1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
import os.path as op
import numpy as np
from numpy.testing import (assert_allclose, assert_array_less,
assert_array_equal)
from scipy.interpolate import interp1d
from scipy.spatial.distance import cdist
import pytest
from mne import pick_types, pick_info
from mne.forward._compute_forward import _MAG_FACTOR
from mne.io import (read_raw_fif, read_raw_artemis123, read_raw_ctf, read_info,
RawArray, read_raw_kit)
from mne.io.constants import FIFF
from mne.chpi import (compute_chpi_amplitudes, compute_chpi_locs,
compute_chpi_snr, compute_head_pos, _setup_ext_proj,
_chpi_locs_to_times_dig, _compute_good_distances,
extract_chpi_locs_ctf, head_pos_to_trans_rot_t,
read_head_pos, write_head_pos, filter_chpi,
get_active_chpi, get_chpi_info, _get_hpi_initial_fit,
extract_chpi_locs_kit)
from mne.datasets import testing
from mne.simulation import add_chpi
from mne.transforms import rot_to_quat, _angle_between_quats
from mne.utils import catch_logging, assert_meg_snr, verbose, object_diff
from mne.viz import plot_head_positions
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')
hp_fname = op.join(base_dir, 'test_chpi_raw_hp.txt')
raw_fname = op.join(base_dir, 'test_raw.fif')
data_path = testing.data_path(download=False)
sample_fname = op.join(
data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
chpi_fif_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.fif')
pos_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.pos')
sss_fif_fname = op.join(data_path, 'SSS', 'test_move_anon_raw_sss.fif')
sss_hpisubt_fname = op.join(data_path, 'SSS', 'test_move_anon_hpisubt_raw.fif')
chpi5_fif_fname = op.join(data_path, 'SSS', 'chpi5_raw.fif')
chpi5_pos_fname = op.join(data_path, 'SSS', 'chpi5_raw_mc.pos')
ctf_chpi_fname = op.join(data_path, 'CTF', 'testdata_ctf_mc.ds')
ctf_chpi_pos_fname = op.join(data_path, 'CTF', 'testdata_ctf_mc.pos')
art_fname = op.join(data_path, 'ARTEMIS123', 'Artemis_Data_2017-04-04' +
'-15h-44m-22s_Motion_Translation-z.bin')
art_mc_fname = op.join(data_path, 'ARTEMIS123', 'Artemis_Data_2017-04-04' +
'-15h-44m-22s_Motion_Translation-z_mc.pos')
con_fname = op.join(data_path, 'KIT', 'MQKIT_125_2sec.con')
mrk_fname = op.join(data_path, 'KIT', 'MQKIT_125.mrk')
elp_fname = op.join(data_path, 'KIT', 'MQKIT_125.elp')
hsp_fname = op.join(data_path, 'KIT', 'MQKIT_125.hsp')
berlin_fname = op.join(data_path, 'KIT', 'data_berlin.con')
@testing.requires_testing_data
def test_chpi_adjust():
"""Test cHPI logging and adjustment."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
with catch_logging() as log:
_get_hpi_initial_fit(raw.info, adjust=True, verbose='debug')
get_chpi_info(raw.info, on_missing='raise', verbose='debug')
# Ran MaxFilter (with -list, -v, -movecomp, etc.), and got:
msg = ['HPIFIT: 5 coils digitized in order 5 1 4 3 2',
'HPIFIT: 3 coils accepted: 1 2 4',
'Hpi coil moments (3 5):',
'2.08542e-15 -1.52486e-15 -1.53484e-15',
'2.14516e-15 2.09608e-15 7.30303e-16',
'-3.2318e-16 -4.25666e-16 2.69997e-15',
'5.21717e-16 1.28406e-15 1.95335e-15',
'1.21199e-15 -1.25801e-19 1.18321e-15',
'HPIFIT errors: 0.3, 0.3, 5.3, 0.4, 3.2 mm.',
'HPI consistency of isotrak and hpifit is OK.',
'HP fitting limits: err = 5.0 mm, gval = 0.980.',
'Using 5 HPI coils: 83 143 203 263 323 Hz', # actually came earlier
]
log = log.getvalue().splitlines()
assert set(log) == set(msg), '\n' + '\n'.join(set(msg) - set(log))
# Then took the raw file, did this:
raw.info['dig'][5]['r'][2] += 1.
