1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
|
# Authors: Jaakko Leppakangas <jaeilepp@student.jyu.fi>
# Robert Luke <mail@robertluke.net>
#
# License: BSD-3-Clause
from collections import OrderedDict
from datetime import datetime, timezone, timedelta
from itertools import repeat
import sys
import os.path as op
import pytest
from pytest import approx
from numpy.testing import (assert_equal, assert_array_equal,
assert_array_almost_equal, assert_allclose)
import numpy as np
import mne
from mne import (create_info, read_annotations, annotations_from_events,
events_from_annotations)
from mne import Epochs, Annotations
from mne.utils import (requires_version, catch_logging, requires_pandas,
assert_and_remove_boundary_annot, _raw_annot,
_dt_to_stamp, _stamp_to_dt, check_version,
_record_warnings)
from mne.io import read_raw_fif, RawArray, concatenate_raws
from mne.annotations import (_sync_onset, _handle_meas_date,
_read_annotations_txt_parse_header)
from mne.datasets import testing
data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample')
fif_fname = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data',
'test_raw.fif')
first_samps = pytest.mark.parametrize('first_samp', (0, 10000))
data_path = testing.data_path(download=False)
edf_reduced = op.join(data_path, 'EDF', 'test_reduced.edf')
edf_annot_only = op.join(data_path, 'EDF', 'SC4001EC-Hypnogram.edf')
needs_pandas = pytest.mark.skipif(
not check_version('pandas'), reason='Needs pandas')
# On Windows, datetime.fromtimestamp throws an error for negative times.
# We mimic this behavior on non-Windows platforms for ease of testing.
class _windows_datetime(datetime):
@classmethod
def fromtimestamp(cls, timestamp, tzinfo=None):
if timestamp < 0:
raise OSError('[Errno 22] Invalid argument')
return datetime.fromtimestamp(timestamp, tzinfo)
@pytest.fixture(scope='function')
def windows_like_datetime(monkeypatch):
"""Ensure datetime.fromtimestamp is Windows-like."""
if not sys.platform.startswith('win'):
monkeypatch.setattr('mne.annotations.datetime', _windows_datetime)
yield
def test_basics():
"""Test annotation class."""
raw = read_raw_fif(fif_fname)
assert raw.annotations is not None
assert len(raw.annotations.onset) == 0
pytest.raises(IOError, read_annotations, fif_fname)
onset = np.array(range(10))
duration = np.ones(10)
description = np.repeat('test', 10)
dt = raw.info['meas_date']
assert isinstance(dt, datetime)
stamp = _dt_to_stamp(dt)
# Test time shifts.
for orig_time in [None, dt, stamp[0], stamp]:
annot = Annotations(onset, duration, description, orig_time)
if orig_time is None:
assert annot.orig_time is None
else:
assert isinstance(annot.orig_time, datetime)
assert annot.orig_time.tzinfo is timezone.utc
pytest.raises(ValueError, Annotations, onset, duration, description[:9])
pytest.raises(ValueError, Annotations, [onset, 1], duration, description)
pytest.raises(ValueError, Annotations, onset, [duration, 1], description)
# Test combining annotations with concatenate_raws
raw2 = raw.copy()
delta = raw.times[-1] + 1. / raw.info['sfreq']
orig_time = (stamp[0] + stamp[1] * 1e-6 + raw2._first_time)
offset = _dt_to_stamp(_handle_meas_date(raw2.info['meas_date']))
offset = offset[0] + offset[1] * 1e-6
offset = orig_time - offset
assert_allclose(offset, raw._first_time)
annot = Annotations(onset, duration, description, orig_time)
assert annot.orig_time is not None
assert ' segments' in repr(annot)
raw2.set_annotations(annot)
assert_allclose(raw2.annotations.onset, onset + offset)
assert raw2.annotations is not annot
assert raw2.annotations.orig_time is not None
concatenate_raws([raw, raw2])
assert_and_remove_boundary_annot(raw)
assert_allclose(onset + offset + delta, raw.annotations.onset, rtol=1e-5)
assert_array_equal(annot.duration, raw.annotations.duration)
assert_array_equal(raw.annotations.description, np.repeat('test', 10))
def test_annot_sanitizing(tmp_path):
"""Test description sanitizing."""
annot = Annotations([0], [1], ['a;:b'])
fname = tmp_path / 'custom-annot.fif'
annot.save(fname)
annot_read = read_annotations(fname)
_assert_annotations_equal(annot, annot_read)
# make sure pytest raises error on char-sequence that is not allowed
with pytest.raises(ValueError, match='in description not supported'):
Annotations([0], [1], ['a{COLON}b'])
def test_raw_array_orig_times():
"""Test combining with RawArray and orig_times."""
data = np.random.randn(2, 1000) * 10e-12
sfreq = 100.
info = create_info(ch_names=['MEG1', 'MEG2'], ch_types=['grad'] * 2,
sfreq=sfreq)
meas_date = _handle_meas_date(np.pi)
with info._unlock():
info['meas_date'] = meas_date
raws = []
for first_samp in [12300, 100, 12]:
raw = RawArray(data.copy(), info, first_samp=first_samp)
ants = Annotations([1., 2.], [.5, .5], 'x', np.pi + first_samp / sfreq)
raw.set_annotations(ants)
raws.append(raw)
assert_allclose(raws[0].annotations.onset, [124, 125])
raw = RawArray(data.copy(), info)
assert not len(raw.annotations)
raw.set_annotations(Annotations([1.], [.5], 'x', None))
assert_allclose(raw.annotations.onset, [1.])
raws.append(raw)
raw = concatenate_raws(raws, verbose='debug')
assert raw.info['meas_date'] == raw.annotations.orig_time == meas_date
assert_and_remove_boundary_annot(raw, 3)
assert_array_equal(raw.annotations.onset, [124., 125., 134., 135.,
144., 145., 154.])
raw.annotations.delete(2)
assert_array_equal(raw.annotations.onset, [124., 125., 135., 144.,
145., 154.])
raw.annotations.append(5, 1.5, 'y')
assert_array_equal(raw.annotations.onset,
[5., 124., 125., 135., 144., 145., 154.])
assert_array_equal(raw.annotations.duration,
[1.5, .5, .5, .5, .5, .5, .5])
assert_array_equal(raw.annotations.description,
['y', 'x', 'x', 'x', 'x', 'x', 'x'])
# These three things should be equivalent
stamp = _dt_to_stamp(raw.info['meas_date'])
orig_time = _handle_meas_date(stamp)
for empty_annot in (
Annotations([], [], [], stamp),
Annotations([], [], [], orig_time),
Annotations([], [], [], None),
None):
raw.set_annotations(empty_annot)
assert isinstance(raw.annotations, Annotations)
assert len(raw.annotations) == 0
assert raw.annotations.orig_time == orig_time
def test_crop(tmp_path):
"""Test cropping with annotations."""
raw = read_raw_fif(fif_fname)
events = mne.find_events(raw)
onset = events[events[:, 2] == 1, 0] / raw.info['sfreq']
duration = np.full_like(onset, 0.5)
description = ['bad %d' % k for k in range(len(onset))]
annot = mne.Annotations(onset, duration, description,
orig_time=raw.info['meas_date'])
raw.set_annotations(annot)
split_time = raw.times[-1] / 2. + 2.
