mesh_edges(tris).tocoo()
# Euclidean distances between neighboring vertices
dist = np.linalg.norm(vert[edges.row, :] - vert[edges.col, :], axis=1)
dist_matrix = csr_matrix((dist, (edges.row, edges.col)), shape=edges.shape)
return dist_matrix
@verbose
def read_tri(fname_in, swap=False, verbose=None):
"""Read triangle definitions from an ascii file.
Parameters
----------
fname_in : str
Path to surface ASCII file (ending with '.tri').
swap : bool
Assume the ASCII file vertex ordering is clockwise instead of
counterclockwise.
%(verbose)s
Returns
-------
rr : array, shape=(n_vertices, 3)
Coordinate points.
tris : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
See Also
--------
read_surface
write_surface
Notes
-----
.. versionadded:: 0.13.0
"""
with open(fname_in, "r") as fid:
lines = fid.readlines()
n_nodes = int(lines[0])
n_tris = int(lines[n_nodes + 1])
n_items = len(lines[1].split())
if n_items in [3, 6, 14, 17]:
inds = range(3)
elif n_items in [4, 7]:
inds = range(1, 4)
else:
raise IOError('Unrecognized format of data.')
rr = np.array([np.array([float(v) for v in line.split()])[inds]
for line in lines[1:n_nodes + 1]])
tris = np.array([np.array([int(v) for v in line.split()])[inds]
for line in lines[n_nodes + 2:n_nodes + 2 + n_tris]])
if swap:
tris[:, [2, 1]] = tris[:, [1, 2]]
tris -= 1
logger.info('Loaded surface from %s with %s nodes and %s triangles.' %
(fname_in, n_nodes, n_tris))
if n_items in [3, 4]:
logger.info('Node normals were not included in the source file.')
else:
warn('Node normals were not read.')
return (rr, tris)
@jit()
def _get_solids(tri_rrs, fros):
"""Compute _sum_solids_div total angle in chunks."""
# NOTE: This incorporates the division by 4PI that used to be separate
tot_angle = np.zeros((len(fros)))
for ti in range(len(tri_rrs)):
tri_rr = tri_rrs[ti]
v1 = fros - tri_rr[0]
v2 = fros - tri_rr[1]
v3 = fros - tri_rr[2]
v4 = np.empty((v1.shape[0], 3))
_jit_cross(v4, v1, v2)
triple = np.sum(v4 * v3, axis=1)
l1 = np.sqrt(np.sum(v1 * v1, axis=1))
l2 = np.sqrt(np.sum(v2 * v2, axis=1))
l3 = np.sqrt(np.sum(v3 * v3, axis=1))
s = (l1 * l2 * l3 +
np.sum(v1 * v2, axis=1) * l3 +
np.sum(v1 * v3, axis=1) * l2 +
np.sum(v2 * v3, axis=1) * l1)
tot_angle -= np.arctan2(triple, s)
return tot_angle
def _complete_sphere_surf(sphere, idx, level, complete=True):
"""Convert sphere conductor model to surface."""
rad = sphere['layers'][idx]['rad']
r0 = sphere['r0']
surf = _tessellate_sphere_surf(level, rad=rad)
surf['rr'] += r0
if complete:
complete_surface_info(surf, copy=False)
surf['coord_frame'] = sphere['coord_frame']
return surf
@verbose
def dig_mri_distances(info, trans, subject, subjects_dir=None,
dig_kinds='auto', exclude_frontal=False,
on_defects='raise', verbose=None):
"""Compute distances between head shape points and the scalp surface.
This function is useful to check that coregistration is correct.
Unless outliers are present in the head shape points,
one can assume an average distance around 2-3 mm.
Parameters
----------
%(info_not_none)s Must contain the head shape points in ``info['dig']``.
trans : str | instance of Transform
The head<->MRI transform. If str is passed it is the
path to file on disk.
subject : str
The name of the subject.
subjects_dir : str | None
Directory containing subjects data. If None use
the Freesurfer SUBJECTS_DIR environment variable.