# And checked the result in MaxFilter, which changed the logging as:
msg = msg[:8] + [
'HPIFIT errors: 0.3, 0.3, 5.3, 999.7, 3.2 mm.',
'Note: HPI coil 3 isotrak is adjusted by 5.3 mm!',
'Note: HPI coil 5 isotrak is adjusted by 3.2 mm!'] + msg[-2:]
with catch_logging() as log:
_get_hpi_initial_fit(raw.info, adjust=True, verbose='debug')
get_chpi_info(raw.info, on_missing='raise', verbose='debug')
log = log.getvalue().splitlines()
assert set(log) == set(msg), '\n' + '\n'.join(set(msg) - set(log))
@testing.requires_testing_data
def test_read_write_head_pos(tmp_path):
"""Test reading and writing head position quaternion parameters."""
temp_name = op.join(str(tmp_path), 'temp.pos')
# This isn't a 100% valid quat matrix but it should be okay for tests
head_pos_rand = np.random.RandomState(0).randn(20, 10)
# This one is valid
head_pos_read = read_head_pos(pos_fname)
for head_pos_orig in (head_pos_rand, head_pos_read):
write_head_pos(temp_name, head_pos_orig)
head_pos = read_head_pos(temp_name)
assert_allclose(head_pos_orig, head_pos, atol=1e-3)
# Degenerate cases
pytest.raises(TypeError, write_head_pos, 0, head_pos_read) # not filename
pytest.raises(ValueError, write_head_pos, temp_name, 'foo') # not array
pytest.raises(ValueError, write_head_pos, temp_name, head_pos_read[:, :9])
pytest.raises(TypeError, read_head_pos, 0)
pytest.raises(IOError, read_head_pos, temp_name + 'foo')
@testing.requires_testing_data
def test_hpi_info(tmp_path):
"""Test getting HPI info."""
temp_name = op.join(str(tmp_path), 'temp_raw.fif')
for fname in (chpi_fif_fname, sss_fif_fname):
raw = read_raw_fif(fname, allow_maxshield='yes').crop(0, 0.1)
assert len(raw.info['hpi_subsystem']) > 0
raw.save(temp_name, overwrite=True)
info = read_info(temp_name)
assert len(info['hpi_subsystem']) == len(raw.info['hpi_subsystem'])
# test get_chpi_info()
info = read_info(chpi_fif_fname)
hpi_freqs, stim_ch_idx, hpi_on_codes = get_chpi_info(info)
assert_allclose(hpi_freqs, np.array([83., 143., 203., 263., 323.]))
assert stim_ch_idx == 378
assert_allclose(hpi_on_codes, np.array([256, 512, 1024, 2048, 4096]))
# test get_chpi_info() if no proper cHPI info is available
with info._unlock():
info['hpi_subsystem'] = None
info['hpi_meas'] = []
info['hpi_results'] = []
with pytest.raises(ValueError, match='No appropriate cHPI information'):
get_chpi_info(info)
with pytest.warns(RuntimeWarning, match='No appropriate cHPI information'):
get_chpi_info(info, on_missing='warn')
hpi_freqs, stim_ch_idx, hpi_on_codes = get_chpi_info(info,
on_missing='ignore')
assert_array_equal([], hpi_freqs)
assert stim_ch_idx is None
assert_array_equal([], hpi_on_codes)
def _assert_quats(actual, desired, dist_tol=0.003, angle_tol=5., err_rtol=0.5,
gof_rtol=0.001, vel_atol=2e-3): # 2 mm/s
"""Compare estimated cHPI positions."""
