File: test_coreg.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (496 lines) | stat: -rw-r--r-- 22,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from functools import reduce
from glob import glob
import os
import os.path as op
from shutil import copyfile

import pytest
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_allclose,
                           assert_array_equal, assert_array_less)

import mne
from mne.datasets import testing
from mne.transforms import (Transform, apply_trans, rotation, translation,
                            scaling, read_trans, _angle_between_quats,
                            rot_to_quat, invert_transform)
from mne.coreg import (fit_matched_points, create_default_subject, scale_mri,
                       _is_mri_subject, scale_labels, scale_source_space,
                       coregister_fiducials, get_mni_fiducials, Coregistration)
from mne.io import read_fiducials, read_info
from mne.io.constants import FIFF
from mne.utils import (requires_nibabel, check_version, catch_logging,
                       _record_warnings)
from mne.source_space import write_source_spaces
from mne.channels import DigMontage

data_path = testing.data_path(download=False)
subjects_dir = os.path.join(data_path, 'subjects')
fid_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-fiducials.fif')
raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
trans_fname = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc-trans.fif')


@pytest.fixture
def few_surfaces(monkeypatch):
    """Set the _MNE_FEW_SURFACES env var."""
    monkeypatch.setenv('_MNE_FEW_SURFACES', 'true')
    yield


def test_coregister_fiducials():
    """Test coreg.coregister_fiducials()."""
    # prepare head and MRI fiducials
    trans = Transform('head', 'mri',
                      rotation(.4, .1, 0).dot(translation(.1, -.1, .1)))
    coords_orig = np.array([[-0.08061612, -0.02908875, -0.04131077],
                            [0.00146763, 0.08506715, -0.03483611],
                            [0.08436285, -0.02850276, -0.04127743]])
    coords_trans = apply_trans(trans, coords_orig)

    def make_dig(coords, cf):
        return ({'coord_frame': cf, 'ident': 1, 'kind': 1, 'r': coords[0]},
                {'coord_frame': cf, 'ident': 2, 'kind': 1, 'r': coords[1]},
                {'coord_frame': cf, 'ident': 3, 'kind': 1, 'r': coords[2]})

    mri_fiducials = make_dig(coords_trans, FIFF.FIFFV_COORD_MRI)
    info = {'dig': make_dig(coords_orig, FIFF.FIFFV_COORD_HEAD)}

    # test coregister_fiducials()
    trans_est = coregister_fiducials(info, mri_fiducials)
    assert trans_est.from_str == trans.from_str
    assert trans_est.to_str == trans.to_str
    assert_array_almost_equal(trans_est['trans'], trans['trans'])


@requires_nibabel()
@pytest.mark.slowtest  # can take forever on OSX Travis
@testing.requires_testing_data
@pytest.mark.parametrize('scale', (.9, [1, .2, .8]))
def test_scale_mri(tmp_path, few_surfaces, scale):
    """Test creating fsaverage and scaling it."""
    # create fsaverage using the testing "fsaverage" instead of the FreeSurfer
    # one
    tempdir = str(tmp_path)
    fake_home = data_path
    create_default_subject(subjects_dir=tempdir, fs_home=fake_home,
                           verbose=True)
    assert _is_mri_subject('fsaverage', tempdir), "Creating fsaverage failed"

    fid_path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-fiducials.fif')
    os.remove(fid_path)
    create_default_subject(update=True, subjects_dir=tempdir,
                           fs_home=fake_home)
    assert op.exists(fid_path), "Updating fsaverage"

    # copy MRI file from sample data (shouldn't matter that it's incorrect,
    # so here choose a small one)
    path_from = op.join(fake_home, 'subjects', 'sample', 'mri',
                        'T1.mgz')
    path_to = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz')
    copyfile(path_from, path_to)

    # remove redundant label files
    label_temp = op.join(tempdir, 'fsaverage', 'label', '*.label')
    label_paths = glob(label_temp)
    for label_path in label_paths[1:]:
        os.remove(label_path)

    # create source space
    print('Creating surface source space')
    path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-%s-src.fif')
    src = mne.setup_source_space('fsaverage', 'ico0', subjects_dir=tempdir,
                                 add_dist=False)
    mri = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz')
    print('Creating volume source space')
    vsrc = mne.setup_volume_source_space(
        'fsaverage', pos=50, mri=mri, subjects_dir=tempdir,
        add_interpolator=False)
    write_source_spaces(path % 'vol-50', vsrc)

