1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
import os
import os.path as op
import numpy as np
from numpy.testing import (assert_allclose, assert_array_equal,
assert_array_less)
import matplotlib.pyplot as plt
import pytest
from mne import (read_dipole, read_forward_solution,
convert_forward_solution, read_evokeds, read_cov,
SourceEstimate, write_evokeds, fit_dipole,
transform_surface_to, make_sphere_model, pick_types,
pick_info, EvokedArray, read_source_spaces, make_ad_hoc_cov,
make_forward_solution, Dipole, DipoleFixed, Epochs,
make_fixed_length_events, Evoked, head_to_mni)
from mne.dipole import get_phantom_dipoles, _BDIP_ERROR_KEYS
from mne.simulation import simulate_evoked
from mne.datasets import testing
from mne.utils import (requires_mne, run_subprocess, requires_nibabel,
_record_warnings)
from mne.proj import make_eeg_average_ref_proj
from mne.io import read_raw_fif, read_raw_ctf
from mne.io.constants import FIFF
from mne.surface import _compute_nearest
from mne.bem import _bem_find_surface, read_bem_solution
from mne.transforms import apply_trans, _get_trans
data_path = testing.data_path(download=False)
meg_path = op.join(data_path, 'MEG', 'sample')
fname_dip_xfit_80 = op.join(meg_path, 'sample_audvis-ave_xfit.dip')
fname_raw = op.join(meg_path, 'sample_audvis_trunc_raw.fif')
fname_dip = op.join(meg_path, 'sample_audvis_trunc_set1.dip')
fname_bdip = op.join(meg_path, 'sample_audvis_trunc_set1.bdip')
fname_dip_xfit = op.join(meg_path, 'sample_audvis_trunc_xfit.dip')
fname_bdip_xfit = op.join(meg_path, 'sample_audvis_trunc_xfit.bdip')
fname_evo = op.join(meg_path, 'sample_audvis_trunc-ave.fif')
fname_evo_full = op.join(meg_path, 'sample_audvis-ave.fif')
fname_cov = op.join(meg_path, 'sample_audvis_trunc-cov.fif')
fname_trans = op.join(meg_path, 'sample_audvis_trunc-trans.fif')
fname_fwd = op.join(meg_path, 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
fname_bem = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-1280-1280-1280-bem-sol.fif')
fname_src = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-oct-2-src.fif')
fname_xfit_dip = op.join(data_path, 'dip', 'fixed_auto.fif')
fname_xfit_dip_txt = op.join(data_path, 'dip', 'fixed_auto.dip')
fname_xfit_seq_txt = op.join(data_path, 'dip', 'sequential.dip')
fname_ctf = op.join(data_path, 'CTF', 'testdata_ctf_short.ds')
subjects_dir = op.join(data_path, 'subjects')
def _compare_dipoles(orig, new):
"""Compare dipole results for equivalence."""
assert_allclose(orig.times, new.times, atol=1e-3, err_msg='times')
assert_allclose(orig.pos, new.pos, err_msg='pos')
assert_allclose(orig.amplitude, new.amplitude, err_msg='amplitude')
assert_allclose(orig.gof, new.gof, err_msg='gof')
assert_allclose(orig.ori, new.ori, rtol=1e-4, atol=1e-4, err_msg='ori')
assert orig.name == new.name
def _check_dipole(dip, n_dipoles):
"""Check dipole sizes."""
assert len(dip) == n_dipoles
assert dip.pos.shape == (n_dipoles, 3)
assert dip.ori.shape == (n_dipoles, 3)
assert dip.gof.shape == (n_dipoles,)
assert dip.amplitude.shape == (n_dipoles,)
@testing.requires_testing_data
def test_io_dipoles(tmp_path):
"""Test IO for .dip files."""
dipole = read_dipole(fname_dip)
assert 'Dipole ' in repr(dipole) # test repr
out_fname = op.join(str(tmp_path), 'temp.dip')
dipole.save(out_fname)
dipole_new = read_dipole(out_fname)
_compare_dipoles(dipole, dipole_new)
@testing.requires_testing_data
def test_dipole_fitting_ctf():
"""Test dipole fitting with CTF data."""
raw_ctf = read_raw_ctf(fname_ctf).set_eeg_reference(projection=True)
events = make_fixed_length_events(raw_ctf, 1)
evoked = Epochs(raw_ctf, events, 1, 0, 0, baseline=None).average()
cov = make_ad_hoc_cov(evoked.info)
sphere = make_sphere_model((0., 0., 0.))