__tracebackhide__ = True
trans_est, rot_est, t_est = head_pos_to_trans_rot_t(actual)
trans, rot, t = head_pos_to_trans_rot_t(desired)
quats_est = rot_to_quat(rot_est)
gofs, errs, vels = desired[:, 7:].T
gofs_est, errs_est, vels_est = actual[:, 7:].T
del actual, desired
# maxfilter produces some times that are implausibly large (weird)
if not np.isclose(t[0], t_est[0], atol=1e-1): # within 100 ms
raise AssertionError('Start times not within 100 ms: %0.3f != %0.3f'
% (t[0], t_est[0]))
use_mask = (t >= t_est[0]) & (t <= t_est[-1])
t = t[use_mask]
trans = trans[use_mask]
quats = rot_to_quat(rot)
quats = quats[use_mask]
gofs, errs, vels = gofs[use_mask], errs[use_mask], vels[use_mask]
# double-check our angle function
for q in (quats, quats_est):
angles = _angle_between_quats(q, q)
assert_allclose(angles, 0., atol=1e-5)
# limit translation difference between MF and our estimation
trans_est_interp = interp1d(t_est, trans_est, axis=0)(t)
distances = np.sqrt(np.sum((trans - trans_est_interp) ** 2, axis=1))
assert np.isfinite(distances).all()
arg_worst = np.argmax(distances)
assert distances[arg_worst] <= dist_tol, (
'@ %0.3f seconds: %0.3f > %0.3f mm'
% (t[arg_worst], 1000 * distances[arg_worst], 1000 * dist_tol))
# limit rotation difference between MF and our estimation
# (note that the interpolation will make this slightly worse)
quats_est_interp = interp1d(t_est, quats_est, axis=0)(t)
angles = 180 * _angle_between_quats(quats_est_interp, quats) / np.pi
arg_worst = np.argmax(angles)
assert angles[arg_worst] <= angle_tol, (
'@ %0.3f seconds: %0.3f > %0.3f deg'
% (t[arg_worst], angles[arg_worst], angle_tol))
# error calculation difference
errs_est_interp = interp1d(t_est, errs_est)(t)
assert_allclose(errs_est_interp, errs, rtol=err_rtol, atol=1e-3,
err_msg='err') # 1 mm
# gof calculation difference
gof_est_interp = interp1d(t_est, gofs_est)(t)
assert_allclose(gof_est_interp, gofs, rtol=gof_rtol, atol=1e-7,
err_msg='gof')
# velocity calculation difference
vel_est_interp = interp1d(t_est, vels_est)(t)
assert_allclose(vel_est_interp, vels, atol=vel_atol,
err_msg='velocity')
def _decimate_chpi(raw, decim=4):
"""Decimate raw data (with aliasing) in cHPI-fitting compatible way."""
raw_dec = RawArray(
raw._data[:, ::decim], raw.info, first_samp=raw.first_samp // decim)
with raw_dec.info._unlock():
raw_dec.info['sfreq'] /= decim
for coil in raw_dec.info['hpi_meas'][0]['hpi_coils']:
if coil['coil_freq'] > raw_dec.info['sfreq']:
coil['coil_freq'] = np.mod(coil['coil_freq'],
raw_dec.info['sfreq'])
if coil['coil_freq'] > raw_dec.info['sfreq'] / 2.:
coil['coil_freq'] = raw_dec.info['sfreq'] - coil['coil_freq']
return raw_dec
# A shortcut method for testing that does both steps
@verbose
def _calculate_chpi_positions(raw, t_step_min=0.01, t_step_max=1.,
t_window='auto', too_close='raise',
dist_limit=0.005, gof_limit=0.98,
ext_order=1, verbose=None):
chpi_amplitudes = compute_chpi_amplitudes(
raw, t_step_min=t_step_min, t_window=t_window,
ext_order=ext_order, verbose=verbose)
chpi_locs = compute_chpi_locs(
raw.info, chpi_amplitudes, t_step_max=t_step_max,
too_close=too_close, verbose=verbose)
head_pos = compute_head_pos(
raw.info, chpi_locs, dist_limit=dist_limit, gof_limit=gof_limit,
verbose=verbose)
return head_pos
@testing.requires_testing_data
def test_calculate_chpi_positions_preload():
"""Test calculation of cHPI positions with and without data loaded."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes').crop(0, 2)
kwargs = dict(t_step_min=0.1, t_window='auto', verbose=True)
pos = compute_chpi_amplitudes(raw, **kwargs)
raw.load_data()
pos_preload = compute_chpi_amplitudes(raw, **kwargs)
assert object_diff(pos, pos_preload) == ''
@pytest.mark.slowtest
@testing.requires_testing_data
def test_calculate_chpi_positions_vv():
"""Test calculation of cHPI positions."""