    # scale fsaverage
    write_source_spaces(path % 'ico-0', src, overwrite=True)
    with _record_warnings():  # sometimes missing nibabel
        scale_mri('fsaverage', 'flachkopf', scale, True,
                  subjects_dir=tempdir, verbose='debug')
    assert _is_mri_subject('flachkopf', tempdir), "Scaling failed"
    spath = op.join(tempdir, 'flachkopf', 'bem', 'flachkopf-%s-src.fif')

    assert op.exists(spath % 'ico-0'), "Source space ico-0 was not scaled"
    assert os.path.isfile(os.path.join(tempdir, 'flachkopf', 'surf',
                                       'lh.sphere.reg'))
    vsrc_s = mne.read_source_spaces(spath % 'vol-50')
    for vox in ([0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 2, 3]):
        idx = np.ravel_multi_index(vox, vsrc[0]['shape'], order='F')
        err_msg = f'idx={idx} @ {vox}, scale={scale}'
        assert_allclose(apply_trans(vsrc[0]['src_mri_t'], vox),
                        vsrc[0]['rr'][idx], err_msg=err_msg)
        assert_allclose(apply_trans(vsrc_s[0]['src_mri_t'], vox),
                        vsrc_s[0]['rr'][idx], err_msg=err_msg)
    scale_labels('flachkopf', subjects_dir=tempdir)

    # add distances to source space after hacking the properties to make
    # it run *much* faster
    src_dist = src.copy()
    for s in src_dist:
        s.update(rr=s['rr'][s['vertno']], nn=s['nn'][s['vertno']],
                 tris=s['use_tris'])
        s.update(np=len(s['rr']), ntri=len(s['tris']),
                 vertno=np.arange(len(s['rr'])),
                 inuse=np.ones(len(s['rr']), int))
    mne.add_source_space_distances(src_dist)
    write_source_spaces(path % 'ico-0', src_dist, overwrite=True)

    # scale with distances
    os.remove(spath % 'ico-0')
    scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
    ssrc = mne.read_source_spaces(spath % 'ico-0')
    assert ssrc[0]['dist'] is not None
    assert ssrc[0]['nearest'] is not None

    # check patch info computation (only if SciPy is new enough to be fast)
    if check_version('scipy', '1.3'):
        for s in src_dist:
            for key in ('dist', 'dist_limit'):
                s[key] = None
        write_source_spaces(path % 'ico-0', src_dist, overwrite=True)

        # scale with distances
        os.remove(spath % 'ico-0')
        scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
        ssrc = mne.read_source_spaces(spath % 'ico-0')
        assert ssrc[0]['dist'] is None
        assert ssrc[0]['nearest'] is not None