split_idx = len(onset) // 2 + 1
raw_cropped_left = raw.copy().crop(0., split_time - 1. / raw.info['sfreq'])
assert_array_equal(raw_cropped_left.annotations.description,
raw.annotations.description[:split_idx])
assert_allclose(raw_cropped_left.annotations.duration,
raw.annotations.duration[:split_idx])
assert_allclose(raw_cropped_left.annotations.onset,
raw.annotations.onset[:split_idx])
raw_cropped_right = raw.copy().crop(split_time, None)
assert_array_equal(raw_cropped_right.annotations.description,
raw.annotations.description[split_idx:])
assert_allclose(raw_cropped_right.annotations.duration,
raw.annotations.duration[split_idx:])
assert_allclose(raw_cropped_right.annotations.onset,
raw.annotations.onset[split_idx:])
raw_concat = mne.concatenate_raws([raw_cropped_left, raw_cropped_right],
verbose='debug')
assert_allclose(raw_concat.times, raw.times)
assert_allclose(raw_concat[:][0], raw[:][0], atol=1e-20)
assert_and_remove_boundary_annot(raw_concat)
# Ensure we annotations survive round-trip crop->concat
assert_array_equal(raw_concat.annotations.description,
raw.annotations.description)
for attr in ('onset', 'duration'):
assert_allclose(getattr(raw_concat.annotations, attr),
getattr(raw.annotations, attr),
err_msg='Failed for %s:' % (attr,))
raw.set_annotations(None) # undo
# Test concatenating annotations with and without orig_time.
raw2 = raw.copy()
raw.set_annotations(Annotations([45.], [3], 'test', raw.info['meas_date']))
raw2.set_annotations(Annotations([2.], [3], 'BAD', None))
expected_onset = [45., 2. + raw._last_time]
raw = concatenate_raws([raw, raw2])
assert_and_remove_boundary_annot(raw)
assert_array_almost_equal(raw.annotations.onset, expected_onset, decimal=2)
# Test IO
tempdir = str(tmp_path)
fname = op.join(tempdir, 'test-annot.fif')
raw.annotations.save(fname)
annot_read = read_annotations(fname)
for attr in ('onset', 'duration'):
assert_allclose(getattr(annot_read, attr),
getattr(raw.annotations, attr))
assert annot_read.orig_time == raw.annotations.orig_time
assert_array_equal(annot_read.description, raw.annotations.description)
annot = Annotations((), (), ())
annot.save(fname, overwrite=True)
pytest.raises(IOError, read_annotations, fif_fname) # none in old raw
annot = read_annotations(fname)
assert isinstance(annot, Annotations)
assert len(annot) == 0
annot.crop() # test if cropping empty annotations doesn't raise an error
# Test that empty annotations can be saved with an object
fname = op.join(tempdir, 'test_raw.fif')
raw.set_annotations(annot)
raw.save(fname)
raw_read = read_raw_fif(fname)
assert isinstance(raw_read.annotations, Annotations)
assert len(raw_read.annotations) == 0
raw.set_annotations(None)
raw.save(fname, overwrite=True)
raw_read = read_raw_fif(fname)
assert raw_read.annotations is not None
assert len(raw_read.annotations.onset) == 0
# test saving and reloading cropped annotations in raw instance
info = create_info([f'EEG{i+1}' for i in range(3)],
ch_types=['eeg'] * 3, sfreq=50)
raw = RawArray(np.zeros((3, 50 * 20)), info)
annotation = mne.Annotations([8, 12, 15], [2] * 3, [1, 2, 3])
raw = raw.set_annotations(annotation)
raw_copied = raw.copy().crop(5, 18)
fname = op.join(tempdir, 'test_raw.fif')
raw_copied.save(fname, overwrite=True)
raw_loaded = mne.io.read_raw(str(fname))
for attr in ('onset', 'duration'):
assert_allclose(getattr(raw.annotations, attr),
getattr(raw_copied.annotations, attr))
assert_allclose(getattr(raw_copied.annotations, attr),
getattr(raw_loaded.annotations, attr))
@first_samps
def test_chunk_duration(first_samp):
"""Test chunk_duration."""
# create dummy raw
raw = RawArray(data=np.empty([10, 10], dtype=np.float64),
info=create_info(ch_names=10, sfreq=1.),
first_samp=first_samp)
with raw.info._unlock():
raw.info['meas_date'] = _handle_meas_date(0)
raw.set_annotations(Annotations(description='foo', onset=[0],
duration=[10], orig_time=None))
assert raw.annotations.orig_time == raw.info['meas_date']
assert_allclose(raw.annotations.onset, [first_samp])
# expected_events = [[0, 0, 1], [0, 0, 1], [1, 0, 1], [1, 0, 1], ..
# [9, 0, 1], [9, 0, 1]]
expected_events = np.atleast_2d(np.repeat(range(10), repeats=2)).T
expected_events = np.insert(expected_events, 1, 0, axis=1)
expected_events = np.insert(expected_events, 2, 1, axis=1)
expected_events[:, 0] += first_samp
events, events_id = events_from_annotations(raw, chunk_duration=.5,
use_rounding=False)
assert_array_equal(events, expected_events)
# test chunk durations that do not fit equally in annotation duration
expected_events = np.zeros((3, 3))
expected_events[:, -1] = 1
expected_events[:, 0] = np.arange(0, 9, step=3) + first_samp
events, events_id = events_from_annotations(raw, chunk_duration=3.)
assert_array_equal(events, expected_events)
def test_events_from_annotation_orig_time_none():
"""Tests events_from_annotation with orig_time None and first_sampe > 0."""
# Create fake data
sfreq, duration_s = 100, 10
data = np.random.RandomState(42).randn(1, sfreq * duration_s)
info = mne.create_info(ch_names=['EEG1'], ch_types=['eeg'], sfreq=sfreq)
raw = mne.io.RawArray(data, info)
# Add annotation toward the end
onset = [8]
duration = [1]
description = ['0']
annots = mne.Annotations(onset, duration, description)
raw = raw.set_annotations(annots)
# Crop start of raw
raw.crop(tmin=7)
# Extract epochs
events, event_ids = mne.events_from_annotations(raw)
epochs = mne.Epochs(
raw, events, tmin=0, tmax=1, baseline=None, on_missing='warning')
# epochs is empty
assert_array_equal(epochs.get_data()[0], data[:, 800:901])
def test_crop_more():
"""Test more cropping."""
raw = mne.io.read_raw_fif(fif_fname).crop(0, 11).load_data()
raw._data[:] = np.random.RandomState(0).randn(*raw._data.shape)
onset = np.array([0.47058824, 2.49773765, 6.67873287, 9.15837097])
duration = np.array([0.89592767, 1.13574672, 1.09954739, 0.48868752])
annotations = mne.Annotations(onset, duration, 'BAD')
raw.set_annotations(annotations)
assert len(raw.annotations) == 4
delta = 1. / raw.info['sfreq']
offset = raw.first_samp * delta
raw_concat = mne.concatenate_raws(
[raw.copy().crop(0, 4 - delta),
raw.copy().crop(4, 8 - delta),
raw.copy().crop(8, None)])
assert_allclose(raw_concat.times, raw.times)
assert_allclose(raw_concat[:][0], raw[:][0])
assert raw_concat.first_samp == raw.first_samp
assert_and_remove_boundary_annot(raw_concat, 2)
assert len(raw_concat.annotations) == 4
assert_array_equal(raw_concat.annotations.description,
raw.annotations.description)
assert_allclose(raw.annotations.duration, duration)
assert_allclose(raw_concat.annotations.duration, duration)
assert_allclose(raw.annotations.onset, onset + offset)
assert_allclose(raw_concat.annotations.onset, onset + offset,
atol=1. / raw.info['sfreq'])
@testing.requires_testing_data
def test_read_brainstorm_annotations():
"""Test reading for Brainstorm events file."""
fname = op.join(data_dir, 'events_sample_audvis_raw_bst.mat')
annot = read_annotations(fname)
assert len(annot) == 238
assert annot.onset.min() > 40 # takes into account first_samp
assert np.unique(annot.description).size == 5
@testing.requires_testing_data
@pytest.mark.parametrize('fname, n_annot', [
(edf_annot_only, 154),
(edf_reduced, 5),
])
def test_read_edf_annotations(fname, n_annot):
"""Test reading EDF annotations."""
annot = read_annotations(fname)
assert len(annot) == n_annot
@first_samps
def test_raw_reject(first_samp):
"""Test raw data getter with annotation reject."""
sfreq = 100.