# Check to make sure our fits match MF decently
mf_quats = read_head_pos(pos_fname)
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
raw.crop(0, 5).load_data()
# check "auto" t_window estimation at full sampling rate
with catch_logging() as log:
compute_chpi_amplitudes(raw, t_step_min=0.1, t_window='auto',
tmin=0, tmax=2, verbose=True)
assert '83.3 ms' in log.getvalue()
# This is a little hack (aliasing while decimating) to make it much faster
# for testing purposes only. We can relax this later if we find it breaks
# something.
raw_dec = _decimate_chpi(raw, 15)
with catch_logging() as log:
with pytest.warns(RuntimeWarning, match='cannot determine'):
py_quats = _calculate_chpi_positions(raw_dec, t_window=0.2,
verbose='debug')
log = log.getvalue()
assert '\nHPIFIT' in log
assert 'Computing 4385 HPI location guesses' in log
_assert_quats(py_quats, mf_quats, dist_tol=0.001, angle_tol=0.7)
# degenerate conditions
raw_no_chpi = read_raw_fif(sample_fname)
with pytest.raises(ValueError, match='No appropriate cHPI information'):
_calculate_chpi_positions(raw_no_chpi)
raw_bad = raw.copy()
del raw_bad.info['hpi_meas'][0]['hpi_coils'][0]['coil_freq']
with pytest.raises(ValueError, match='No appropriate cHPI information'):
_calculate_chpi_positions(raw_bad)
raw_bad = raw.copy()
for d in raw_bad.info['dig']:
if d['kind'] == FIFF.FIFFV_POINT_HPI:
d['coord_frame'] = FIFF.FIFFV_COORD_UNKNOWN
break
with pytest.raises(RuntimeError, match='coordinate frame incorrect'):
_calculate_chpi_positions(raw_bad)
for d in raw_bad.info['dig']:
if d['kind'] == FIFF.FIFFV_POINT_HPI:
d['coord_frame'] = FIFF.FIFFV_COORD_HEAD
d['r'] = np.ones(3)
raw_bad.crop(0, 1.)
picks = np.concatenate([np.arange(306, len(raw_bad.ch_names)),
pick_types(raw_bad.info, meg=True)[::16]])
raw_bad.pick_channels([raw_bad.ch_names[pick] for pick in picks])
with pytest.warns(RuntimeWarning, match='Discrepancy'):
with catch_logging() as log_file:
_calculate_chpi_positions(raw_bad, t_step_min=1., verbose=True)
# ignore HPI info header and [done] footer
assert '0/5 good HPI fits' in log_file.getvalue()
# half the rate cuts off cHPI coils
with raw.info._unlock():
raw.info['lowpass'] /= 2.
with pytest.raises(RuntimeError, match='above the'):
_calculate_chpi_positions(raw)
@testing.requires_testing_data
@pytest.mark.slowtest
def test_calculate_chpi_snr():
"""Test cHPI SNR calculation."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
result = compute_chpi_snr(raw)
# make sure all the entries are there
keys = {f'{ch_type}_{key}' for ch_type in ('mag', 'grad') for key in
('snr', 'power', 'resid')}
assert set(result) == keys.union({'times', 'freqs'})
# make sure the values are plausible, given the sample data file
assert result['mag_snr'].min() > 1
assert result['mag_snr'].max() < 40
assert result['grad_snr'].min() > 1
assert result['grad_snr'].max() < 40
@testing.requires_testing_data
@pytest.mark.slowtest
def test_calculate_chpi_positions_artemis():
"""Test on 5k artemis data."""