@pytest.mark.slowtest  # can take forever on OSX Travis
@testing.requires_testing_data
@requires_nibabel()
def test_scale_mri_xfm(tmp_path, few_surfaces, subjects_dir_tmp_few):
    """Test scale_mri transforms and MRI scaling."""
    # scale fsaverage
    tempdir = str(subjects_dir_tmp_few)
    sample_dir = subjects_dir_tmp_few / 'sample'
    subject_to = 'flachkopf'
    spacing = 'oct2'
    for subject_from in ('fsaverage', 'sample'):
        if subject_from == 'fsaverage':
            scale = 1.  # single dim
        else:
            scale = [0.9, 2, .8]  # separate
        src_from_fname = op.join(tempdir, subject_from, 'bem',
                                 '%s-%s-src.fif' % (subject_from, spacing))
        src_from = mne.setup_source_space(
            subject_from, spacing, subjects_dir=tempdir, add_dist=False)
        write_source_spaces(src_from_fname, src_from)
        vertices_from = np.concatenate([s['vertno'] for s in src_from])
        assert len(vertices_from) == 36
        hemis = ([0] * len(src_from[0]['vertno']) +
                 [1] * len(src_from[0]['vertno']))
        mni_from = mne.vertex_to_mni(vertices_from, hemis, subject_from,
                                     subjects_dir=tempdir)
        if subject_from == 'fsaverage':  # identity transform
            source_rr = np.concatenate([s['rr'][s['vertno']]
                                        for s in src_from]) * 1e3
            assert_allclose(mni_from, source_rr)
        if subject_from == 'fsaverage':
            overwrite = skip_fiducials = False
        else:
            with pytest.raises(IOError, match='No fiducials file'):
                scale_mri(subject_from, subject_to, scale,
                          subjects_dir=tempdir)
            skip_fiducials = True
            with pytest.raises(IOError, match='already exists'):
                scale_mri(subject_from, subject_to, scale,
                          subjects_dir=tempdir, skip_fiducials=skip_fiducials)
            overwrite = True
        if subject_from == 'sample':  # support for not needing all surf files
            os.remove(op.join(sample_dir, 'surf', 'lh.curv'))
        scale_mri(subject_from, subject_to, scale, subjects_dir=tempdir,
                  verbose='debug', overwrite=overwrite,
                  skip_fiducials=skip_fiducials)
        if subject_from == 'fsaverage':
            assert _is_mri_subject(subject_to, tempdir), "Scaling failed"
        src_to_fname = op.join(tempdir, subject_to, 'bem',
                               '%s-%s-src.fif' % (subject_to, spacing))
        assert op.exists(src_to_fname), "Source space was not scaled"
        # Check MRI scaling
        fname_mri = op.join(tempdir, subject_to, 'mri', 'T1.mgz')
        assert op.exists(fname_mri), "MRI was not scaled"
        # Check MNI transform
        src = mne.read_source_spaces(src_to_fname)
        vertices = np.concatenate([s['vertno'] for s in src])
        assert_array_equal(vertices, vertices_from)
        mni = mne.vertex_to_mni(vertices, hemis, subject_to,
                                subjects_dir=tempdir)
        assert_allclose(mni, mni_from, atol=1e-3)  # 0.001 mm
        # Check head_to_mni (the `trans` here does not really matter)
        trans = rotation(0.001, 0.002, 0.003) @ translation(0.01, 0.02, 0.03)
        trans = Transform('head', 'mri', trans)
        pos_head_from = np.random.RandomState(0).randn(4, 3)
        pos_mni_from = mne.head_to_mni(
            pos_head_from, subject_from, trans, tempdir)
        pos_mri_from = apply_trans(trans, pos_head_from)
        pos_mri = pos_mri_from * scale
        pos_head = apply_trans(invert_transform(trans), pos_mri)
        pos_mni = mne.head_to_mni(pos_head, subject_to, trans, tempdir)
        assert_allclose(pos_mni, pos_mni_from, atol=1e-3)
        # another way
        pos_mri_from_2 = mne.head_to_mri(
            pos_head_from, subject_from, trans, tempdir)
        pos_mri_from_ras = mne.head_to_mri(
            pos_head_from, subject_from, trans, tempdir, kind='ras')
        mri_eq_ras = np.allclose(pos_mri_from_2, pos_mri_from_ras, atol=1e-1)
        if subject_from == 'fsaverage':
            assert mri_eq_ras  # fsaverage is special this way
        else:
            assert not mri_eq_ras  # sample is not
        assert_allclose(pos_mri_from_2, 1e3 * pos_mri_from,
                        atol=1e-3)
        with pytest.raises(OSError, match=r'parameters\.cfg'):
            mne.head_to_mri(
                pos_head_from, subject_from, trans, tempdir, unscale=True,
                kind='mri')
        # yet another way
        pos_mri_from_3 = mne.head_to_mri(
            pos_head, subject_to, trans, tempdir, kind='mri', unscale=True)
        assert_allclose(pos_mri_from_3, 1e3 * pos_mri_from, atol=1e-3)


def test_fit_matched_points():
    """Test fit_matched_points: fitting two matching sets of points."""
    tgt_pts = np.random.RandomState(42).uniform(size=(6, 3))

    # rotation only
    trans = rotation(2, 6, 3)
    src_pts = apply_trans(trans, tgt_pts)
    trans_est = fit_matched_points(src_pts, tgt_pts, translate=False,
                                   out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
                              "rotation")

    # rotation & translation
    trans = np.dot(translation(2, -6, 3), rotation(2, 6, 3))
    src_pts = apply_trans(trans, tgt_pts)
    trans_est = fit_matched_points(src_pts, tgt_pts, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
                              "rotation and translation.")

    # rotation & translation & scaling
    trans = reduce(np.dot, (translation(2, -6, 3), rotation(1.5, .3, 1.4),
                            scaling(.5, .5, .5)))
    src_pts = apply_trans(trans, tgt_pts)
    trans_est = fit_matched_points(src_pts, tgt_pts, scale=1, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
                              "rotation, translation and scaling.")