%(dig_kinds)s
%(exclude_frontal)s
Default is False.
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
Returns
-------
dists : array, shape (n_points,)
The distances.
See Also
--------
mne.bem.get_fitting_dig
Notes
-----
.. versionadded:: 0.19
"""
from .bem import get_fitting_dig
pts = get_head_surf(subject, ('head-dense', 'head', 'bem'),
subjects_dir=subjects_dir, on_defects=on_defects)['rr']
trans = _get_trans(trans, fro="mri", to="head")[0]
pts = apply_trans(trans, pts)
info_dig = get_fitting_dig(
info, dig_kinds, exclude_frontal=exclude_frontal)
dists = _compute_nearest(pts, info_dig, return_dists=True)[1]
return dists
def _mesh_borders(tris, mask):
assert isinstance(mask, np.ndarray) and mask.ndim == 1
edges = mesh_edges(tris)
edges = edges.tocoo()
border_edges = mask[edges.row] != mask[edges.col]
return np.unique(edges.row[border_edges])
def _marching_cubes(image, level, smooth=0, fill_hole_size=None):
"""Compute marching cubes on a 3D image."""
# vtkDiscreteMarchingCubes would be another option, but it merges
# values at boundaries which is not what we want
# https://kitware.github.io/vtk-examples/site/Cxx/Medical/GenerateModelsFromLabels/ # noqa: E501
# Also vtkDiscreteFlyingEdges3D should be faster.
# If we ever want not-discrete (continuous/float) marching cubes,
# we should probably use vtkFlyingEdges3D rather than vtkMarchingCubes.
from vtkmodules.vtkCommonDataModel import \
vtkImageData, vtkDataSetAttributes
from vtkmodules.vtkFiltersCore import vtkThreshold
from vtkmodules.vtkFiltersGeneral import vtkDiscreteFlyingEdges3D
from vtkmodules.vtkFiltersGeometry import vtkGeometryFilter
from vtkmodules.util.numpy_support import vtk_to_numpy, numpy_to_vtk
from scipy.ndimage import binary_dilation
if image.ndim != 3:
raise ValueError(f'3D data must be supplied, got {image.shape}')
level = np.array(level)
if level.ndim != 1 or level.size == 0 or level.dtype.kind not in 'ui':
raise TypeError(
'level must be non-empty numeric or 1D array-like of int, '
f'got {level.ndim}D array-like of {level.dtype} with '
f'{level.size} elements')
# fill holes
if fill_hole_size is not None:
image = image.copy() # don't modify original
for val in level:
bin_image = image == val
mask = image == 0 # don't go into other areas
bin_image = binary_dilation(bin_image, iterations=fill_hole_size,
mask=mask)