raw = read_raw_artemis123(art_fname, preload=True)
mf_quats = read_head_pos(art_mc_fname)
mf_quats[:, 8:] /= 100 # old code errantly had this factor
py_quats = _calculate_chpi_positions(raw, t_step_min=2., verbose='debug')
_assert_quats(
py_quats, mf_quats,
dist_tol=0.001, angle_tol=1., err_rtol=0.7, vel_atol=1e-2)
@testing.requires_testing_data
def test_initial_fit_redo():
"""Test that initial fits can be redone based on moments."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
slopes = np.array(
[[c['slopes'] for c in raw.info['hpi_meas'][0]['hpi_coils']]])
amps = np.linalg.norm(slopes, axis=-1)
amps /= slopes.shape[-1]
assert_array_less(amps, 5e-11)
assert_array_less(1e-12, amps)
proj, _, _ = _setup_ext_proj(raw.info, ext_order=1)
chpi_amplitudes = dict(times=np.zeros(1), slopes=slopes, proj=proj)
chpi_locs = compute_chpi_locs(raw.info, chpi_amplitudes)
# check GOF
coil_gof = raw.info['hpi_results'][0]['goodness']
assert_allclose(chpi_locs['gofs'][0], coil_gof, atol=0.3) # XXX not good
# check moment
# XXX our forward and theirs differ by an extra mult by _MAG_FACTOR
coil_moment = raw.info['hpi_results'][0]['moments'] / _MAG_FACTOR
py_moment = chpi_locs['moments'][0]
coil_amp = np.linalg.norm(coil_moment, axis=-1, keepdims=True)
py_amp = np.linalg.norm(py_moment, axis=-1, keepdims=True)
assert_allclose(coil_amp, py_amp, rtol=0.2)
coil_ori = coil_moment / coil_amp
py_ori = py_moment / py_amp
angles = np.rad2deg(np.arccos(np.abs(np.sum(coil_ori * py_ori, axis=1))))
assert_array_less(angles, 20)
# check resulting dev_head_t
head_pos = compute_head_pos(raw.info, chpi_locs)
assert head_pos.shape == (1, 10)
nm_pos = raw.info['dev_head_t']['trans']
dist = 1000 * np.linalg.norm(nm_pos[:3, 3] - head_pos[0, 4:7])
assert 0.1 < dist < 2
angle = np.rad2deg(_angle_between_quats(
rot_to_quat(nm_pos[:3, :3]), head_pos[0, 1:4]))
assert 0.1 < angle < 2
gof = head_pos[0, 7]
assert_allclose(gof, 0.9999, atol=1e-4)
@testing.requires_testing_data
def test_calculate_head_pos_chpi_on_chpi5_in_one_second_steps():
"""Comparing estimated cHPI positions with MF results (one second)."""
# Check to make sure our fits match MF decently
mf_quats = read_head_pos(chpi5_pos_fname)
raw = read_raw_fif(chpi5_fif_fname, allow_maxshield='yes')
# the last two seconds contain a maxfilter problem!
# fiff file timing: 26. to 43. seconds
# maxfilter estimates a wrong head position for interval 16: 41.-42. sec
raw = _decimate_chpi(raw.crop(0., 10.).load_data(), decim=8)
# needs no interpolation, because maxfilter pos files comes with 1 s steps
py_quats = _calculate_chpi_positions(
raw, t_step_min=1.0, t_step_max=1.0, t_window=1.0, verbose='debug')
_assert_quats(py_quats, mf_quats, dist_tol=0.002, angle_tol=1.2,
vel_atol=3e-3) # 3 mm/s
@pytest.mark.slowtest
@testing.requires_testing_data
def test_calculate_head_pos_chpi_on_chpi5_in_shorter_steps():
"""Comparing estimated cHPI positions with MF results (smaller steps)."""
# Check to make sure our fits match MF decently
mf_quats = read_head_pos(chpi5_pos_fname)
raw = read_raw_fif(chpi5_fif_fname, allow_maxshield='yes')
raw = _decimate_chpi(raw.crop(0., 5.).load_data(), decim=8)
with pytest.warns(RuntimeWarning, match='cannot determine'):
py_quats = _calculate_chpi_positions(
raw, t_step_min=0.1, t_step_max=0.1, t_window=0.1, verbose='debug')
# needs interpolation, tolerance must be increased
_assert_quats(py_quats, mf_quats, dist_tol=0.002, angle_tol=1.2,
vel_atol=0.02) # 2 cm/s is not great but probably fine
def test_simulate_calculate_head_pos_chpi():
"""Test calculation of cHPI positions with simulated data."""
