1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
from functools import reduce
from glob import glob
import os
import os.path as op
from shutil import copyfile
import pytest
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_allclose,
assert_array_equal, assert_array_less)
import mne
from mne.datasets import testing
from mne.transforms import (Transform, apply_trans, rotation, translation,
scaling, read_trans, _angle_between_quats,
rot_to_quat, invert_transform)
from mne.coreg import (fit_matched_points, create_default_subject, scale_mri,
_is_mri_subject, scale_labels, scale_source_space,
coregister_fiducials, get_mni_fiducials, Coregistration)
from mne.io import read_fiducials, read_info
from mne.io.constants import FIFF
from mne.utils import (requires_nibabel, check_version, catch_logging,
_record_warnings)
from mne.source_space import write_source_spaces
from mne.channels import DigMontage
data_path = testing.data_path(download=False)
subjects_dir = os.path.join(data_path, 'subjects')
fid_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-fiducials.fif')
raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
trans_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-trans.fif')
@pytest.fixture
def few_surfaces(monkeypatch):
"""Set the _MNE_FEW_SURFACES env var."""
monkeypatch.setenv('_MNE_FEW_SURFACES', 'true')
yield
def test_coregister_fiducials():
"""Test coreg.coregister_fiducials()."""
# prepare head and MRI fiducials
trans = Transform('head', 'mri',
rotation(.4, .1, 0).dot(translation(.1, -.1, .1)))
coords_orig = np.array([[-0.08061612, -0.02908875, -0.04131077],
[0.00146763, 0.08506715, -0.03483611],
[0.08436285, -0.02850276, -0.04127743]])
coords_trans = apply_trans(trans, coords_orig)
def make_dig(coords, cf):
return ({'coord_frame': cf, 'ident': 1, 'kind': 1, 'r': coords[0]},
{'coord_frame': cf, 'ident': 2, 'kind': 1, 'r': coords[1]},
{'coord_frame': cf, 'ident': 3, 'kind': 1, 'r': coords[2]})
mri_fiducials = make_dig(coords_trans, FIFF.FIFFV_COORD_MRI)
info = {'dig': make_dig(coords_orig, FIFF.FIFFV_COORD_HEAD)}
# test coregister_fiducials()
trans_est = coregister_fiducials(info, mri_fiducials)
assert trans_est.from_str == trans.from_str
assert trans_est.to_str == trans.to_str
assert_array_almost_equal(trans_est['trans'], trans['trans'])
@requires_nibabel()
@pytest.mark.slowtest # can take forever on OSX Travis
@testing.requires_testing_data
@pytest.mark.parametrize('scale', (.9, [1, .2, .8]))
def test_scale_mri(tmp_path, few_surfaces, scale):
"""Test creating fsaverage and scaling it."""
# create fsaverage using the testing "fsaverage" instead of the FreeSurfer
# one
tempdir = str(tmp_path)
fake_home = data_path
create_default_subject(subjects_dir=tempdir, fs_home=fake_home,
verbose=True)
assert _is_mri_subject('fsaverage', tempdir), "Creating fsaverage failed"
fid_path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-fiducials.fif')
os.remove(fid_path)
create_default_subject(update=True, subjects_dir=tempdir,
fs_home=fake_home)
assert op.exists(fid_path), "Updating fsaverage"
# copy MRI file from sample data (shouldn't matter that it's incorrect,
# so here choose a small one)
path_from = op.join(fake_home, 'subjects', 'sample', 'mri',
'T1.mgz')
path_to = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz')
copyfile(path_from, path_to)
# remove redundant label files
label_temp = op.join(tempdir, 'fsaverage', 'label', '*.label')
label_paths = glob(label_temp)
for label_path in label_paths[1:]:
os.remove(label_path)
# create source space
print('Creating surface source space')
path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-%s-src.fif')