image[bin_image] = val
# force double as passing integer types directly can be problematic!
image_shape = image.shape
data_vtk = numpy_to_vtk(image.ravel().astype(float), deep=True)
del image
mc = vtkDiscreteFlyingEdges3D()
# create image
imdata = vtkImageData()
imdata.SetDimensions(image_shape)
imdata.SetSpacing([1, 1, 1])
imdata.SetOrigin([0, 0, 0])
imdata.GetPointData().SetScalars(data_vtk)
# compute marching cubes on smoothed data
mc.SetNumberOfContours(len(level))
for li, lev in enumerate(level):
mc.SetValue(li, lev)
mc.SetInputData(imdata)
mc.Update()
mc = _vtk_smooth(mc.GetOutput(), smooth)
# get verts and triangles
selector = vtkThreshold()
selector.SetInputData(mc)
dsa = vtkDataSetAttributes()
selector.SetInputArrayToProcess(
0, 0, 0, imdata.FIELD_ASSOCIATION_POINTS, dsa.SCALARS)
geometry = vtkGeometryFilter()
geometry.SetInputConnection(selector.GetOutputPort())
out = list()
for val in level:
try:
selector.SetLowerThreshold
except AttributeError:
selector.ThresholdBetween(val, val)
else:
# default SetThresholdFunction is between, so:
selector.SetLowerThreshold(val)
selector.SetUpperThreshold(val)
geometry.Update()
polydata = geometry.GetOutput()
rr = vtk_to_numpy(polydata.GetPoints().GetData())
tris = vtk_to_numpy(
polydata.GetPolys().GetConnectivityArray()).reshape(-1, 3)
rr = np.ascontiguousarray(rr[:, ::-1])
tris = np.ascontiguousarray(tris[:, ::-1])
out.append((rr, tris))
return out
def _vtk_smooth(pd, smooth):
_validate_type(smooth, 'numeric', smooth)
smooth = float(smooth)
if not 0 <= smooth < 1:
raise ValueError('smoothing factor must be between 0 (inclusive) and '
f'1 (exclusive), got {smooth}')
if smooth == 0:
return pd
from vtkmodules.vtkFiltersCore import vtkWindowedSincPolyDataFilter
logger.info(f' Smoothing by a factor of {smooth}')
return_ndarray = False
if isinstance(pd, dict):
pd = _surface_to_polydata(pd)
return_ndarray = True
smoother = vtkWindowedSincPolyDataFilter()
smoother.SetInputData(pd)
smoother.SetNumberOfIterations(100)
smoother.BoundarySmoothingOff()
smoother.FeatureEdgeSmoothingOff()
smoother.SetFeatureAngle(120.0)
smoother.SetPassBand(1 - smooth)
smoother.NonManifoldSmoothingOn()
smoother.NormalizeCoordinatesOff()
smoother.Update()
out = smoother.GetOutput()
if return_ndarray:
out = _polydata_to_surface(out, normals=False)
return out
def _warn_missing_chs(info, dig_image, after_warp, verbose=None):
"""Warn that channels are missing."""
# ensure that each electrode contact was marked in at least one voxel
missing = set(np.arange(1, len(info.ch_names) + 1)).difference(
set(np.unique(np.array(dig_image.dataobj))))
missing_ch = [info.ch_names[idx - 1] for idx in missing]
if missing_ch and verbose != 'error':
warn(f'Channel{_pl(missing_ch)} '
f'{", ".join(repr(ch) for ch in missing_ch)} not assigned '
'voxels ' +
(f' after applying {after_warp}' if after_warp else ''))
@verbose
def warp_montage_volume(montage, base_image, reg_affine, sdr_morph,
subject_from, subject_to='fsaverage',
subjects_dir_from=None, subjects_dir_to=None,
thresh=0.5, max_peak_dist=1, voxels_max=100,
use_min=False, verbose=None):
"""Warp a montage to a template with image volumes using SDR.
Find areas of the input volume with intensity greater than
a threshold surrounding local extrema near the channel location.
Monotonicity from the peak is enforced to prevent channels
bleeding into each other.
.. note:: This is likely only applicable for channels inside the brain
(intracranial electrodes).
Parameters
----------
montage : instance of mne.channels.DigMontage
The montage object containing the channels.
base_image : path-like | nibabel.spatialimages.SpatialImage
Path to a volumetric scan (e.g. CT) of the subject. Can be in any
format readable by nibabel. Can also be a nibabel image object.
Local extrema (max or min) should be nearby montage channel locations.
%(reg_affine)s
%(sdr_morph)s
subject_from : str
The name of the subject used for the Freesurfer reconstruction.
subject_to : str
The name of the subject to use as a template to morph to
(e.g. 'fsaverage').
subjects_dir_from : path-like | None
The path to the Freesurfer ``recon-all`` directory for the
``subject_from`` subject. The ``SUBJECTS_DIR`` environment
variable will be used when ``None``.
subjects_dir_to : path-like | None
The path to the Freesurfer ``recon-all`` directory for the
``subject_to`` subject. ``subject_dir_from`` will be used
when ``None``.
thresh : float
The threshold relative to the peak to determine the size
of the sensors on the volume.
max_peak_dist : int
The number of voxels away from the channel location to
look in the ``image``. This will depend on the accuracy of
the channel locations, the default (one voxel in all directions)
will work only with localizations that are that accurate.
voxels_max : int
The maximum number of voxels for each channel.
use_min : bool
Whether to hypointensities in the volume as channel locations.