# Read info dict from raw FIF file
info = read_info(raw_fname)
# Tune the info structure
chpi_channel = u'STI201'
ncoil = len(info['hpi_results'][0]['order'])
coil_freq = 10 + np.arange(ncoil) * 5
hpi_subsystem = {'event_channel': chpi_channel,
'hpi_coils': [{'event_bits': np.array([256, 0, 256, 256],
dtype=np.int32)},
{'event_bits': np.array([512, 0, 512, 512],
dtype=np.int32)},
{'event_bits':
np.array([1024, 0, 1024, 1024],
dtype=np.int32)},
{'event_bits':
np.array([2048, 0, 2048, 2048],
dtype=np.int32)}],
'ncoil': ncoil}
with info._unlock():
info['hpi_subsystem'] = hpi_subsystem
for fi, freq in enumerate(coil_freq):
info['hpi_meas'][0]['hpi_coils'][fi]['coil_freq'] = freq
info['sfreq'] = 100. # this will speed it up a lot
picks = pick_types(info, meg=True, stim=True, eeg=False, exclude=[])
info = pick_info(info, picks)
info['chs'][info['ch_names'].index('STI 001')]['ch_name'] = 'STI201'
info._update_redundant()
with info._unlock():
info['projs'] = []
info_trans = info['dev_head_t']['trans'].copy()
dev_head_pos_ini = np.concatenate([rot_to_quat(info_trans[:3, :3]),
info_trans[:3, 3]])
ez = np.array([0, 0, 1]) # Unit vector in z-direction of head coordinates
# Define some constants
duration = 10 # Time / s
# Quotient of head position sampling frequency
# and raw sampling frequency
head_pos_sfreq_quotient = 0.01
# Round number of head positions to the next integer
S = int(duration * info['sfreq'] * head_pos_sfreq_quotient)
assert S == 10
dz = 0.001 # Shift in z-direction is 0.1mm for each step
dev_head_pos = np.zeros((S, 10))
dev_head_pos[:, 0] = np.arange(S) * info['sfreq'] * head_pos_sfreq_quotient
dev_head_pos[:, 1:4] = dev_head_pos_ini[:3]
dev_head_pos[:, 4:7] = dev_head_pos_ini[3:] + \
np.outer(np.arange(S) * dz, ez)
dev_head_pos[:, 7] = 1.0
# m/s
dev_head_pos[:, 9] = dz / (info['sfreq'] * head_pos_sfreq_quotient)
# Round number of samples to the next integer
raw_data = np.zeros((len(picks), int(duration * info['sfreq'] + 0.5)))
raw = RawArray(raw_data, info)
add_chpi(raw, dev_head_pos)
quats = _calculate_chpi_positions(
raw, t_step_min=raw.info['sfreq'] * head_pos_sfreq_quotient,
t_step_max=raw.info['sfreq'] * head_pos_sfreq_quotient, t_window=1.0)
_assert_quats(quats, dev_head_pos, dist_tol=0.001, angle_tol=1.,
vel_atol=4e-3) # 4 mm/s
def _calculate_chpi_coil_locs(raw, verbose):
"""Wrap to facilitate change diff."""
chpi_amplitudes = compute_chpi_amplitudes(raw, verbose=verbose)
chpi_locs = compute_chpi_locs(raw.info, chpi_amplitudes, verbose=verbose)
return _chpi_locs_to_times_dig(chpi_locs)
def _check_dists(info, cHPI_digs, n_bad=0, bad_low=0.02, bad_high=0.04):
__tracebackhide__ = True
orig = _get_hpi_initial_fit(info)
hpi_coil_distances = cdist(orig, orig)
new_pos = np.array([d['r'] for d in cHPI_digs])
mask, distances = _compute_good_distances(hpi_coil_distances, new_pos)
good_idx = np.where(mask)[0]
assert len(good_idx) >= 3
meds = np.empty(len(orig))
for ii in range(len(orig)):
idx = np.setdiff1d(good_idx, ii)
meds[ii] = np.median(distances[ii][idx])
meds = np.array(meds)
assert_array_less(meds[good_idx], 0.003)
bad_idx = np.where(~mask)[0]
if len(bad_idx):
bads = meds[bad_idx]
assert_array_less(bad_low, bads)
assert_array_less(bads, bad_high)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_calculate_chpi_coil_locs_artemis():
"""Test computing just cHPI locations."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes', preload=True)