    # test exceeding tolerance
    tgt_pts[0, :] += 20
    pytest.raises(RuntimeError, fit_matched_points, tgt_pts, src_pts, tol=10)


@testing.requires_testing_data
@requires_nibabel()
def test_get_mni_fiducials():
    """Test get_mni_fiducials."""
    fids, coord_frame = read_fiducials(fid_fname)
    assert coord_frame == FIFF.FIFFV_COORD_MRI
    assert [f['ident'] for f in fids] == list(range(1, 4))
    fids = np.array([f['r'] for f in fids])
    fids_est = get_mni_fiducials('sample', subjects_dir)
    fids_est = np.array([f['r'] for f in fids_est])
    dists = np.linalg.norm(fids - fids_est, axis=-1) * 1000.  # -> mm
    assert (dists < 8).all(), dists


@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize(
    'scale_mode,ref_scale,grow_hair,fiducials,fid_match', [
        (None, [1., 1., 1.], 0., None, 'nearest'),
        (None, [1., 1., 1.], 0., 'estimated', 'nearest'),
        (None, [1., 1., 1.], 2., 'auto', 'nearest'),
        ('uniform', [1., 1., 1.], 0., None, 'nearest'),
        ('3-axis', [1., 1., 1.], 0., 'auto', 'nearest'),
        ('uniform', [0.8, 0.8, 0.8], 0., 'auto', 'nearest'),
        ('3-axis', [0.8, 1.2, 1.2], 0., 'auto', 'matched')])
def test_coregistration(scale_mode, ref_scale, grow_hair, fiducials,
                        fid_match):
    """Test automated coregistration."""
    subject = 'sample'
    if fiducials is None:
        fiducials, coord_frame = read_fiducials(fid_fname)
        assert coord_frame == FIFF.FIFFV_COORD_MRI
    info = read_info(raw_fname)
    for d in info['dig']:
        d['r'] = d['r'] * ref_scale
    trans = read_trans(trans_fname)
    coreg = Coregistration(info, subject=subject, subjects_dir=subjects_dir,
                           fiducials=fiducials)
    assert np.allclose(coreg._last_parameters, coreg._parameters)
    assert len(coreg.fiducials.dig) == 3
    for dig_point in coreg.fiducials.dig:
        assert dig_point['coord_frame'] == FIFF.FIFFV_COORD_MRI
        assert dig_point['kind'] == FIFF.FIFFV_POINT_CARDINAL