# XXX Eventually we should do some better checks about accuracy, but
# for now our CTF phantom fitting tutorials will have to do
# (otherwise we need to add that to the testing dataset, which is
# a bit too big)
fit_dipole(evoked, cov, sphere, rank=dict(meg=len(evoked.data)),
tol=1e-3, accuracy='accurate')
@pytest.mark.slowtest
@testing.requires_testing_data
@requires_nibabel()
@requires_mne
def test_dipole_fitting(tmp_path):
"""Test dipole fitting."""
amp = 100e-9
tempdir = str(tmp_path)
rng = np.random.RandomState(0)
fname_dtemp = op.join(tempdir, 'test.dip')
fname_sim = op.join(tempdir, 'test-ave.fif')
fwd = convert_forward_solution(read_forward_solution(fname_fwd),
surf_ori=False, force_fixed=True,
use_cps=True)
evoked = read_evokeds(fname_evo)[0]
cov = read_cov(fname_cov)
n_per_hemi = 5
vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
for s in fwd['src']]
nv = sum(len(v) for v in vertices)
stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
evoked = simulate_evoked(fwd, stc, evoked.info, cov, nave=evoked.nave,
random_state=rng)
# For speed, let's use a subset of channels (strange but works)
picks = np.sort(np.concatenate([
pick_types(evoked.info, meg=True, eeg=False)[::2],
pick_types(evoked.info, meg=False, eeg=True)[::2]]))
evoked.pick_channels([evoked.ch_names[p] for p in picks])
evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
write_evokeds(fname_sim, evoked)
# Run MNE-C version
run_subprocess([
'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
'--noise', fname_cov, '--dip', fname_dtemp,
'--mri', fname_fwd, '--reg', '0', '--tmin', '0',
])
dip_c = read_dipole(fname_dtemp)
# Run mne-python version
sphere = make_sphere_model(head_radius=0.1)
with pytest.warns(RuntimeWarning, match='projection'):
dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd,
rank='info') # just to test rank support
assert isinstance(residual, Evoked)
# Test conversion of dip.pos to MNI coordinates.
dip_mni_pos = dip.to_mni('sample', fname_trans,
subjects_dir=subjects_dir)
head_to_mni_dip_pos = head_to_mni(dip.pos, 'sample', fwd['mri_head_t'],
subjects_dir=subjects_dir)
assert_allclose(dip_mni_pos, head_to_mni_dip_pos, rtol=1e-3, atol=0)
# Test finding label for dip.pos in an aseg, also tests `to_mri`
target_labels = ['Left-Cerebral-Cortex', 'Unknown', 'Left-Cerebral-Cortex',
'Right-Cerebral-Cortex', 'Left-Cerebral-Cortex',
'Unknown', 'Unknown', 'Unknown',
'Right-Cerebral-White-Matter', 'Right-Cerebral-Cortex']
labels = dip.to_volume_labels(fname_trans, subject='fsaverage',
aseg="aseg", subjects_dir=subjects_dir)
assert labels == target_labels
# Sanity check: do our residuals have less power than orig data?
data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
resi_rms = np.sqrt(np.sum(residual.data ** 2, axis=0))
assert (data_rms > resi_rms * 0.95).all(), \
'%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)
# Compare to original points
transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
assert fwd['src'][0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
axis=0)
src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
axis=0)
# MNE-C skips the last "time" point :(
out = dip.crop(dip_c.times[0], dip_c.times[-1])
assert (dip is out)
src_rr, src_nn = src_rr[:-1], src_nn[:-1]
# check that we did about as well
corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
for d in (dip_c, dip):
new = d.pos
diffs = new - src_rr
corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
axis=1)))]
amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
gofs += [np.mean(d.gof)]
# XXX possibly some OpenBLAS numerical differences make
# things slightly worse for us
factor = 0.7
assert dists[0] / factor >= dists[1], 'dists: %s' % dists
assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
'gc-dists (ori): %s' % gc_dists
assert amp_errs[0] / factor >= amp_errs[1],\
'amplitude errors: %s' % amp_errs
# This one is weird because our cov/sim/picking is weird
assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
@testing.requires_testing_data
def test_dipole_fitting_fixed(tmp_path):
"""Test dipole fitting with a fixed position."""