src = mne.setup_source_space('fsaverage', 'ico0', subjects_dir=tempdir,
add_dist=False)
mri = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz')
print('Creating volume source space')
vsrc = mne.setup_volume_source_space(
'fsaverage', pos=50, mri=mri, subjects_dir=tempdir,
add_interpolator=False)
write_source_spaces(path % 'vol-50', vsrc)
# scale fsaverage
write_source_spaces(path % 'ico-0', src, overwrite=True)
with _record_warnings(): # sometimes missing nibabel
scale_mri('fsaverage', 'flachkopf', scale, True,
subjects_dir=tempdir, verbose='debug')
assert _is_mri_subject('flachkopf', tempdir), "Scaling failed"
spath = op.join(tempdir, 'flachkopf', 'bem', 'flachkopf-%s-src.fif')
assert op.exists(spath % 'ico-0'), "Source space ico-0 was not scaled"
assert os.path.isfile(os.path.join(tempdir, 'flachkopf', 'surf',
'lh.sphere.reg'))
vsrc_s = mne.read_source_spaces(spath % 'vol-50')
for vox in ([0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 2, 3]):
idx = np.ravel_multi_index(vox, vsrc[0]['shape'], order='F')
err_msg = f'idx={idx} @ {vox}, scale={scale}'
assert_allclose(apply_trans(vsrc[0]['src_mri_t'], vox),
vsrc[0]['rr'][idx], err_msg=err_msg)
assert_allclose(apply_trans(vsrc_s[0]['src_mri_t'], vox),
vsrc_s[0]['rr'][idx], err_msg=err_msg)
scale_labels('flachkopf', subjects_dir=tempdir)
# add distances to source space after hacking the properties to make
# it run *much* faster
src_dist = src.copy()
for s in src_dist:
s.update(rr=s['rr'][s['vertno']], nn=s['nn'][s['vertno']],
tris=s['use_tris'])
s.update(np=len(s['rr']), ntri=len(s['tris']),
vertno=np.arange(len(s['rr'])),
inuse=np.ones(len(s['rr']), int))
mne.add_source_space_distances(src_dist)
write_source_spaces(path % 'ico-0', src_dist, overwrite=True)
# scale with distances
os.remove(spath % 'ico-0')
scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
ssrc = mne.read_source_spaces(spath % 'ico-0')
assert ssrc[0]['dist'] is not None
assert ssrc[0]['nearest'] is not None
# check patch info computation (only if SciPy is new enough to be fast)
if check_version('scipy', '1.3'):
for s in src_dist:
for key in ('dist', 'dist_limit'):
s[key] = None
write_source_spaces(path % 'ico-0', src_dist, overwrite=True)
# scale with distances
os.remove(spath % 'ico-0')
scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
ssrc = mne.read_source_spaces(spath % 'ico-0')
assert ssrc[0]['dist'] is None
assert ssrc[0]['nearest'] is not None
@pytest.mark.slowtest # can take forever on OSX Travis
@testing.requires_testing_data
@requires_nibabel()
def test_scale_mri_xfm(tmp_path, few_surfaces, subjects_dir_tmp_few):
"""Test scale_mri transforms and MRI scaling."""
# scale fsaverage
tempdir = str(subjects_dir_tmp_few)
sample_dir = subjects_dir_tmp_few / 'sample'
subject_to = 'flachkopf'
spacing = 'oct2'
for subject_from in ('fsaverage', 'sample'):
if subject_from == 'fsaverage':
scale = 1. # single dim
else:
scale = [0.9, 2, .8] # separate
src_from_fname = op.join(tempdir, subject_from, 'bem',
'%s-%s-src.fif' % (subject_from, spacing))
src_from = mne.setup_source_space(
subject_from, spacing, subjects_dir=tempdir, add_dist=False)
write_source_spaces(src_from_fname, src_from)
vertices_from = np.concatenate([s['vertno'] for s in src_from])
assert len(vertices_from) == 36
hemis = ([0] * len(src_from[0]['vertno']) +
[1] * len(src_from[0]['vertno']))
mni_from = mne.vertex_to_mni(vertices_from, hemis, subject_from,
subjects_dir=tempdir)
if subject_from == 'fsaverage': # identity transform
source_rr = np.concatenate([s['rr'][s['vertno']]
for s in src_from]) * 1e3
assert_allclose(mni_from, source_rr)
if subject_from == 'fsaverage':
overwrite = skip_fiducials = False
else:
with pytest.raises(IOError, match='No fiducials file'):
scale_mri(subject_from, subject_to, scale,
subjects_dir=tempdir)
skip_fiducials = True
with pytest.raises(IOError, match='already exists'):
scale_mri(subject_from, subject_to, scale,
subjects_dir=tempdir, skip_fiducials=skip_fiducials)
overwrite = True
if subject_from == 'sample': # support for not needing all surf files
os.remove(op.join(sample_dir, 'surf', 'lh.curv'))
scale_mri(subject_from, subject_to, scale, subjects_dir=tempdir,
verbose='debug', overwrite=overwrite,
skip_fiducials=skip_fiducials)
if subject_from == 'fsaverage':
assert _is_mri_subject(subject_to, tempdir), "Scaling failed"
src_to_fname = op.join(tempdir, subject_to, 'bem',
'%s-%s-src.fif' % (subject_to, spacing))
assert op.exists(src_to_fname), "Source space was not scaled"
# Check MRI scaling
fname_mri = op.join(tempdir, subject_to, 'mri', 'T1.mgz')
assert op.exists(fname_mri), "MRI was not scaled"
# Check MNI transform
src = mne.read_source_spaces(src_to_fname)
vertices = np.concatenate([s['vertno'] for s in src])
assert_array_equal(vertices, vertices_from)
mni = mne.vertex_to_mni(vertices, hemis, subject_to,
subjects_dir=tempdir)
assert_allclose(mni, mni_from, atol=1e-3) # 0.001 mm
# Check head_to_mni (the `trans` here does not really matter)
trans = rotation(0.001, 0.002, 0.003) @ translation(0.01, 0.02, 0.03)
trans = Transform('head', 'mri', trans)
pos_head_from = np.random.RandomState(0).randn(4, 3)
pos_mni_from = mne.head_to_mni(
pos_head_from, subject_from, trans, tempdir)
pos_mri_from = apply_trans(trans, pos_head_from)
pos_mri = pos_mri_from * scale
pos_head = apply_trans(invert_transform(trans), pos_mri)
pos_mni = mne.head_to_mni(pos_head, subject_to, trans, tempdir)
assert_allclose(pos_mni, pos_mni_from, atol=1e-3)
# another way
pos_mri_from_2 = mne.head_to_mri(
pos_head_from, subject_from, trans, tempdir)
pos_mri_from_ras = mne.head_to_mri(
pos_head_from, subject_from, trans, tempdir, kind='ras')
mri_eq_ras = np.allclose(pos_mri_from_2, pos_mri_from_ras, atol=1e-1)
if subject_from == 'fsaverage':
assert mri_eq_ras # fsaverage is special this way
else:
assert not mri_eq_ras # sample is not
assert_allclose(pos_mri_from_2, 1e3 * pos_mri_from,
atol=1e-3)
with pytest.raises(OSError, match=r'parameters\.cfg'):
mne.head_to_mri(
pos_head_from, subject_from, trans, tempdir, unscale=True,
kind='mri')
# yet another way
pos_mri_from_3 = mne.head_to_mri(
pos_head, subject_to, trans, tempdir, kind='mri', unscale=True)
assert_allclose(pos_mri_from_3, 1e3 * pos_mri_from, atol=1e-3)
def test_fit_matched_points():
"""Test fit_matched_points: fitting two matching sets of points."""
tgt_pts = np.random.RandomState(42).uniform(size=(6, 3))
# rotation only
trans = rotation(2, 6, 3)
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, translate=False,
out='trans')
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
"rotation")
# rotation & translation
trans = np.dot(translation(2, -6, 3), rotation(2, 6, 3))
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, out='trans')
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
"rotation and translation.")
# rotation & translation & scaling
trans = reduce(np.dot, (translation(2, -6, 3), rotation(1.5, .3, 1.4),
scaling(.5, .5, .5)))
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, scale=1, out='trans')
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
"rotation, translation and scaling.")
# test exceeding tolerance
tgt_pts[0, :] += 20
pytest.raises(RuntimeError, fit_matched_points, tgt_pts, src_pts, tol=10)
@testing.requires_testing_data
@requires_nibabel()
def test_get_mni_fiducials():
"""Test get_mni_fiducials."""