# This is a little hack (aliasing while decimating) to make it much faster
# for testing purposes only. We can relax this later if we find it breaks
# something.
raw_dec = _decimate_chpi(raw, 15)
times, cHPI_digs = _calculate_chpi_coil_locs(raw_dec, verbose='debug')
# spot check
assert_allclose(times[0], 9., atol=1e-2)
assert_allclose(cHPI_digs[0][2]['r'],
[-0.01937833, 0.00346804, 0.06331209], atol=1e-3)
assert_allclose(cHPI_digs[0][2]['gof'], 0.9957, atol=1e-3)
assert_allclose(cHPI_digs[0][4]['r'],
[-0.0655, 0.0755, 0.0004], atol=3e-3)
assert_allclose(cHPI_digs[0][4]['gof'], 0.9323, atol=1e-3)
_check_dists(raw.info, cHPI_digs[0], n_bad=1)
# test on 5k artemis data
raw = read_raw_artemis123(art_fname, preload=True)
times, cHPI_digs = _calculate_chpi_coil_locs(raw, verbose='debug')
assert len(np.setdiff1d(times, raw.times + raw.first_time)) == 0
# Should be somewhere around 1.5 sec, depending on coil GOF values
# around 0.98 it can change
assert_allclose(times[5], 1.5, atol=2e-1)
assert_allclose(cHPI_digs[5][0]['gof'], 0.995, atol=5e-3)
assert_allclose(cHPI_digs[5][0]['r'],
[-0.0157, 0.0655, 0.0018], atol=1e-3)
_check_dists(raw.info, cHPI_digs[5])
coil_amplitudes = compute_chpi_amplitudes(raw)
with pytest.raises(ValueError, match='too_close'):
compute_chpi_locs(raw.info, coil_amplitudes, too_close='foo')
# ensure values are in a reasonable range
amps = np.linalg.norm(coil_amplitudes['slopes'], axis=-1)
amps /= coil_amplitudes['slopes'].shape[-1]
assert amps.shape == (len(coil_amplitudes['times']), 3)
assert_array_less(amps, 1e-11)
assert_array_less(1e-13, amps)
# with nan amplitudes (i.e., cHPI off) it should return an empty array,
# but still one that is 3D
coil_amplitudes['slopes'].fill(np.nan)
chpi_locs = compute_chpi_locs(raw.info, coil_amplitudes)
assert chpi_locs['rrs'].shape == (0, 3, 3)
pos = compute_head_pos(raw.info, chpi_locs)
assert pos.shape == (0, 10)
def assert_suppressed(new, old, suppressed, retained):
"""Assert that some frequencies are suppressed and others aren't."""
__tracebackhide__ = True
from scipy.signal import welch
picks = pick_types(new.info, meg='grad')
sfreq = new.info['sfreq']
new = new.get_data(picks)
old = old.get_data(picks)
f, new = welch(new, sfreq, 'hann', nperseg=1024)
_, old = welch(old, sfreq, 'hann', nperseg=1024)
new = np.median(new, axis=0)
old = np.median(old, axis=0)
for freqs, lim in ((suppressed, (10, 60)), (retained, (-3, 3))):
for freq in freqs:
fidx = np.argmin(np.abs(f - freq))
this_new = np.median(new[fidx])
this_old = np.median(old[fidx])
suppression = -10 * np.log10(this_new / this_old)
assert lim[0] < suppression < lim[1], freq
@testing.requires_testing_data
def test_chpi_subtraction_filter_chpi():
"""Test subtraction of cHPI signals."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes', preload=True)
raw.info['bads'] = ['MEG0111']
raw.del_proj()
raw_orig = raw.copy().crop(0, 16)
with catch_logging() as log:
filter_chpi(raw, include_line=False, t_window=0.2, verbose=True)
log = log.getvalue()
assert 'No average EEG' not in log
assert '5 cHPI' in log
# MaxFilter doesn't do quite as well as our algorithm with the last bit
raw.crop(0, 16)
# remove cHPI status chans
raw_c = read_raw_fif(sss_hpisubt_fname).crop(0, 16).load_data()
raw_c.pick_types(
meg=True, eeg=True, eog=True, ecg=True, stim=True, misc=True)
assert_meg_snr(raw, raw_c, 143, 624)
# cHPI suppressed but not line freqs (or others)
assert_suppressed(raw, raw_orig, np.arange(83, 324, 60), [30, 60, 150])
raw = raw_orig.copy()
with catch_logging() as log:
filter_chpi(raw, include_line=True, t_window=0.2, verbose=True)
log = log.getvalue()
assert '5 cHPI' in log
assert '6 line' in log
# cHPI and line freqs suppressed
suppressed = np.sort(np.concatenate([
np.arange(83, 324, 60), np.arange(60, 301, 60),
]))
assert_suppressed(raw, raw_orig, suppressed, [30, 150])
# No HPI information
raw = read_raw_fif(sample_fname, preload=True)
raw_orig = raw.copy()
assert raw.info['line_freq'] is None
with pytest.raises(RuntimeError, match='line_freq.*consider setting it'):
filter_chpi(raw, t_window=0.2)
with raw.info._unlock():
raw.info['line_freq'] = 60.