info = create_info(['a', 'b', 'c', 'd', 'e'], sfreq, ch_types='eeg')
raw = RawArray(np.ones((5, 15000)), info, first_samp=first_samp)
with pytest.warns(RuntimeWarning, match='outside the data range'):
raw.set_annotations(Annotations([2, 100, 105, 148],
[2, 8, 5, 8], 'BAD'))
data, times = raw.get_data([0, 1, 3, 4], 100, 11200, # 1-112 sec
'omit', return_times=True)
bad_times = np.concatenate([np.arange(200, 400),
np.arange(10000, 10800),
np.arange(10500, 11000)])
expected_times = np.setdiff1d(np.arange(100, 11200), bad_times) / sfreq
assert_allclose(times, expected_times)
# with orig_time and complete overlap
raw = read_raw_fif(fif_fname)
raw.set_annotations(Annotations(
onset=np.array([1, 4, 5], float) + raw._first_time,
duration=[1, 3, 1], description='BAD',
orig_time=raw.info['meas_date']))
t_stop = 18.
assert raw.times[-1] > t_stop
n_stop = int(round(t_stop * raw.info['sfreq']))
n_drop = int(round(4 * raw.info['sfreq']))
assert len(raw.times) >= n_stop
data, times = raw.get_data(range(10), 0, n_stop, 'omit', True)
assert data.shape == (10, n_stop - n_drop)
assert times[-1] == raw.times[n_stop - 1]
assert_array_equal(data[:, -100:], raw[:10, n_stop - 100:n_stop][0])
data, times = raw.get_data(range(10), 0, n_stop, 'NaN', True)
assert_array_equal(data.shape, (10, n_stop))
assert times[-1] == raw.times[n_stop - 1]
t_1, t_2 = raw.time_as_index([1, 2], use_rounding=True)
assert np.isnan(data[:, t_1:t_2]).all() # 1s -2s
assert not np.isnan(data[:, :t_1].any())
assert not np.isnan(data[:, t_2:].any())
assert_array_equal(data[:, -100:], raw[:10, n_stop - 100:n_stop][0])
assert_array_equal(raw.get_data(), raw[:][0])
# Test _sync_onset
times = np.array([10, -88, 190], float)
onsets = _sync_onset(raw, times)
assert_array_almost_equal(onsets, times - raw.first_samp /
raw.info['sfreq'])
assert_array_almost_equal(times, _sync_onset(raw, onsets, True))
@first_samps
def test_annotation_filtering(first_samp):
"""Test that annotations work properly with filtering."""
# Create data with just a DC component
data = np.ones((1, 1000))
info = create_info(1, 1000., 'eeg')
raws = [RawArray(data * (ii + 1), info, first_samp=first_samp)
for ii in range(4)]
kwargs_pass = dict(l_freq=None, h_freq=50., fir_design='firwin')
kwargs_stop = dict(l_freq=50., h_freq=None, fir_design='firwin')
# lowpass filter, which should not modify the data
raws_pass = [raw.copy().filter(**kwargs_pass) for raw in raws]
# highpass filter, which should zero it out
raws_stop = [raw.copy().filter(**kwargs_stop) for raw in raws]
# concat the original and the filtered segments
raws_concat = concatenate_raws([raw.copy() for raw in raws])
raws_zero = raws_concat.copy().apply_function(lambda x: x * 0)
raws_pass_concat = concatenate_raws(raws_pass)
raws_stop_concat = concatenate_raws(raws_stop)
# make sure we did something reasonable with our individual-file filtering
assert_allclose(raws_concat[0][0], raws_pass_concat[0][0], atol=1e-14)
assert_allclose(raws_zero[0][0], raws_stop_concat[0][0], atol=1e-14)
# ensure that our Annotations cut up the filtering properly
raws_concat_pass = raws_concat.copy().filter(skip_by_annotation='edge',
**kwargs_pass)
assert_allclose(raws_concat[0][0], raws_concat_pass[0][0], atol=1e-14)
raws_concat_stop = raws_concat.copy().filter(skip_by_annotation='edge',
**kwargs_stop)
assert_allclose(raws_zero[0][0], raws_concat_stop[0][0], atol=1e-14)
# one last test: let's cut out a section entirely:
# here the 1-3 second window should be skipped
raw = raws_concat.copy()
raw.annotations.append(1. + raw._first_time, 2., 'foo')
with catch_logging() as log:
raw.filter(l_freq=50., h_freq=None, fir_design='firwin',
skip_by_annotation='foo', verbose='info')
log = log.getvalue()
assert '2 contiguous segments' in log
raw.annotations.append(2. + raw._first_time, 1., 'foo') # shouldn't change
with catch_logging() as log:
raw.filter(l_freq=50., h_freq=None, fir_design='firwin',
skip_by_annotation='foo', verbose='info')
log = log.getvalue()
assert '2 contiguous segments' in log
# our filter will zero out anything not skipped:
mask = np.concatenate((np.zeros(1000), np.ones(2000), np.zeros(1000)))
expected_data = raws_concat[0][0][0] * mask
assert_allclose(raw[0][0][0], expected_data, atol=1e-14)
# Let's try another one
raw = raws[0].copy()
raw.set_annotations(Annotations([0.], [0.5], ['BAD_ACQ_SKIP']))
my_data, times = raw.get_data(reject_by_annotation='omit',
return_times=True)
assert_allclose(times, raw.times[500:])
assert my_data.shape == (1, 500)
raw_filt = raw.copy().filter(skip_by_annotation='bad_acq_skip',
**kwargs_stop)
expected = data.copy()
expected[:, 500:] = 0
assert_allclose(raw_filt[:][0], expected, atol=1e-14)
raw = raws[0].copy()
raw.set_annotations(Annotations([0.5], [0.5], ['BAD_ACQ_SKIP']))
my_data, times = raw.get_data(reject_by_annotation='omit',
return_times=True)
assert_allclose(times, raw.times[:500])
assert my_data.shape == (1, 500)
raw_filt = raw.copy().filter(skip_by_annotation='bad_acq_skip',
**kwargs_stop)
expected = data.copy()
expected[:, :500] = 0
assert_allclose(raw_filt[:][0], expected, atol=1e-14)
@first_samps
def test_annotation_omit(first_samp):
"""Test raw.get_data with annotations."""
data = np.concatenate([np.ones((1, 1000)), 2 * np.ones((1, 1000))], -1)
info = create_info(1, 1000., 'eeg')
raw = RawArray(data, info, first_samp=first_samp)
raw.set_annotations(Annotations([0.5], [1], ['bad']))
expected = raw[0][0]
assert_allclose(raw.get_data(reject_by_annotation=None), expected)
# nan
expected[0, 500:1500] = np.nan
assert_allclose(raw.get_data(reject_by_annotation='nan'), expected)
got = np.concatenate([raw.get_data(start=start, stop=stop,
reject_by_annotation='nan')
for start, stop in ((0, 1000), (1000, 2000))], -1)
assert_allclose(got, expected)
# omit
expected = expected[:, np.isfinite(expected[0])]
assert_allclose(raw.get_data(reject_by_annotation='omit'), expected)
got = np.concatenate([raw.get_data(start=start, stop=stop,
reject_by_annotation='omit')
for start, stop in ((0, 1000), (1000, 2000))], -1)
assert_allclose(got, expected)
pytest.raises(ValueError, raw.get_data, reject_by_annotation='foo')
def test_annotation_epoching():
"""Test that annotations work properly with concatenated edges."""
# Create data with just a DC component
data = np.ones((1, 1000))
info = create_info(1, 1000., 'eeg')
raw = concatenate_raws([RawArray(data, info) for ii in range(3)])
assert raw.annotations is not None
assert len(raw.annotations) == 4
assert np.in1d(raw.annotations.description, ['BAD boundary']).sum() == 2
assert np.in1d(raw.annotations.description, ['EDGE boundary']).sum() == 2
assert_array_equal(raw.annotations.duration, 0.)
events = np.array([[a, 0, 1] for a in [0, 500, 1000, 1500, 2000]])
epochs = Epochs(raw, events, tmin=0, tmax=0.999, baseline=None,
preload=True) # 1000 samples long
assert_equal(len(epochs.drop_log), len(events))
assert_equal(len(epochs), 3)
assert_equal([0, 2, 4], epochs.selection)
def test_annotation_concat():
"""Test if two Annotations objects can be concatenated."""