tpeak = 0.073
sphere = make_sphere_model(head_radius=0.1)
evoked = read_evokeds(fname_evo, baseline=(None, 0))[0]
evoked.pick_types(meg=True)
t_idx = np.argmin(np.abs(tpeak - evoked.times))
evoked_crop = evoked.copy().crop(tpeak, tpeak)
assert len(evoked_crop.times) == 1
cov = read_cov(fname_cov)
dip_seq, resid = fit_dipole(evoked_crop, cov, sphere)
assert isinstance(dip_seq, Dipole)
assert isinstance(resid, Evoked)
assert len(dip_seq.times) == 1
pos, ori, gof = dip_seq.pos[0], dip_seq.ori[0], dip_seq.gof[0]
amp = dip_seq.amplitude[0]
# Fix position, allow orientation to change
dip_free, resid_free = fit_dipole(evoked, cov, sphere, pos=pos)
assert isinstance(dip_free, Dipole)
assert isinstance(resid_free, Evoked)
assert_allclose(dip_free.times, evoked.times)
assert_allclose(np.tile(pos[np.newaxis], (len(evoked.times), 1)),
dip_free.pos)
assert_allclose(ori, dip_free.ori[t_idx]) # should find same ori
assert (np.dot(dip_free.ori, ori).mean() < 0.9) # but few the same
assert_allclose(gof, dip_free.gof[t_idx]) # ... same gof
assert_allclose(amp, dip_free.amplitude[t_idx]) # and same amp
assert_allclose(resid.data, resid_free.data[:, [t_idx]])
# Fix position and orientation
dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
assert (isinstance(dip_fixed, DipoleFixed))
assert_allclose(dip_fixed.times, evoked.times)
assert_allclose(dip_fixed.info['chs'][0]['loc'][:3], pos)
assert_allclose(dip_fixed.info['chs'][0]['loc'][3:6], ori)
assert_allclose(dip_fixed.data[1, t_idx], gof)
assert_allclose(resid.data, resid_fixed.data[:, [t_idx]])
_check_roundtrip_fixed(dip_fixed, tmp_path)
# bad resetting
evoked.info['bads'] = [evoked.ch_names[3]]
dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
# Degenerate conditions
evoked_nan = evoked.copy().crop(0, 0)
evoked_nan.data[0, 0] = None
pytest.raises(ValueError, fit_dipole, evoked_nan, cov, sphere)
pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, ori=[1, 0, 0])
pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0, 0, 0],
ori=[2, 0, 0])
pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0.1, 0, 0])
# copying
dip_fixed_2 = dip_fixed.copy()
dip_fixed_2.data[:] = 0.
assert not np.isclose(dip_fixed.data, 0., atol=1e-20).any()
# plotting
plt.close('all')
dip_fixed.plot()
plt.close('all')
orig_times = np.array(dip_fixed.times)
shift_times = dip_fixed.shift_time(1.).times
assert_allclose(shift_times, orig_times + 1)
@testing.requires_testing_data
def test_len_index_dipoles():
"""Test len and indexing of Dipole objects."""
dipole = read_dipole(fname_dip)
d0 = dipole[0]
d1 = dipole[:1]
_check_dipole(d0, 1)
_check_dipole(d1, 1)
_compare_dipoles(d0, d1)
mask = dipole.gof > 15
idx = np.where(mask)[0]
d_mask = dipole[mask]
_check_dipole(d_mask, 4)
_compare_dipoles(d_mask, dipole[idx])
@pytest.mark.slowtest # slow-ish on Travis OSX
@testing.requires_testing_data
def test_min_distance_fit_dipole():
"""Test dipole min_dist to inner_skull."""
subject = 'sample'
raw = read_raw_fif(fname_raw, preload=True)
# select eeg data
picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
info = pick_info(raw.info, picks)
# Let's use cov = Identity
cov = read_cov(fname_cov)
cov['data'] = np.eye(cov['data'].shape[0])
# Simulated scal map
simulated_scalp_map = np.zeros(picks.shape[0])
simulated_scalp_map[27:34] = 1
simulated_scalp_map = simulated_scalp_map[:, None]
evoked = EvokedArray(simulated_scalp_map, info, tmin=0)
min_dist = 5. # distance in mm
bem = read_bem_solution(fname_bem)
dip, residual = fit_dipole(evoked, cov, bem, fname_trans,
min_dist=min_dist, tol=1e-4)
assert isinstance(residual, Evoked)
dist = _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir)
# Constraints are not exact, so bump the minimum slightly
assert (min_dist - 0.1 < (dist[0] * 1000.) < (min_dist + 1.))