with pytest.raises(ValueError, match='No appropriate cHPI information'):
filter_chpi(raw, t_window=0.2)
# but this is allowed
with catch_logging() as log:
filter_chpi(raw, t_window='auto', allow_line_only=True, verbose=True)
log = log.getvalue()
assert '0 cHPI' in log
assert '1 line' in log
# Our one line freq suppressed but not others
assert_suppressed(raw, raw_orig, [60], [30, 45, 75])
# When MaxFliter downsamples, like::
# $ maxfilter -nosss -ds 2 -f test_move_anon_raw.fif \
# -o test_move_anon_ds2_raw.fif
# it can strip out some values of info, which we emulate here:
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
raw = raw.crop(0, 1).load_data().resample(600., npad='auto')
with raw.info._unlock():
raw.info['lowpass'] = 200.
del raw.info['maxshield']
del raw.info['hpi_results'][0]['moments']
del raw.info['hpi_subsystem']['event_channel']
with catch_logging() as log:
filter_chpi(raw, t_window='auto', verbose=True)
with pytest.raises(ValueError, match='must be > 0'):
filter_chpi(raw, t_window=-1)
assert '2 cHPI' in log.getvalue()
@testing.requires_testing_data
def test_calculate_head_pos_ctf():
"""Test extracting of cHPI positions from CTF data."""
raw = read_raw_ctf(ctf_chpi_fname)
chpi_locs = extract_chpi_locs_ctf(raw)
quats = compute_head_pos(raw.info, chpi_locs)
mc_quats = read_head_pos(ctf_chpi_pos_fname)
mc_quats[:, 9] /= 10000 # had old factor in there twice somehow...
_assert_quats(quats, mc_quats, dist_tol=0.004, angle_tol=2.5, err_rtol=1.,
vel_atol=7e-3) # 7 mm/s
plot_head_positions(quats, info=raw.info)
raw = read_raw_fif(ctf_fname)
with pytest.raises(RuntimeError, match='Could not find'):
extract_chpi_locs_ctf(raw)
@testing.requires_testing_data
def test_calculate_head_pos_kit():
"""Test calculation of head position using KIT data."""
raw = read_raw_kit(con_fname, mrk_fname, elp_fname, hsp_fname)
assert len(raw.info['hpi_results']) == 1
chpi_locs = extract_chpi_locs_kit(raw)
assert chpi_locs['rrs'].shape == (2, 5, 3)
assert_array_less(chpi_locs['gofs'], 1.)
assert_array_less(0.98, chpi_locs['gofs'])
quats = compute_head_pos(raw.info, chpi_locs)
assert quats.shape == (2, 10)
# plotting works
plot_head_positions(quats, info=raw.info)
raw_berlin = read_raw_kit(berlin_fname)
assert_allclose(raw_berlin.info['dev_head_t']['trans'], np.eye(4))
assert len(raw_berlin.info['hpi_results']) == 0
with pytest.raises(ValueError, match='Invalid value'):
extract_chpi_locs_kit(raw_berlin)
with pytest.raises(RuntimeError, match='not find appropriate'):
extract_chpi_locs_kit(raw_berlin, 'STI 014')
with pytest.raises(RuntimeError, match='no initial cHPI'):
compute_head_pos(raw_berlin.info, chpi_locs)
@testing.requires_testing_data
def test_get_active_chpi_ctf():
"""Test extracting of cHPI positions from CTF data."""
raw = read_raw_ctf(ctf_chpi_fname)
with pytest.raises(NotImplementedError,
match='not implemented for other systems'):
get_active_chpi(raw)
@testing.requires_testing_data
def test_get_active_chpi_neuromag():
"""Test extracting of cHPI positions from neuromag data."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes', preload=True)
status_ch = raw.ch_names.index('STI201')
# make artificial chpi signal
first_three_on = 256 + 512 + 1024
all_on = 256 + 512 + 1024 + 2048 + 4096
raw._data[status_ch][:1000] = 0
raw._data[status_ch][1000:2000] = first_three_on
raw._data[status_ch][2000:] = all_on
# build target signal
target_signal = 5 * np.ones_like(raw.times)
target_signal[:1000] = 0
target_signal[1000:2000] = 3
assert_allclose(get_active_chpi(raw, on_missing='ignore'), target_signal)
raw_no_chpi = read_raw_fif(sample_fname)
assert_allclose(get_active_chpi(raw_no_chpi, on_missing='ignore'),
np.zeros_like(raw_no_chpi.times))
|