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"],
ch_names=[['1'], ['2'], []])
b = Annotations([11, 12, 13], [1, 2, 2], ["x", "y", "z"],
ch_names=[[], ['3'], []])
# test + operator (does not modify a or b)
c = a + b
assert_array_equal(c.onset, [1, 2, 3, 11, 12, 13])
assert_array_equal(c.duration, [5, 5, 8, 1, 2, 2])
assert_array_equal(c.description, ["a", "b", "c", "x", "y", "z"])
assert_equal(len(a), 3)
assert_equal(len(b), 3)
assert_equal(len(c), 6)
# c should have updated channel names
want_names = np.array([('1',), ('2',), (), (), ('3',), ()], dtype='O')
assert_array_equal(c.ch_names, want_names)
# test += operator (modifies a in place)
a += b
assert_array_equal(a.onset, [1, 2, 3, 11, 12, 13])
assert_array_equal(a.duration, [5, 5, 8, 1, 2, 2])
assert_array_equal(a.description, ["a", "b", "c", "x", "y", "z"])
assert_equal(len(a), 6)
assert_equal(len(b), 3)
# test += operator (modifies a in place)
b._orig_time = _handle_meas_date(1038942070.7201)
with pytest.raises(ValueError, match='orig_time should be the same'):
a += b
def test_annotations_crop():
"""Test basic functionality of annotation crop."""
onset = np.arange(1, 10)
duration = np.full_like(onset, 10)
description = ["yy"] * onset.shape[0]
a = Annotations(onset=onset,
duration=duration,
description=description,
orig_time=0)
# cropping window larger than annotations --> do not modify
a_ = a.copy().crop(tmin=-10, tmax=42)
assert_array_equal(a_.onset, a.onset)
assert_array_equal(a_.duration, a.duration)
# cropping with left shifted window
with _record_warnings() as w:
a_ = a.copy().crop(tmin=0, tmax=4.2)
assert_array_equal(a_.onset, [1., 2., 3., 4.])
assert_allclose(a_.duration, [3.2, 2.2, 1.2, 0.2])
assert len(w) == 0
# cropping with right shifted window
with _record_warnings() as w:
a_ = a.copy().crop(tmin=17.8, tmax=22)
assert_array_equal(a_.onset, [17.8, 17.8])
assert_allclose(a_.duration, [0.2, 1.2])
assert len(w) == 0
# cropping with centered small window
a_ = a.copy().crop(tmin=11, tmax=12)
assert_array_equal(a_.onset, [11, 11, 11, 11, 11, 11, 11, 11, 11])
assert_array_equal(a_.duration, [0, 1, 1, 1, 1, 1, 1, 1, 1])
# cropping with out-of-bounds window
with _record_warnings() as w:
a_ = a.copy().crop(tmin=42, tmax=100)
assert_array_equal(a_.onset, [])
assert_array_equal(a_.duration, [])
assert len(w) == 0
# test error raising
with pytest.raises(ValueError, match='tmax should be greater than.*tmin'):
a.copy().crop(tmin=42, tmax=0)
# test warnings
with pytest.warns(RuntimeWarning, match='Omitted .* were outside'):
a.copy().crop(tmin=42, tmax=100, emit_warning=True)
with pytest.warns(RuntimeWarning, match='Limited .* expanding outside'):
a.copy().crop(tmin=0, tmax=12, emit_warning=True)
@testing.requires_testing_data
def test_events_from_annot_in_raw_objects():
"""Test basic functionality of events_fron_annot for raw objects."""
raw = read_raw_fif(fif_fname)
events = mne.find_events(raw)
event_id = {
'Auditory/Left': 1,
'Auditory/Right': 2,
'Visual/Left': 3,
'Visual/Right': 4,
'Visual/Smiley': 32,
'Motor/Button': 5
}
event_map = {v: k for k, v in event_id.items()}
annot = Annotations(onset=raw.times[events[:, 0] - raw.first_samp],
duration=np.zeros(len(events)),
description=[event_map[vv] for vv in events[:, 2]],
orig_time=None)
raw.set_annotations(annot)
events2, event_id2 = \
events_from_annotations(raw, event_id=event_id, regexp=None)
assert_array_equal(events, events2)
assert_equal(event_id, event_id2)
events3, event_id3 = \
events_from_annotations(raw, event_id=None, regexp=None)
assert_array_equal(events[:, 0], events3[:, 0])
assert set(event_id.keys()) == set(event_id3.keys())
# ensure that these actually got sorted properly
expected_event_id = {
desc: idx + 1 for idx, desc in enumerate(sorted(event_id.keys()))}
assert event_id3 == expected_event_id
first = np.unique(events3[:, 2])
second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
assert_array_equal(first, second)
first = np.unique(list(event_id3.values()))
second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
assert_array_equal(first, second)
events4, event_id4 =\
events_from_annotations(raw, event_id=None, regexp='.*Left')
expected_event_id4 = {k: v for k, v in event_id.items() if 'Left' in k}
assert_equal(event_id4.keys(), expected_event_id4.keys())
expected_events4 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
assert_array_equal(expected_events4[:, 0], events4[:, 0])
events5, event_id5 = \
events_from_annotations(raw, event_id=event_id, regexp='.*Left')
expected_event_id5 = {k: v for k, v in event_id.items() if 'Left' in k}
assert_equal(event_id5, expected_event_id5)
expected_events5 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
assert_array_equal(expected_events5, events5)
with pytest.raises(ValueError, match='not find any of the events'):
events_from_annotations(raw, regexp='not_there')
with pytest.raises(ValueError, match='Invalid type for event_id'):
events_from_annotations(raw, event_id='wrong')
# concat does not introduce BAD or EDGE
raw_concat = concatenate_raws([raw.copy(), raw.copy()])
_, event_id = events_from_annotations(raw_concat)
assert isinstance(event_id, dict)
assert len(event_id) > 0
for kind in ('BAD', 'EDGE'):
assert '%s boundary' % kind in raw_concat.annotations.description
for key in event_id.keys():
assert kind not in key
# remove all events
raw.set_annotations(None)
events7, _ = events_from_annotations(raw)
assert_array_equal(events7, np.empty((0, 3), dtype=int))
def test_events_from_annot_onset_alingment():
"""Test events and annotations onset are the same."""
raw = _raw_annot(meas_date=1, orig_time=1.5)
# sec 0 1 2 3
# raw . |--------xxxxxxxxx
# annot . |---xx
# raw.annot . |--------xx
# latency . 0 1 2
# . 0 0
assert raw.annotations.orig_time == _handle_meas_date(1)
assert raw.annotations.onset[0] == 1
assert raw.first_samp == 10
event_latencies, event_id = events_from_annotations(raw)
assert event_latencies[0, 0] == 10
assert raw.first_samp == event_latencies[0, 0]
def _create_annotation_based_on_descr(description, annotation_start_sampl=0,
duration=0, orig_time=0):
"""Create a raw object with annotations from descriptions.
The returning raw object contains as many annotations as description given.
All starting at `annotation_start_sampl`.
"""
# create dummy raw
raw = RawArray(data=np.empty([10, 10], dtype=np.float64),
info=create_info(ch_names=10, sfreq=1000.),
first_samp=0)
raw.set_meas_date(0)
# create dummy annotations based on the descriptions
onset = raw.times[annotation_start_sampl]
onset_matching_desc = np.full_like(description, onset, dtype=type(onset))
duration_matching_desc = np.full_like(description, duration,
dtype=type(duration))
annot = Annotations(description=description,
onset=onset_matching_desc,
duration=duration_matching_desc,
orig_time=orig_time)
if duration != 0:
with pytest.warns(RuntimeWarning, match='Limited.*expanding outside'):
# duration 0.1s is larger than the raw data expand
raw.set_annotations(annot)
else:
raw.set_annotations(annot)
# Make sure that set_annotations(annot) works
assert all(raw.annotations.onset == onset)
if duration != 0:
expected_duration = (len(raw.times) / raw.info['sfreq']) - onset
else:
expected_duration = 0
_duration = raw.annotations.duration[0]
assert _duration == approx(expected_duration)
assert all(raw.annotations.duration == _duration)
assert all(raw.annotations.description == description)
return raw
def test_event_id_function_default():
"""Test[unit_test] for event_id_function default in event_from_annotations.
The expected behavior is give numeric label for all those annotations not
present in event_id, starting at 1.