Default False uses hyperintensities.
%(verbose)s
Returns
-------
montage_warped : mne.channels.DigMontage
The modified montage object containing the channels.
image_from : nibabel.spatialimages.SpatialImage
An image in Freesurfer surface RAS space with voxel values
corresponding to the index of the channel. The background
is 0s and this index starts at 1.
image_to : nibabel.spatialimages.SpatialImage
The warped image with voxel values corresponding to the index
of the channel. The background is 0s and this index starts at 1.
"""
_require_version('nibabel', 'SDR morph', '2.1.0')
_require_version('dipy', 'SDR morph', '0.10.1')
from .channels import DigMontage, make_dig_montage
from ._freesurfer import _check_subject_dir
import nibabel as nib
_validate_type(montage, DigMontage, 'montage')
_validate_type(base_image, nib.spatialimages.SpatialImage, 'base_image')
_validate_type(thresh, float, 'thresh')
if thresh < 0 or thresh >= 1:
raise ValueError(f'`thresh` must be between 0 and 1, got {thresh}')
_validate_type(max_peak_dist, int, 'max_peak_dist')
_validate_type(voxels_max, int, 'voxels_max')
_validate_type(use_min, bool, 'use_min')
# first, make sure we have the necessary freesurfer surfaces
_check_subject_dir(subject_from, subjects_dir_from)
if subjects_dir_to is None: # assume shared
subjects_dir_to = subjects_dir_from
_check_subject_dir(subject_to, subjects_dir_to)
# load image and make sure it's in surface RAS
if not isinstance(base_image, nib.spatialimages.SpatialImage):
base_image = nib.load(base_image)
fs_from_img = nib.load(
op.join(subjects_dir_from, subject_from, 'mri', 'brain.mgz'))
if not np.allclose(base_image.affine, fs_from_img.affine, atol=1e-6):
raise RuntimeError('The `base_image` is not aligned to Freesurfer '
'surface RAS space. This space is required as '
'it is the space where the anatomical '
'segmentation and reconstructed surfaces are')
# get montage channel coordinates
ch_dict = montage.get_positions()
if ch_dict['coord_frame'] != 'mri':
bad_coord_frames = np.unique([d['coord_frame'] for d in montage.dig])
bad_coord_frames = ', '.join([
_frame_to_str[cf] if cf in _frame_to_str else str(cf)
for cf in bad_coord_frames])
raise RuntimeError('Coordinate frame not supported, expected '
f'"mri", got {bad_coord_frames}')
ch_names = list(ch_dict['ch_pos'].keys())
ch_coords = np.array([ch_dict['ch_pos'][name] for name in ch_names])
# convert to freesurfer voxel space
ch_coords = apply_trans(
np.linalg.inv(fs_from_img.header.get_vox2ras_tkr()), ch_coords * 1000)
# take channel coordinates and use the image to transform them
# into a volume where all the voxels over a threshold nearby
# are labeled with an index
image_data = np.array(base_image.dataobj)
if use_min:
image_data *= -1
image_from = np.zeros(base_image.shape, dtype=int)
for i, ch_coord in enumerate(ch_coords):
if np.isnan(ch_coord).any():
continue
# this looks up to a voxel away, it may be marked imperfectly
volume = _voxel_neighbors(ch_coord, image_data, thresh=thresh,
max_peak_dist=max_peak_dist,
voxels_max=voxels_max)
for voxel in volume:
if image_from[voxel] != 0:
# some voxels ambiguous because the contacts are bridged on
# the image so assign the voxel to the nearest contact location
dist_old = np.sqrt(
(ch_coords[image_from[voxel] - 1] - voxel)**2).sum()
dist_new = np.sqrt((ch_coord - voxel)**2).sum()
if dist_new < dist_old:
image_from[voxel] = i + 1
else:
image_from[voxel] = i + 1
# apply the mapping
image_from = nib.spatialimages.SpatialImage(image_from, fs_from_img.affine)
_warn_missing_chs(montage, image_from, after_warp=False)
template_brain = nib.load(
op.join(subjects_dir_to, subject_to, 'mri', 'brain.mgz'))
image_to = apply_volume_registration(
image_from, template_brain, reg_affine, sdr_morph,
interpolation='nearest')
after_warp = \
'SDR warp' if sdr_morph is not None else 'affine transformation'
_warn_missing_chs(montage, image_to, after_warp=after_warp)
# recover the contact positions as the center of mass
warped_data = np.asanyarray(image_to.dataobj)
for val, ch_coord in enumerate(ch_coords, 1):
ch_coord[:] = np.mean(np.where(warped_data == val), axis=1)
# convert back to surface RAS of the template
fs_to_img = nib.load(
op.join(subjects_dir_to, subject_to, 'mri', 'brain.mgz'))
ch_coords = apply_trans(
fs_to_img.header.get_vox2ras_tkr(), ch_coords) / 1000
# make warped montage
montage_warped = make_dig_montage(
dict(zip(ch_names, ch_coords)), coord_frame='mri')
return montage_warped, image_from, image_to
_VOXELS_MAX = 1000 # define constant to avoid runtime issues
@fill_doc
def get_montage_volume_labels(montage, subject, subjects_dir=None,
aseg='aparc+aseg', dist=2):
"""Get regions of interest near channels from a Freesurfer parcellation.
.. note:: This is applicable for channels inside the brain
(intracranial electrodes).
Parameters
----------
%(montage)s
%(subject)s
%(subjects_dir)s
%(aseg)s
dist : float
The distance in mm to use for identifying regions of interest.
Returns
-------
labels : dict
The regions of interest labels within ``dist`` of each channel.
colors : dict
The Freesurfer lookup table colors for the labels.
"""
from .channels import DigMontage
from ._freesurfer import read_freesurfer_lut, _get_aseg
_validate_type(montage, DigMontage, 'montage')
_validate_type(dist, (int, float), 'dist')
if dist < 0 or dist > 10:
raise ValueError('`dist` must be between 0 and 10')
aseg, aseg_data = _get_aseg(aseg, subject, subjects_dir)
# read freesurfer lookup table
lut, fs_colors = read_freesurfer_lut()
label_lut = {v: k for k, v in lut.items()}
# assert that all the values in the aseg are in the labels
assert all([idx in label_lut for idx in np.unique(aseg_data)])
# get transform to surface RAS for distance units instead of voxels
vox2ras_tkr = aseg.header.get_vox2ras_tkr()
ch_dict = montage.get_positions()
if ch_dict['coord_frame'] != 'mri':
raise RuntimeError('Coordinate frame not supported, expected '
'"mri", got ' + str(ch_dict['coord_frame']))
ch_coords = np.array(list(ch_dict['ch_pos'].values()))
# convert to freesurfer voxel space
ch_coords = apply_trans(
np.linalg.inv(aseg.header.get_vox2ras_tkr()), ch_coords * 1000)
labels = OrderedDict()
for ch_name, ch_coord in zip(montage.ch_names, ch_coords):
if np.isnan(ch_coord).any():
labels[ch_name] = list()
else:
voxels = _voxel_neighbors(
ch_coord, aseg_data, dist=dist, vox2ras_tkr=vox2ras_tkr,
voxels_max=_VOXELS_MAX)
label_idxs = set([aseg_data[tuple(voxel)].astype(int)
for voxel in voxels])
labels[ch_name] = [label_lut[idx] for idx in label_idxs]
all_labels = set([label for val in labels.values() for label in val])
colors = {label: tuple(fs_colors[label][:3] / 255) + (1.,)
for label in all_labels}
return labels, colors
def _get_neighbors(loc, image, voxels, thresh, dist_params):
"""Find all the neighbors above a threshold near a voxel."""