with pytest.raises(ValueError, match='min_dist should be positive'):
fit_dipole(evoked, cov, fname_bem, fname_trans, -1.)
def _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir):
"""Compute dipole depth."""
trans = _get_trans(fname_trans)[0]
bem = read_bem_solution(fname_bem)
surf = _bem_find_surface(bem, 'inner_skull')
points = surf['rr']
points = apply_trans(trans['trans'], points)
depth = _compute_nearest(points, dip.pos, return_dists=True)[1][0]
return np.ravel(depth)
@testing.requires_testing_data
def test_accuracy():
"""Test dipole fitting to sub-mm accuracy."""
evoked = read_evokeds(fname_evo)[0].crop(0., 0.,)
evoked.pick_types(meg=True, eeg=False)
evoked.pick_channels([c for c in evoked.ch_names[::4]])
for rad, perc_90 in zip((0.09, None), (0.002, 0.004)):
bem = make_sphere_model('auto', rad, evoked.info,
relative_radii=(0.999, 0.998, 0.997, 0.995))
src = read_source_spaces(fname_src)
fwd = make_forward_solution(evoked.info, None, src, bem)
fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
vertices = [src[0]['vertno'], src[1]['vertno']]
n_vertices = sum(len(v) for v in vertices)
amp = 10e-9
data = np.eye(n_vertices + 1)[:n_vertices]
data[-1, -1] = 1.
data *= amp
stc = SourceEstimate(data, vertices, 0., 1e-3, 'sample')
evoked.info.normalize_proj()
sim = simulate_evoked(fwd, stc, evoked.info, cov=None, nave=np.inf)
cov = make_ad_hoc_cov(evoked.info)
dip = fit_dipole(sim, cov, bem, min_dist=0.001)[0]
ds = []
for vi in range(n_vertices):
if vi < len(vertices[0]):
hi = 0
vertno = vi
else:
hi = 1
vertno = vi - len(vertices[0])
vertno = src[hi]['vertno'][vertno]
rr = src[hi]['rr'][vertno]
d = np.sqrt(np.sum((rr - dip.pos[vi]) ** 2))
ds.append(d)
# make sure that our median is sub-mm and the large majority are very
# close (we expect some to be off by a bit e.g. because they are
# radial)
assert_array_less(np.percentile(ds, [50, 90]), [0.0005, perc_90])
@testing.requires_testing_data
def test_dipole_fixed(tmp_path):
"""Test reading a fixed-position dipole (from Xfit)."""
dip = read_dipole(fname_xfit_dip)
# print the representation of the object DipoleFixed
assert 'DipoleFixed ' in repr(dip)
_check_roundtrip_fixed(dip, tmp_path)
with pytest.warns(RuntimeWarning, match='extra fields'):
dip_txt = read_dipole(fname_xfit_dip_txt)
assert_allclose(dip.info['chs'][0]['loc'][:3], dip_txt.pos[0])
assert_allclose(dip_txt.amplitude[0], 12.1e-9)
with pytest.warns(RuntimeWarning, match='extra fields'):
dip_txt_seq = read_dipole(fname_xfit_seq_txt)
assert_allclose(dip_txt_seq.gof, [27.3, 46.4, 43.7, 41., 37.3, 32.5])
def _check_roundtrip_fixed(dip, tmp_path):
"""Check roundtrip IO for fixed dipoles."""
tempdir = str(tmp_path)
dip.save(op.join(tempdir, 'test-dip.fif.gz'))
dip_read = read_dipole(op.join(tempdir, 'test-dip.fif.gz'))
assert_allclose(dip_read.data, dip_read.data)
assert_allclose(dip_read.times, dip.times, atol=1e-8)
assert dip_read.info['xplotter_layout'] == dip.info['xplotter_layout']
assert dip_read.ch_names == dip.ch_names
for ch_1, ch_2 in zip(dip_read.info['chs'], dip.info['chs']):
assert ch_1['ch_name'] == ch_2['ch_name']
for key in ('loc', 'kind', 'unit_mul', 'range', 'coord_frame', 'unit',
'cal', 'coil_type', 'scanno', 'logno'):
assert_allclose(ch_1[key], ch_2[key], err_msg=key)
def test_get_phantom_dipoles():
"""Test getting phantom dipole locations."""