"""
# No event_id given
description = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
expected_event_id = dict(zip(description, range(1, 100)))
expected_events = np.array([[3, 3, 3, 3, 3, 3, 3],
[0, 0, 0, 0, 0, 0, 0],
[1, 2, 3, 4, 5, 6, 7]]).T
raw = _create_annotation_based_on_descr(description,
annotation_start_sampl=3,
duration=100)
events, event_id = events_from_annotations(raw, event_id=None)
assert_array_equal(events, expected_events)
assert event_id == expected_event_id
def test_event_id_function_using_custom_function():
"""Test [unit_test] arbitrary function to create the ids."""
def _constant_id(*args, **kwargs):
return 42
description = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
expected_event_id = dict(zip(description, repeat(42)))
expected_events = np.repeat([[0, 0, 42]], len(description), axis=0)
raw = _create_annotation_based_on_descr(description)
events, event_id = events_from_annotations(raw, event_id=_constant_id)
assert_array_equal(events, expected_events)
assert event_id == expected_event_id
# Test for IO with .csv files
def _assert_annotations_equal(a, b, tol=0):
__tracebackhide__ = True
assert_allclose(
a.onset, b.onset, rtol=0, atol=tol, err_msg='onset')
assert_allclose(
a.duration, b.duration, rtol=0, atol=tol, err_msg='duration')
assert_array_equal(a.description, b.description, err_msg='description')
assert_array_equal(a.ch_names, b.ch_names, err_msg='ch_names')
a_orig_time = a.orig_time
b_orig_time = b.orig_time
assert a_orig_time == b_orig_time, 'orig_time'
_ORIG_TIME = datetime.fromtimestamp(1038942071.7201, timezone.utc)
@pytest.fixture(scope='function', params=('ch_names', 'fmt'))
def dummy_annotation_file(tmp_path_factory, ch_names, fmt):
"""Create csv file for testing."""
if fmt == 'csv':
content = ("onset,duration,description\n"
"2002-12-03 19:01:11.720100,1.0,AA\n"
"2002-12-03 19:01:20.720100,2.425,BB")
elif fmt == 'txt':
content = ("# MNE-Annotations\n"
"# orig_time : 2002-12-03 19:01:11.720100\n"
"# onset, duration, description\n"
"0, 1, AA \n"
"9, 2.425, BB")
else:
assert fmt == 'fif'
content = Annotations(
[0, 9], [1, 2.425], ['AA', 'BB'], orig_time=_ORIG_TIME)
if ch_names:
if isinstance(content, Annotations):
# this is a bit of a hack but it works
content.ch_names[:] = ((), ('MEG0111', 'MEG2563'))
else:
content = content.splitlines()
content[-3] += ',ch_names'
content[-2] += ','
content[-1] += ',MEG0111:MEG2563'
content = '\n'.join(content)
fname = tmp_path_factory.mktemp('data') / f'annotations-annot.{fmt}'
if isinstance(content, str):
with open(fname, "w") as f:
f.write(content)
else:
content.save(fname)
return fname
@pytest.mark.parametrize('ch_names', (False, True))
@pytest.mark.parametrize('fmt', [
pytest.param('csv', marks=needs_pandas),
'txt',
'fif'
])
def test_io_annotation(dummy_annotation_file, tmp_path, fmt, ch_names):
"""Test CSV, TXT, and FIF input/output (which support ch_names)."""
annot = read_annotations(dummy_annotation_file)
assert annot.orig_time == _ORIG_TIME
kwargs = dict(orig_time=_ORIG_TIME)
if ch_names:
kwargs['ch_names'] = ((), ('MEG0111', 'MEG2563'))
_assert_annotations_equal(
annot, Annotations([0., 9.], [1., 2.425], ['AA', 'BB'], **kwargs),
tol=1e-6)
# Now test writing
fname = tmp_path / f'annotations-annot.{fmt}'
annot.save(fname)
annot2 = read_annotations(fname)
_assert_annotations_equal(annot, annot2)
# Now without an orig_time
annot._orig_time = None
annot.save(fname, overwrite=True)
annot2 = read_annotations(fname)
_assert_annotations_equal(annot, annot2)
@requires_version('pandas')
def test_broken_csv(tmp_path):
"""Test broken .csv that does not use timestamps."""
content = ("onset,duration,description\n"
"1.,1.0,AA\n"
"3.,2.425,BB")
fname = tmp_path / 'annotations_broken.csv'
with open(fname, "w") as f:
f.write(content)
with pytest.warns(RuntimeWarning, match='save your CSV as a TXT'):
read_annotations(fname)
# Test for IO with .txt files
@pytest.fixture(scope='function', params=('ch_names',))
def dummy_annotation_txt_file(tmp_path_factory, ch_names):
"""Create txt file for testing."""
content = ("3.14, 42, AA \n"
"6.28, 48, BB")
if ch_names:
content = content.splitlines()
content[0] = content[0].strip() + ','
content[1] = content[1].strip() + ', MEG0111:MEG2563'
content = '\n'.join(content)
fname = tmp_path_factory.mktemp('data') / 'annotations.txt'
with open(fname, "w") as f:
f.write(content)
return fname
@pytest.mark.parametrize('ch_names', (False, True))
def test_io_annotation_txt(dummy_annotation_txt_file, tmp_path_factory,
ch_names):
"""Test TXT input/output without meas_date."""
annot = read_annotations(str(dummy_annotation_txt_file))
assert annot.orig_time is None
kwargs = dict()
if ch_names:
kwargs['ch_names'] = [(), ('MEG0111', 'MEG2563')]
_assert_annotations_equal(
annot, Annotations([3.14, 6.28], [42., 48], ['AA', 'BB'], **kwargs))
# Now test writing
fname = tmp_path_factory.mktemp('data') / 'annotations.txt'
annot.save(fname)
annot2 = read_annotations(fname)
_assert_annotations_equal(annot, annot2)
# Now with an orig_time
assert annot.orig_time is None
annot._orig_time = _handle_meas_date(1038942071.7201)
assert annot.orig_time is not None
annot.save(fname, overwrite=True)
annot2 = read_annotations(fname)
assert annot2.orig_time is not None
_assert_annotations_equal(annot, annot2)
@pytest.mark.parametrize('meas_date, out', [
pytest.param('toto', None, id='invalid string'),
pytest.param(None, None, id='None'),
pytest.param(42, 42.0, id='Scalar'),
pytest.param(3.14, 3.14, id='Float'),
pytest.param((3, 140000), 3.14, id='Scalar touple'),
pytest.param('2002-12-03 19:01:11.720100', 1038942071.7201,
id='valid iso8601 string'),
pytest.param('2002-12-03T19:01:11.720100', None,
id='invalid iso8601 string')])
def test_handle_meas_date(meas_date, out):
"""Test meas date formats."""
if out is not None:
assert out >= 0 # otherwise it'll break on Windows
out = datetime.fromtimestamp(out, timezone.utc)
assert _handle_meas_date(meas_date) == out
def test_read_annotation_txt_header(tmp_path):
"""Test TXT orig_time recovery."""
content = ("# A something \n"
"# orig_time : 42\n"
"# orig_time : 2002-12-03 19:01:11.720100\n"
"# orig_time : 42\n"
"# C\n"
"Done")
fname = tmp_path / 'header.txt'
with open(fname, "w") as f:
f.write(content)
orig_time = _read_annotations_txt_parse_header(fname)
want = datetime.fromtimestamp(1038942071.7201, timezone.utc)
assert orig_time == want
def test_read_annotation_txt_one_segment(tmp_path):
"""Test empty TXT input/output."""
content = ("# MNE-Annotations\n"
"# onset, duration, description\n"
"3.14, 42, AA")
fname = tmp_path / 'one-annotations.txt'
with open(fname, "w") as f:
f.write(content)
annot = read_annotations(fname)
_assert_annotations_equal(annot, Annotations(3.14, 42, ['AA']))
def test_read_annotation_txt_empty(tmp_path):
"""Test empty TXT input/output."""
content = ("# MNE-Annotations\n"
"# onset, duration, description\n")
fname = tmp_path / 'empty-annotations.txt'
with open(fname, "w") as f:
f.write(content)
annot = read_annotations(fname)
_assert_annotations_equal(annot, Annotations([], [], []))
def test_annotations_simple_iteration():
"""Test indexing Annotations."""