neighbors = set()
for axis in range(len(loc)):
for i in (-1, 1):
next_loc = np.array(loc)
next_loc[axis] += i
if thresh is not None:
assert dist_params is None
# must be above thresh, monotonically decreasing from
# the peak and not already found
next_loc = tuple(next_loc)
if image[next_loc] > thresh and \
image[next_loc] < image[loc] and \
next_loc not in voxels:
neighbors.add(next_loc)
else:
assert thresh is None
dist, seed_fs_ras, vox2ras_tkr = dist_params
next_loc_fs_ras = apply_trans(vox2ras_tkr, next_loc + 0.5)
if np.linalg.norm(seed_fs_ras - next_loc_fs_ras) <= dist:
neighbors.add(tuple(next_loc))
return neighbors
def _voxel_neighbors(seed, image, thresh=None, max_peak_dist=1,
use_relative=True, dist=None, vox2ras_tkr=None,
voxels_max=100):
"""Find voxels above a threshold contiguous with a seed location.
Parameters
----------
seed : tuple | ndarray
The location in image coordinated to seed the algorithm.
image : ndarray
The image to search.
thresh : float
The threshold to use as a cutoff for what qualifies as a neighbor.
Will be relative to the peak if ``use_relative`` or absolute if not.
max_peak_dist : int
The maximum number of voxels to search for the peak near
the seed location.
use_relative : bool
If ``True``, the threshold will be relative to the peak, if
``False``, the threshold will be absolute.
dist : float
The distance in mm to include surrounding voxels.
vox2ras_tkr : ndarray
The voxel to surface RAS affine. Must not be None if ``dist``
if not None.
voxels_max : int
The maximum size of the output ``voxels``.
Returns
-------
voxels : set
The set of locations including the ``seed`` voxel and
surrounding that meet the criteria.
.. note:: Either ``dist`` or ``thesh`` may be used but not both.
When ``thresh`` is used, first a peak nearby the seed
location is found and then voxels are only included if they
decrease monotonically from the peak. When ``dist`` is used,
only voxels within ``dist`` mm of the seed are included.
"""
seed = np.array(seed).round().astype(int)
assert ((dist is not None) + (thresh is not None)) == 1
if thresh is not None:
dist_params = None
check_grid = image[tuple([
slice(idx - max_peak_dist, idx + max_peak_dist + 1)
for idx in seed])]
peak = np.array(np.unravel_index(
np.argmax(check_grid), check_grid.shape)) - max_peak_dist + seed
voxels = neighbors = set([tuple(peak)])
if use_relative:
thresh *= image[tuple(peak)]
else:
assert vox2ras_tkr is not None
seed_fs_ras = apply_trans(vox2ras_tkr, seed + 0.5) # center of voxel
dist_params = (dist, seed_fs_ras, vox2ras_tkr)
voxels = neighbors = set([tuple(seed)])
while neighbors and len(voxels) <= voxels_max:
next_neighbors = set()
for next_loc in neighbors:
voxel_neighbors = _get_neighbors(next_loc, image, voxels,
thresh, dist_params)
# prevent looping back to already visited voxels
voxel_neighbors = voxel_neighbors.difference(voxels)
# add voxels not already visited to search next
next_neighbors = next_neighbors.union(voxel_neighbors)
# add new voxels that match the criteria to the overall set
voxels = voxels.union(voxel_neighbors)
if len(voxels) > voxels_max:
break
neighbors = next_neighbors # start again checking all new neighbors
return voxels
|