fids, coord_frame = read_fiducials(fid_fname)
assert coord_frame == FIFF.FIFFV_COORD_MRI
assert [f['ident'] for f in fids] == list(range(1, 4))
fids = np.array([f['r'] for f in fids])
fids_est = get_mni_fiducials('sample', subjects_dir)
fids_est = np.array([f['r'] for f in fids_est])
dists = np.linalg.norm(fids - fids_est, axis=-1) * 1000. # -> mm
assert (dists < 8).all(), dists
@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize(
'scale_mode,ref_scale,grow_hair,fiducials,fid_match', [
(None, [1., 1., 1.], 0., None, 'nearest'),
(None, [1., 1., 1.], 0., 'estimated', 'nearest'),
(None, [1., 1., 1.], 2., 'auto', 'nearest'),
('uniform', [1., 1., 1.], 0., None, 'nearest'),
('3-axis', [1., 1., 1.], 0., 'auto', 'nearest'),
('uniform', [0.8, 0.8, 0.8], 0., 'auto', 'nearest'),
('3-axis', [0.8, 1.2, 1.2], 0., 'auto', 'matched')])
def test_coregistration(scale_mode, ref_scale, grow_hair, fiducials,
fid_match):
"""Test automated coregistration."""
subject = 'sample'
if fiducials is None:
fiducials, coord_frame = read_fiducials(fid_fname)
assert coord_frame == FIFF.FIFFV_COORD_MRI
info = read_info(raw_fname)
for d in info['dig']:
d['r'] = d['r'] * ref_scale
trans = read_trans(trans_fname)
coreg = Coregistration(info, subject=subject, subjects_dir=subjects_dir,
fiducials=fiducials)
assert np.allclose(coreg._last_parameters, coreg._parameters)
assert len(coreg.fiducials.dig) == 3
for dig_point in coreg.fiducials.dig:
assert dig_point['coord_frame'] == FIFF.FIFFV_COORD_MRI
assert dig_point['kind'] == FIFF.FIFFV_POINT_CARDINAL
coreg.set_fid_match(fid_match)
default_params = list(coreg._default_parameters)
coreg.set_rotation(default_params[:3])
coreg.set_translation(default_params[3:6])
coreg.set_scale(default_params[6:9])
coreg.set_grow_hair(grow_hair)
coreg.set_scale_mode(scale_mode)
# Identity transform
errs_id = coreg.compute_dig_mri_distances()
is_scaled = ref_scale != [1., 1., 1.]
id_max = 0.03 if is_scaled and scale_mode == '3-axis' else 0.02
assert 0.005 < np.median(errs_id) < id_max
# Fiducial transform + scale
coreg.fit_fiducials(verbose=True)
assert coreg._extra_points_filter is None
coreg.omit_head_shape_points(distance=0.02)
assert coreg._extra_points_filter is not None
errs_fid = coreg.compute_dig_mri_distances()
assert_array_less(0, errs_fid)
if is_scaled or scale_mode is not None:
fid_max = 0.05
fid_med = 0.02
else:
fid_max = 0.03
fid_med = 0.01
assert_array_less(errs_fid, fid_max)
assert 0.001 < np.median(errs_fid) < fid_med
assert not np.allclose(coreg._parameters, default_params)
coreg.omit_head_shape_points(distance=-1)
coreg.omit_head_shape_points(distance=5. / 1000)
assert coreg._extra_points_filter is not None
# ICP transform + scale
coreg.fit_icp(verbose=True)
assert isinstance(coreg.trans, Transform)
errs_icp = coreg.compute_dig_mri_distances()
assert_array_less(0, errs_icp)
if is_scaled or scale_mode == '3-axis':
icp_max = 0.015
else:
icp_max = 0.01
assert_array_less(errs_icp, icp_max)
assert 0.001 < np.median(errs_icp) < 0.004
assert np.rad2deg(_angle_between_quats(
rot_to_quat(coreg.trans['trans'][:3, :3]),
rot_to_quat(trans['trans'][:3, :3]))) < 13
if scale_mode is None:
atol = 1e-7
else:
atol = 0.35
assert_allclose(coreg._scale, ref_scale, atol=atol)
coreg.reset()
assert_allclose(coreg._parameters, default_params)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_coreg_class_gui_match():
"""Test that using Coregistration matches mne coreg."""