NUM_ANNOT = 5
EXPECTED_ELEMENTS_TYPE = (np.float64, np.float64, np.str_)
EXPECTED_ONSETS = EXPECTED_DURATIONS = [x for x in range(NUM_ANNOT)]
EXPECTED_DESCS = [x.__repr__() for x in range(NUM_ANNOT)]
annot = Annotations(onset=EXPECTED_ONSETS,
duration=EXPECTED_DURATIONS,
description=EXPECTED_DESCS,
orig_time=None)
for ii, elements in enumerate(annot[:2]):
assert isinstance(elements, OrderedDict)
expected_values = (ii, ii, str(ii))
for elem, expected_type, expected_value in zip(elements.values(),
EXPECTED_ELEMENTS_TYPE,
expected_values):
assert np.isscalar(elem)
assert type(elem) == expected_type
assert elem == expected_value
@requires_version('numpy', '1.12')
def test_annotations_slices():
"""Test indexing Annotations."""
NUM_ANNOT = 5
EXPECTED_ONSETS = EXPECTED_DURATIONS = [x for x in range(NUM_ANNOT)]
EXPECTED_DESCS = [x.__repr__() for x in range(NUM_ANNOT)]
annot = Annotations(onset=EXPECTED_ONSETS,
duration=EXPECTED_DURATIONS,
description=EXPECTED_DESCS,
orig_time=None)
# Indexing returns a copy. So this has no effect in annot
annot[0]['onset'] = 42
annot[0]['duration'] = 3.14
annot[0]['description'] = 'foobar'
annot[:1].onset[0] = 42
annot[:1].duration[0] = 3.14
annot[:1].description[0] = 'foobar'
# Slicing with single element returns a dictionary
for ii in EXPECTED_ONSETS:
assert annot[ii] == dict(zip(['onset', 'duration',
'description', 'orig_time'],
[ii, ii, str(ii), None]))
# Slices should give back Annotations
for current in (annot[slice(0, None, 2)],
annot[[bool(ii % 2) for ii in range(len(annot))]],
annot[:1],
annot[[0, 2, 2]],
annot[(0, 2, 2)],
annot[np.array([0, 2, 2])],
annot[1::2],
):
assert isinstance(current, Annotations)
assert len(current) != len(annot)
for bad_ii in [len(EXPECTED_ONSETS), 42, 'foo']:
with pytest.raises(IndexError):
annot[bad_ii]
def test_sorting():
"""Test annotation sorting."""
annot = Annotations([10, 20, 30], [1, 2, 3], 'BAD')
# assert_array_equal(annot.onset, [0, 5, 10])
annot.append([5, 15, 25, 35], 0.5, 'BAD')
onset = list(range(5, 36, 5))
duration = list(annot.duration)
assert_array_equal(annot.onset, onset)
assert_array_equal(annot.duration, duration)
annot.append([10, 10], [0.1, 9], 'BAD') # 0.1 should be before, 9 after
want_before = onset.index(10)
duration.insert(want_before, 0.1)
duration.insert(want_before + 2, 9)
onset.insert(want_before, 10)
onset.insert(want_before, 10)
assert_array_equal(annot.onset, onset)
assert_array_equal(annot.duration, duration)
def test_date_none(tmp_path):
"""Test that DATE_NONE is used properly."""
# Regression test for gh-5908
n_chans = 139
n_samps = 20
data = np.random.random_sample((n_chans, n_samps))
ch_names = ['E{}'.format(x) for x in range(n_chans)]
ch_types = ['eeg'] * n_chans
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=2048)
assert info['meas_date'] is None
raw = RawArray(data=data, info=info)
fname = op.join(str(tmp_path), 'test-raw.fif')
raw.save(fname)
raw_read = read_raw_fif(fname, preload=True)
assert raw_read.info['meas_date'] is None
def test_negative_meas_dates(windows_like_datetime):
"""Test meas_date previous to 1970."""
# Regression test for gh-6621
raw = RawArray(data=np.empty((1, 1), dtype=np.float64),
info=create_info(ch_names=1, sfreq=1.))
raw.set_meas_date((-908196946, 988669))
raw.set_annotations(Annotations(description='foo', onset=[0],
duration=[0], orig_time=None))
events, _ = events_from_annotations(raw)
assert events[:, 0] == 0
def test_crop_when_negative_orig_time(windows_like_datetime):
"""Test cropping with orig_time, tmin and tmax previous to 1970."""
# Regression test for gh-6621
orig_time_stamp = -908196945.011331 # 1941-03-22 11:04:14.988669
annot = Annotations(description='foo', onset=np.arange(0, 0.999, 0.1),
duration=[0], orig_time=orig_time_stamp)
stamp = _dt_to_stamp(annot.orig_time)
assert_allclose(stamp[0] + stamp[1] * 1e-6, orig_time_stamp)
t = stamp[0] + stamp[1] * 1e-6
assert t == orig_time_stamp
assert len(annot) == 10
# do not raise
annot.crop(verbose='debug')
assert len(annot) == 10
# Crop with negative tmin, tmax
tmin, tmax = [orig_time_stamp + t for t in (0.25, .75)]
assert tmin < 0 and tmax < 0
crop_annot = annot.crop(tmin=tmin, tmax=tmax)
assert_allclose(crop_annot.onset, [0.3, 0.4, 0.5, 0.6, 0.7])
orig_dt = _stamp_to_dt(stamp)
assert crop_annot.orig_time == orig_dt # orig_time does not change
def test_crop_with_none(windows_like_datetime):
"""Test cropping with None in arguments."""
orig_time_stamp = 100
annot = Annotations(description='foo', onset=np.arange(5, 10, 1),
duration=[1], orig_time=orig_time_stamp)
annot.crop(tmin=None, tmax=None)
assert len(annot) == 5
annot.crop(tmin=(7.5 + orig_time_stamp), tmax=None)
assert len(annot) == 3
def test_crop_wo_orig_time(windows_like_datetime):
"""Test cropping without orig_time."""
orig_time_stamp = 100
annot = Annotations(description='foo', onset=np.arange(5, 10, 1),
duration=[1], orig_time=orig_time_stamp)
annot.crop(tmin=(7.5), tmax=None, use_orig_time=False)
assert len(annot) == 3
def test_allow_nan_durations():
"""Deal with "n/a" strings in BIDS events with nan durations."""
raw = RawArray(data=np.empty([2, 10], dtype=np.float64),
info=create_info(ch_names=2, sfreq=1.),
first_samp=0)
raw.set_meas_date(0)
ons = [1, 2., 15., 17.]
dus = [np.nan, 1., 0.5, np.nan]
descriptions = ['A'] * 4
onsets = np.asarray(ons, dtype=float)
durations = np.asarray(dus, dtype=float)
annot = mne.Annotations(onset=onsets,
duration=durations,
description=descriptions)
with pytest.warns(RuntimeWarning, match='Omitted 2 annotation'):
raw.set_annotations(annot)
@testing.requires_testing_data
def test_annotations_from_events():
"""Test events to annotations conversion."""