pytest.raises(ValueError, get_phantom_dipoles, 0)
pytest.raises(ValueError, get_phantom_dipoles, 'foo')
for kind in ('vectorview', 'otaniemi'):
pos, ori = get_phantom_dipoles(kind)
assert pos.shape == (32, 3)
assert ori.shape == (32, 3)
@testing.requires_testing_data
def test_confidence(tmp_path):
"""Test confidence limits."""
evoked = read_evokeds(fname_evo_full, 'Left Auditory', baseline=(None, 0))
evoked.crop(0.08, 0.08).pick_types(meg=True) # MEG-only
cov = make_ad_hoc_cov(evoked.info)
sphere = make_sphere_model((0., 0., 0.04), 0.08)
dip_py = fit_dipole(evoked, cov, sphere)[0]
fname_test = op.join(str(tmp_path), 'temp-dip.txt')
dip_py.save(fname_test)
dip_read = read_dipole(fname_test)
with pytest.warns(RuntimeWarning, match="'noise/ft/cm', 'prob'"):
dip_xfit = read_dipole(fname_dip_xfit_80)
for dip_check in (dip_py, dip_read):
assert_allclose(dip_check.pos, dip_xfit.pos, atol=5e-4) # < 0.5 mm
assert_allclose(dip_check.gof, dip_xfit.gof, atol=5e-1) # < 0.5%
assert_array_equal(dip_check.nfree, dip_xfit.nfree) # exact match
assert_allclose(dip_check.khi2, dip_xfit.khi2, rtol=2e-2) # 2% miss
assert set(dip_check.conf.keys()) == set(dip_xfit.conf.keys())
for key in sorted(dip_check.conf.keys()):
assert_allclose(dip_check.conf[key], dip_xfit.conf[key],
rtol=1.5e-1, err_msg=key)
# bdip created with:
# mne_dipole_fit --meas sample_audvis_trunc-ave.fif --set 1 --meg --tmin 40 --tmax 95 --bmin -200 --bmax 0 --noise sample_audvis_trunc-cov.fif --bem ../../subjects/sample/bem/sample-1280-1280-1280-bem-sol.fif --origin 0\:0\:40 --mri sample_audvis_trunc-trans.fif --bdip sample_audvis_trunc_set1.bdip # noqa: E501
# It gives equivalent results to .dip in non-dipole mode.
# xfit bdip created by taking sample_audvis_trunc-ave.fif, picking MEG
# channels, writitng to disk (with MNE), then running xfit on 40-95 ms
# with a 3.3 ms step
@testing.requires_testing_data
@pytest.mark.parametrize('fname_dip_, fname_bdip_', [
(fname_dip, fname_bdip),
(fname_dip_xfit, fname_bdip_xfit),
])
def test_bdip(fname_dip_, fname_bdip_, tmp_path):
"""Test bdip I/O."""
# use text as veridical
with _record_warnings(): # ignored fields
dip = read_dipole(fname_dip_)
# read binary
orig_size = os.stat(fname_bdip_).st_size
bdip = read_dipole(fname_bdip_)
# test round-trip by writing and reading, too
fname = tmp_path / 'test.bdip'
bdip.save(fname)
bdip_read = read_dipole(fname)
write_size = os.stat(str(fname)).st_size
assert orig_size == write_size
assert len(dip) == len(bdip) == len(bdip_read) == 17
dip_has_conf = fname_dip_ == fname_dip_xfit
for kind, this_bdip in (('orig', bdip), ('read', bdip_read)):
for key, atol in (
('pos', 5e-5),
('ori', 5e-3),
('gof', 0.5e-1),
('times', 5e-5),
('khi2', 1e-2)):
d = getattr(dip, key)
b = getattr(this_bdip, key)
if key == 'khi2' and dip_has_conf:
if d is not None:
assert_allclose(d, b, atol=atol,
err_msg='%s: %s' % (kind, key))
else:
assert b is None
if dip_has_conf:
# conf
conf_keys = _BDIP_ERROR_KEYS + ('vol',)
assert (set(this_bdip.conf.keys()) ==
set(dip.conf.keys()) ==
set(conf_keys))
for key in conf_keys:
d = dip.conf[key]
b = this_bdip.conf[key]
assert_allclose(d, b, rtol=0.12, # no so great, text I/O
err_msg='%s: %s' % (kind, key))
# Not stored
assert this_bdip.name is None
assert this_bdip.nfree is None
# Test whether indexing works
this_bdip0 = this_bdip[0]
_check_dipole(this_bdip0, 1)
|