fiducials, _ = read_fiducials(fid_fname)
info = read_info(raw_fname)
coreg = Coregistration(info, subject='sample', subjects_dir=subjects_dir,
fiducials=fiducials)
assert_allclose(coreg.trans['trans'], np.eye(4), atol=1e-6)
# mne coreg -s sample -d subjects -f MEG/sample/sample_audvis_trunc_raw.fif
# then "Fit Fid.", Save... to get trans, read_trans:
want_trans = [
[9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -8.76054692e-04],
[-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, 9.39774036e-04],
[-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -8.29207990e-03],
[0, 0, 0, 1]]
coreg.set_fid_match('matched')
coreg.fit_fiducials(verbose=True)
assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
# Set ICP iterations to one, click "Fit ICP"
want_trans = [
[9.99512792e-01, 2.80128177e-02, 1.37659665e-02, 6.08855276e-04],
[-1.91694051e-02, 8.98992002e-01, -4.37545270e-01, 9.66848747e-04],
[-2.46323701e-02, 4.37068194e-01, 8.99091005e-01, -1.44129358e-02],
[0, 0, 0, 1]]
coreg.fit_icp(1, verbose=True)
assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
# Set ICP iterations to 20, click "Fit ICP"
with catch_logging() as log:
coreg.fit_icp(20, verbose=True)
log = log.getvalue()
want_trans = [
[9.97582495e-01, 2.12266613e-02, 6.61706254e-02, -5.07694029e-04],
[1.81089472e-02, 8.39900672e-01, -5.42437911e-01, 7.81218382e-03],
[-6.70908988e-02, 5.42324841e-01, 8.37485850e-01, -2.50057746e-02],
[0, 0, 0, 1]]
assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
assert 'ICP 19' in log
assert 'ICP 20' not in log # converged on 19
# Change to uniform scale mode, "Fit Fiducials" in scale UI
coreg.set_scale_mode('uniform')
coreg.fit_fiducials()
want_scale = [0.975] * 3
want_trans = [
[9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -9.25998494e-04],
[-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, -1.03350170e-03],
[-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -9.03170835e-03],
[0, 0, 0, 1]]
assert_allclose(coreg.scale, want_scale, atol=5e-4)
assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
# Click "Fit ICP" in scale UI
with catch_logging() as log:
coreg.fit_icp(20, verbose=True)
log = log.getvalue()
assert 'ICP 18' in log
assert 'ICP 19' not in log
want_scale = [1.036] * 3
want_trans = [
[9.98992383e-01, 1.72388796e-02, 4.14364934e-02, 6.19427126e-04],
[6.80460501e-03, 8.54430079e-01, -5.19521892e-01, 5.58008114e-03],
[-4.43605632e-02, 5.19280374e-01, 8.53451848e-01, -2.03358755e-02],
[0, 0, 0, 1]]
assert_allclose(coreg.scale, want_scale, atol=5e-4)
assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
# Change scale mode to 3-axis, click "Fit ICP" in scale UI
coreg.set_scale_mode('3-axis')
with catch_logging() as log:
coreg.fit_icp(20, verbose=True)
log = log.getvalue()
assert 'ICP 7' in log
assert 'ICP 8' not in log
want_scale = [1.025, 1.010, 1.121]
want_trans = [
[9.98387098e-01, 2.04762165e-02, 5.29526398e-02, 4.97257097e-05],
[1.13287698e-02, 8.42087150e-01, -5.39222538e-01, 7.09863892e-03],
[-5.56319728e-02, 5.38952649e-01, 8.40496957e-01, -1.46372067e-02],
[0, 0, 0, 1]]
assert_allclose(coreg.scale, want_scale, atol=5e-4)
assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
@testing.requires_testing_data
@pytest.mark.parametrize(
'drop_point_kind', (FIFF.FIFFV_POINT_CARDINAL, FIFF.FIFFV_POINT_HPI,
FIFF.FIFFV_POINT_EXTRA, FIFF.FIFFV_POINT_EEG))
def test_coreg_class_init(drop_point_kind):
"""Test that Coregistration can be instantiated with various digs."""
fiducials, _ = read_fiducials(fid_fname)
info = read_info(raw_fname)
dig_list = []
eeg_chans = []
for pt in info['dig']:
if pt['kind'] != drop_point_kind:
dig_list.append(pt)
if pt['kind'] == FIFF.FIFFV_POINT_EEG:
eeg_chans.append(f"EEG {pt['ident']:03d}")
this_info = info.copy()
this_info.set_montage(DigMontage(dig=dig_list, ch_names=eeg_chans),
on_missing='ignore')
Coregistration(this_info, subject='sample',
subjects_dir=subjects_dir, fiducials=fiducials)
|