raw = read_raw_fif(fif_fname)
events = mne.find_events(raw)
# 1. Automatic event description
# -------------------------------------------------------------------------
annots = annotations_from_events(events, raw.info['sfreq'],
first_samp=raw.first_samp,
orig_time=None)
assert len(annots) == events.shape[0]
# Convert back to events
raw.set_annotations(annots)
events_out, _ = events_from_annotations(raw, event_id=int)
assert_array_equal(events, events_out)
# 2. Explicit event mapping
# -------------------------------------------------------------------------
event_desc = {1: 'one', 2: 'two', 3: 'three', 32: None}
annots = annotations_from_events(events, sfreq=raw.info['sfreq'],
event_desc=event_desc,
first_samp=raw.first_samp,
orig_time=None)
assert np.all([a in ['one', 'two', 'three'] for a in annots.description])
assert len(annots) == events[events[:, 2] <= 3].shape[0]
# 3. Pass list
# -------------------------------------------------------------------------
event_desc = [1, 2, 3]
annots = annotations_from_events(events, sfreq=raw.info['sfreq'],
event_desc=event_desc,
first_samp=raw.first_samp,
orig_time=None)
assert np.all([a in ['1', '2', '3'] for a in annots.description])
assert len(annots) == events[events[:, 2] <= 3].shape[0]
# 4. Try passing callable
# -------------------------------------------------------------------------
event_desc = lambda d: 'event{}'.format(d) # noqa:E731
annots = annotations_from_events(events, sfreq=raw.info['sfreq'],
event_desc=event_desc,
first_samp=raw.first_samp,
orig_time=None)
assert np.all(['event' in a for a in annots.description])
assert len(annots) == events.shape[0]
# 5. Pass numpy array
# -------------------------------------------------------------------------
event_desc = np.array([[1, 2, 3], [1, 2, 3]])
with pytest.raises(ValueError, match='event_desc must be 1D'):
annots = annotations_from_events(events, sfreq=raw.info['sfreq'],
event_desc=event_desc,
first_samp=raw.first_samp,
orig_time=None)
with pytest.raises(ValueError, match='Invalid type for event_desc'):
annots = annotations_from_events(events, sfreq=raw.info['sfreq'],
event_desc=1,
first_samp=raw.first_samp,
orig_time=None)
event_desc = np.array([1, 2, 3])
annots = annotations_from_events(events, sfreq=raw.info['sfreq'],
event_desc=event_desc,
first_samp=raw.first_samp,
orig_time=None)
assert np.all([a in ['1', '2', '3'] for a in annots.description])
assert len(annots) == events[events[:, 2] <= 3].shape[0]
def test_repr():
"""Test repr of Annotations."""
# short annotation repr (< 79 characters)
r = repr(Annotations(range(3), [0] * 3, list("abc")))
assert r == '<Annotations | 3 segments: a (1), b (1), c (1)>'
# long annotation repr (> 79 characters, will be shortened)
r = repr(Annotations(range(14), [0] * 14, list("abcdefghijklmn")))
assert r == ('<Annotations | 14 segments: a (1), b (1), c (1), d (1), '
'e (1), f (1), g ...>')
# empty Annotations
r = repr(Annotations([], [], []))
assert r == '<Annotations | 0 segments>'
@requires_pandas
def test_annotation_to_data_frame():
"""Test annotation class to data frame conversion."""
onset = np.arange(1, 10)
durations = np.full_like(onset, [4, 5, 6, 4, 5, 6, 4, 5, 6])
description = ["yy"] * onset.shape[0]
a = Annotations(onset=onset,
duration=durations,
description=description,
orig_time=0)
df = a.to_data_frame()
for col in ['onset', 'duration', 'description']:
assert col in df.columns
assert df.description[0] == 'yy'
assert (df.onset[1] - df.onset[0]).seconds == 1
assert df.groupby('description').count().onset['yy'] == 9
def test_annotation_ch_names():
"""Test annotation ch_names updating and pruning."""
info = create_info(10, 1000., 'eeg')
raw = RawArray(np.zeros((10, 1000)), info)
onset = [0.1, 0.3, 0.6]
duration = [0.05, 0.1, 0.2]
description = ['first', 'second', 'third']
ch_names = [[], raw.ch_names[4:6], raw.ch_names[5:7]]
annot = Annotations(onset, duration, description, ch_names=ch_names)
raw.set_annotations(annot)
# renaming
rename = {name: name + 'new' for name in raw.ch_names}
raw_2 = raw.copy().rename_channels(rename)
for ch_rename, ch in zip(raw_2.annotations.ch_names, annot.ch_names):
assert all(name in raw_2.ch_names for name in ch_rename)
assert all(name in raw.ch_names for name in ch)
assert not any(name in raw.ch_names for name in ch_rename)
assert not any(name in raw_2.ch_names for name in ch)
raw_2.rename_channels({val: key for key, val in rename.items()})
_assert_annotations_equal(raw.annotations, raw_2.annotations)
# dropping
raw_2.drop_channels(raw.ch_names[5:])
annot_pruned = raw_2.annotations
assert len(raw_2.annotations) == 2 # dropped the last one
assert raw_2.annotations.ch_names[1] == tuple(raw.ch_names[4:5])
for ch_drop in raw_2.annotations.ch_names:
assert all(name in raw_2.ch_names for name in ch_drop)
with pytest.raises(ValueError, match='channel name in annotations missin'):
raw_2.set_annotations(annot)
with pytest.warns(RuntimeWarning, match='channel name in annotations mis'):
raw_2.set_annotations(annot, on_missing='warn')
assert raw_2.annotations is not annot_pruned
_assert_annotations_equal(raw_2.annotations, annot_pruned)
def test_annotation_rename():
"""Test annotation renaming works."""
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
assert isinstance(a.description, np.ndarray)
assert len(a) == 3
assert "a" in a.description
assert "b" in a.description
assert "c" in a.description
assert "new_name" not in a.description
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
a.rename({"a": "new_name"})
assert isinstance(a.description, np.ndarray)
assert len(a) == 3
assert "a" not in a.description
assert "new_name" in a.description
assert np.where([d == "new_name" for d in a.description])[0] == 0
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
a.rename({"a": "new_name", "b": "new name b"})
assert len(a) == 3
assert "a" not in a.description
assert "new_name" in a.description
assert "b" not in a.description
assert "new name b" in a.description
assert np.where([d == "new_name" for d in a.description])[0] == 0
assert np.where([d == "new name b" for d in a.description])[0] == 1
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
a.rename({"b": "new_name", "c": "new name c"})
assert isinstance(a.description, np.ndarray)
assert len(a) == 3
assert "b" not in a.description
assert "new_name" in a.description
assert "c" not in a.description
assert "new name c" in a.description
assert "a" in a.description
assert np.where([d == "new_name" for d in a.description])[0] == 1
assert np.where([d == "new name c" for d in a.description])[0] == 2
assert len(np.where([d == "new name b" for d in a.description])[0]) == 0
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
with pytest.raises(ValueError, match="not present in data"):
a.rename({"aaa": "does not exist"})
with pytest.raises(ValueError, match="[' a']"):
a.rename({" a": "does not exist"})
with pytest.raises(TypeError, match="dict, got <class 'str'> instead"):
a.rename("wrong")
with pytest.raises(TypeError, match="dict, got <class 'list'> instead"):
a.rename(["wrong"])
with pytest.raises(TypeError, match="dict, got <class 'set'> instead"):
a.rename({"wrong"})
def test_annotation_duration_setting():
"""Test annotation duration setting works."""
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
assert isinstance(a.duration, np.ndarray)
assert len(a) == 3
assert a.duration[0] == 5
assert a.duration[2] == 8
a.set_durations({"a": 3})
assert a.duration[0] == 3
assert a.duration[2] == 8
a.set_durations({"a": 313, "c": 18})
assert a.duration[0] == 313
assert a.duration[2] == 18
a.set_durations({"a": 1, "b": 13})
assert a.duration[0] == 1
assert a.duration[1] == 13
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
assert len(a) == 3
assert a.duration[0] == 5
assert a.duration[2] == 8
a.set_durations(7.2)
assert isinstance(a.duration, np.ndarray)
assert a.duration[0] == 7.2
assert a.duration[2] == 7.2
a.set_durations(2)
assert a.duration[0] == 2
with pytest.raises(ValueError, match="not present in data"):
a.set_durations({"aaa": 2.2})
with pytest.raises(TypeError, match=" got <class 'set'> instead"):
a.set_durations({"aaa", 2.2})
@pytest.mark.parametrize('meas_date', (None, 1))
@pytest.mark.parametrize('set_meas_date', ('before', 'after'))
@pytest.mark.parametrize('first_samp', (0, 100, 3000))
def test_annot_noop(meas_date, first_samp, set_meas_date):
"""Show some unintuitive behavior of annotations."""
sfreq = 1000.