    coreg.set_fid_match(fid_match)
    default_params = list(coreg._default_parameters)
    coreg.set_rotation(default_params[:3])
    coreg.set_translation(default_params[3:6])
    coreg.set_scale(default_params[6:9])
    coreg.set_grow_hair(grow_hair)
    coreg.set_scale_mode(scale_mode)
    # Identity transform
    errs_id = coreg.compute_dig_mri_distances()
    is_scaled = ref_scale != [1., 1., 1.]
    id_max = 0.03 if is_scaled and scale_mode == '3-axis' else 0.02
    assert 0.005 < np.median(errs_id) < id_max
    # Fiducial transform + scale
    coreg.fit_fiducials(verbose=True)
    assert coreg._extra_points_filter is None
    coreg.omit_head_shape_points(distance=0.02)
    assert coreg._extra_points_filter is not None
    errs_fid = coreg.compute_dig_mri_distances()
    assert_array_less(0, errs_fid)
    if is_scaled or scale_mode is not None:
        fid_max = 0.05
        fid_med = 0.02
    else:
        fid_max = 0.03
        fid_med = 0.01
    assert_array_less(errs_fid, fid_max)
    assert 0.001 < np.median(errs_fid) < fid_med
    assert not np.allclose(coreg._parameters, default_params)
    coreg.omit_head_shape_points(distance=-1)
    coreg.omit_head_shape_points(distance=5. / 1000)
    assert coreg._extra_points_filter is not None
    # ICP transform + scale
    coreg.fit_icp(verbose=True)
    assert isinstance(coreg.trans, Transform)
    errs_icp = coreg.compute_dig_mri_distances()
    assert_array_less(0, errs_icp)
    if is_scaled or scale_mode == '3-axis':
        icp_max = 0.015
    else:
        icp_max = 0.01
    assert_array_less(errs_icp, icp_max)
    assert 0.001 < np.median(errs_icp) < 0.004
    assert np.rad2deg(_angle_between_quats(
        rot_to_quat(coreg.trans['trans'][:3, :3]),
        rot_to_quat(trans['trans'][:3, :3]))) < 13
    if scale_mode is None:
        atol = 1e-7
    else:
        atol = 0.35
    assert_allclose(coreg._scale, ref_scale, atol=atol)
    coreg.reset()
    assert_allclose(coreg._parameters, default_params)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_coreg_class_gui_match():
    """Test that using Coregistration matches mne coreg."""
    fiducials, _ = read_fiducials(fid_fname)
    info = read_info(raw_fname)
    coreg = Coregistration(info, subject='sample', subjects_dir=subjects_dir,
                           fiducials=fiducials)
    assert_allclose(coreg.trans['trans'], np.eye(4), atol=1e-6)
    # mne coreg -s sample -d subjects -f MEG/sample/sample_audvis_trunc_raw.fif
    # then "Fit Fid.", Save... to get trans, read_trans:
    want_trans = [
        [9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -8.76054692e-04],
        [-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, 9.39774036e-04],
        [-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -8.29207990e-03],
        [0, 0, 0, 1]]
    coreg.set_fid_match('matched')
    coreg.fit_fiducials(verbose=True)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Set ICP iterations to one, click "Fit ICP"
    want_trans = [
        [9.99512792e-01, 2.80128177e-02, 1.37659665e-02, 6.08855276e-04],
        [-1.91694051e-02, 8.98992002e-01, -4.37545270e-01, 9.66848747e-04],
        [-2.46323701e-02, 4.37068194e-01, 8.99091005e-01, -1.44129358e-02],
        [0, 0, 0, 1]]
    coreg.fit_icp(1, verbose=True)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Set ICP iterations to 20, click "Fit ICP"
    with catch_logging() as log:
        coreg.fit_icp(20, verbose=True)
    log = log.getvalue()
    want_trans = [
        [9.97582495e-01, 2.12266613e-02, 6.61706254e-02, -5.07694029e-04],
        [1.81089472e-02, 8.39900672e-01, -5.42437911e-01, 7.81218382e-03],
        [-6.70908988e-02, 5.42324841e-01, 8.37485850e-01, -2.50057746e-02],
        [0, 0, 0, 1]]
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    assert 'ICP 19' in log
    assert 'ICP 20' not in log  # converged on 19
    # Change to uniform scale mode, "Fit Fiducials" in scale UI
    coreg.set_scale_mode('uniform')
    coreg.fit_fiducials()
    want_scale = [0.975] * 3
    want_trans = [
        [9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -9.25998494e-04],
        [-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, -1.03350170e-03],
        [-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -9.03170835e-03],
        [0, 0, 0, 1]]
    assert_allclose(coreg.scale, want_scale, atol=5e-4)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Click "Fit ICP" in scale UI
    with catch_logging() as log:
        coreg.fit_icp(20, verbose=True)
    log = log.getvalue()
    assert 'ICP 18' in log
    assert 'ICP 19' not in log
    want_scale = [1.036] * 3
    want_trans = [
        [9.98992383e-01, 1.72388796e-02, 4.14364934e-02, 6.19427126e-04],
        [6.80460501e-03, 8.54430079e-01, -5.19521892e-01, 5.58008114e-03],
        [-4.43605632e-02, 5.19280374e-01, 8.53451848e-01, -2.03358755e-02],
        [0, 0, 0, 1]]
    assert_allclose(coreg.scale, want_scale, atol=5e-4)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Change scale mode to 3-axis, click "Fit ICP" in scale UI
    coreg.set_scale_mode('3-axis')
    with catch_logging() as log:
        coreg.fit_icp(20, verbose=True)
    log = log.getvalue()
    assert 'ICP  7' in log
    assert 'ICP  8' not in log
    want_scale = [1.025, 1.010, 1.121]
    want_trans = [
        [9.98387098e-01, 2.04762165e-02, 5.29526398e-02, 4.97257097e-05],
        [1.13287698e-02, 8.42087150e-01, -5.39222538e-01, 7.09863892e-03],
        [-5.56319728e-02, 5.38952649e-01, 8.40496957e-01, -1.46372067e-02],
        [0, 0, 0, 1]]
    assert_allclose(coreg.scale, want_scale, atol=5e-4)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)


@testing.requires_testing_data
@pytest.mark.parametrize(
    'drop_point_kind', (FIFF.FIFFV_POINT_CARDINAL, FIFF.FIFFV_POINT_HPI,
                        FIFF.FIFFV_POINT_EXTRA, FIFF.FIFFV_POINT_EEG))
def test_coreg_class_init(drop_point_kind):
    """Test that Coregistration can be instantiated with various digs."""
    fiducials, _ = read_fiducials(fid_fname)
    info = read_info(raw_fname)

    dig_list = []
    eeg_chans = []
    for pt in info['dig']:
        if pt['kind'] != drop_point_kind:
            dig_list.append(pt)
            if pt['kind'] == FIFF.FIFFV_POINT_EEG:
                eeg_chans.append(f"EEG {pt['ident']:03d}")

    this_info = info.copy()
    this_info.set_montage(DigMontage(dig=dig_list, ch_names=eeg_chans),
                          on_missing='ignore')
    Coregistration(this_info, subject='sample',
                   subjects_dir=subjects_dir, fiducials=fiducials)