info = create_info(1, sfreq, 'eeg')
onset = 0.5
annot_kwargs = dict()
if set_meas_date == 'before':
with info._unlock():
info['meas_date'] = _handle_meas_date(meas_date)
if meas_date is not None:
onset += first_samp / sfreq
annot_kwargs['orig_time'] = meas_date
raw = RawArray(np.zeros((1, 2000)), info, first_samp=first_samp)
annot = Annotations(onset, 0.1, 'bad', **annot_kwargs)
raw.set_annotations(annot, verbose='debug')
if set_meas_date == 'after':
raw.set_meas_date(meas_date)
first_annot = raw.annotations
if meas_date is None:
first_annot.onset -= raw.first_time
raw.set_annotations(first_annot, verbose='debug') # should be a no-op...
second_annot = raw.annotations
want = first_annot.onset[0]
# it has been shifted when meas_date is None!
if meas_date is None:
want = want + raw.first_time
assert_allclose(second_annot.onset[0], want)
@pytest.mark.parametrize('setting', ('before', 'after'))
@pytest.mark.parametrize('meas_date', ('first', 'second', 'both', None))
@pytest.mark.parametrize('first_samp_2', (0, 320))
@pytest.mark.parametrize('first_samp_1', (160, 0))
def test_annot_concat_crop(meas_date, first_samp_1, first_samp_2, setting):
"""Test that annotation and cropping works properly."""
n_ch = 2
sfreq = 160
duration = 0.1
meas_date_1 = meas_date_2 = None
assert meas_date in (None, 'first', 'second', 'both')
if meas_date in ('first', 'both'):
meas_date_1 = datetime(2022, 1, 1, 0, 0, 0, tzinfo=timezone.utc)
if meas_date in ('second', 'both'):
meas_date_2 = datetime(2022, 1, 1, 0, 0, 0, tzinfo=timezone.utc)
del meas_date
def _create_raw(eeg, sfreq, onset, description, meas_date, first_samp,
setting):
info = mne.create_info(eeg.shape[0], ch_types='eeg', sfreq=sfreq)
raw = mne.io.RawArray(eeg, info, first_samp=first_samp)
if setting == 'before':
annot = mne.Annotations(onset, duration, description)
raw = raw.set_annotations(annot)
raw.set_meas_date(meas_date)
else:
assert setting == 'after'
raw.set_meas_date(meas_date)
delta = first_samp / sfreq if meas_date is not None else 0
annot = mne.Annotations(
onset + delta, duration, description, orig_time=meas_date)
raw = raw.set_annotations(annot)
return raw
data_1 = np.array(
[list(range(40)) * 4 * 10] * n_ch) * 5 * 1e-7
onset_1 = np.array([2.5, 5, 6, 7, 8])
description_1 = [12, 'on', 1, 2, 'off']
raw_1 = _create_raw(data_1, sfreq, onset_1, description_1, meas_date_1,
first_samp_1, setting)
assert_allclose(raw_1.annotations.onset, onset_1 + first_samp_1 / sfreq)
data_2 = np.array(
[([1e-5] * int(sfreq / 2) + [0] * int(sfreq / 2)) * 10] * n_ch)
onset_2 = np.array([1.5, 2, 2.7, 5])
description_2 = ['on', 3, 4, 'off']
raw_2 = _create_raw(data_2, sfreq, onset_2, description_2, meas_date_2,
first_samp_2, setting)
assert_allclose(raw_2.annotations.onset, onset_2 + first_samp_2 / sfreq)
onset = np.concatenate(
[onset_1, np.round(onset_2 + len(raw_1.times) / sfreq, 6)])
assert onset[0] == 2.5
assert_allclose(raw_1.annotations.onset[0], 2.5 + first_samp_1 / sfreq)
onset = np.round(onset + first_samp_1 / sfreq, 6)
want_annot = mne.Annotations(
onset=onset, duration=duration,
description=description_1 + description_2, orig_time=meas_date_1)
raw_copy = concatenate_raws([raw_1.copy()])
assert_allclose(raw_copy.annotations.onset[0], 2.5 + first_samp_1 / sfreq)
raw = concatenate_raws([raw_1, raw_2])
assert raw.first_samp == raw_1.first_samp == first_samp_1
del raw_1, raw_2
assert_allclose(raw.annotations.onset[0], 2.5 + first_samp_1 / sfreq)
assert raw.info['meas_date'] == meas_date_1
gap_idx = len(description_1)
assert list(raw.annotations.description[gap_idx:gap_idx + 2]) == \
['BAD boundary', 'EDGE boundary']
raw.annotations.delete([gap_idx, gap_idx + 1])
start_idx = np.where(raw.annotations.description == 'on')[0]
end_idx = np.where(raw.annotations.description == 'off')[0]
tmins = raw.annotations.onset[start_idx]
tmaxs = raw.annotations.onset[end_idx]
tmins -= raw.first_time
tmaxs -= raw.first_time
assert len(tmins) == len(tmaxs) == 2
assert raw.info['meas_date'] == meas_date_1
_assert_annotations_equal(raw.annotations, want_annot)
# test a round-trip set -- see test_annot_noop for why we need conditional
if meas_date_1 is None:
want_annot.onset -= first_samp_1 / sfreq
raw.set_annotations(want_annot)
if meas_date_1 is None: # put it back to what it was before
want_annot.onset += first_samp_1 / sfreq
_assert_annotations_equal(raw.annotations, want_annot)
want_descs = list()
for start, stop in zip(start_idx, end_idx):
want_descs.append(list(raw.annotations.description[start:stop + 1]))
for tmin, tmax, descs in zip(tmins, tmaxs, want_descs):
sess = raw.copy()
_assert_annotations_equal(sess.annotations, raw.annotations)
_assert_annotations_equal(sess.annotations, want_annot)
# let's manually print what the logger.debug should say if it's
# doing something correctly
if meas_date_1 is not None:
md = raw.info['meas_date']
print(f'\nmeas_info set to {md}')
md = md + timedelta(seconds=raw._first_time)
print(f'Data starts at {md}')
md = md + timedelta(seconds=tmin)
print(f'Cropping data to {md}')
md = raw.info['meas_date'] + \
timedelta(seconds=raw.annotations.onset[1])
print(f'Second annot at {md}')
assert sess.first_samp == first_samp_1
sess.crop(tmin, tmax, verbose='debug')
want_first_samp = first_samp_1 + int(round(tmin * sfreq))
assert sess.first_samp == want_first_samp
assert sess.annotations.orig_time == meas_date_1
assert list(sess.annotations.description) == descs
@pytest.mark.parametrize('first_samp', (0, 10000))
@pytest.mark.parametrize('meas_date', (None, 24 * 60 * 60))
def test_annot_meas_date_first_samp_crop(meas_date, first_samp):
"""Test yet another meas_date / first_samp issue."""
sfreq = 1000.
info = mne.create_info(1, sfreq, 'eeg')
raw = mne.io.RawArray(
np.random.RandomState(0).randn(1, 3000), info, first_samp=first_samp)
raw.set_meas_date(meas_date)
onset = np.array([0, 1, 2], float)
if meas_date is not None:
onset += first_samp / sfreq
annot = mne.Annotations(
onset=onset,
duration=[0.1, 0.2, 0.3],
description=["a", "b", "c"],
orig_time=raw.info['meas_date'])
assert len(annot) == 3
raw.set_annotations(annot)
assert len(raw.annotations) == 3
raw_crop = raw.copy().crop(0, 1.5, verbose='debug')
assert len(raw_crop.annotations) == 2
assert_array_equal(raw_crop.annotations.description, annot.description[:2])
assert_array_equal(raw_crop.annotations.duration, annot.duration[:2])
# these two should be the equivalent
raw_crop = raw.copy().crop(2, 2.5, verbose='debug')
raw_crop_2 = raw.copy().crop(1, None).crop(1, 1.5)
assert_allclose(raw_crop.get_data(), raw_crop_2.get_data())
assert raw_crop.first_samp == raw_crop_2.first_samp
want_onset = onset[2:]
if meas_date is None:
want_onset = want_onset + raw.first_time
for this_raw in (raw_crop, raw_crop_2):
assert len(this_raw.annotations) == 1
assert_allclose(this_raw.annotations.onset, want_onset)
assert_allclose(this_raw.annotations.duration, annot.duration[2:])
|