1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Andrew Dykstra <andrew.r.dykstra@gmail.com>
# Mads Jensen <mje.mads@gmail.com>
#
# License: BSD-3-Clause
from copy import deepcopy
import os.path as op
import pickle
import numpy as np
from scipy import fftpack
from numpy.testing import (assert_array_almost_equal, assert_equal,
assert_array_equal, assert_allclose)
import pytest
from mne import (equalize_channels, pick_types, read_evokeds, write_evokeds,
combine_evoked, create_info, read_events,
Epochs, EpochsArray)
from mne.evoked import _get_peak, Evoked, EvokedArray
from mne.io import read_raw_fif
from mne.io.constants import FIFF
from mne.utils import requires_pandas, grand_average
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
fname = op.join(base_dir, 'test-ave.fif')
fname_gz = op.join(base_dir, 'test-ave.fif.gz')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_name = op.join(base_dir, 'test-eve.fif')
def test_get_data():
"""Test the get_data method for Evoked."""
evoked = read_evokeds(fname, 0)
d1 = evoked.get_data()
d2 = evoked.data
assert_array_equal(d1, d2)
eeg_idxs = np.array([i == "eeg" for i in evoked.get_channel_types()])
assert_array_equal(
evoked.data[eeg_idxs],
evoked.get_data(picks="eeg")
)
# Get a specific time window using tmin and tmax
d3 = evoked.get_data(tmin=0)
assert np.all(d3.shape[1] ==
evoked.data.shape[1] -
np.nonzero(evoked.times == 0)[0])
assert evoked.get_data(tmin=0, tmax=0).size == 0
with pytest.raises(TypeError, match='tmin .* float, None'):
evoked.get_data(tmin=[1], tmax=1)
with pytest.raises(TypeError, match='tmax .* float, None'):
evoked.get_data(tmin=1, tmax=np.ones(5))
# Test units
# more tests in mne/io/tests/test_raw.py::test_get_data_units
# EEG is already in V, so no conversion should take place
d1 = evoked.get_data(picks="eeg", units=None)
d2 = evoked.get_data(picks="eeg", units="V")
assert_array_equal(d1, d2)
# Convert to µV
d3 = evoked.get_data(picks="eeg", units="µV")
assert_array_equal(d1 * 1e6, d3)
def test_decim():
"""Test evoked decimation."""
rng = np.random.RandomState(0)
n_channels, n_times = 10, 20
dec_1, dec_2 = 2, 3
decim = dec_1 * dec_2
sfreq = 10.
sfreq_new = sfreq / decim
data = rng.randn(n_channels, n_times)
info = create_info(n_channels, sfreq, 'eeg')
with info._unlock():
info['lowpass'] = sfreq_new / float(decim)
evoked = EvokedArray(data, info, tmin=-1)
zero_idx = evoked.times.tolist().index(0)
evoked_dec = evoked.copy().decimate(decim)
evoked_dec_2 = evoked.copy().decimate(decim, offset=1)
evoked_dec_3 = evoked.decimate(dec_1).decimate(dec_2)
start_samp = zero_idx - decim
assert_array_equal(evoked_dec.data, data[:, start_samp::decim])
# this has +1 because offset=1 when decimating ↓↓↓↓↓↓↓↓↓↓↓↓↓↓
assert_array_equal(evoked_dec_2.data, data[:, (start_samp + 1)::decim])
# Check proper updating of various fields
assert evoked_dec.first == -1
assert evoked_dec.last == 1
assert_array_equal(evoked_dec.times, [-0.6, 0.0, 0.6])
assert evoked_dec_2.first == -1
assert evoked_dec_2.last == 1
assert_array_equal(evoked_dec_2.times, [-0.5, 0.1, 0.7])
assert evoked_dec_3.first == -1
assert evoked_dec_3.last == 1
assert_array_equal(evoked_dec_3.times, [-0.6, 0.0, 0.6])
# make sure the time nearest zero is also sample number 0.
for ev in (evoked_dec, evoked_dec_2, evoked_dec_3):
lowest_index = np.argmin(np.abs(np.arange(ev.first, ev.last)))
idxs_of_times_nearest_zero = \
np.where(np.abs(ev.times) == np.min(np.abs(ev.times)))[0]
# we use `in` here in case two times are equidistant from 0.
assert lowest_index in idxs_of_times_nearest_zero
assert len(idxs_of_times_nearest_zero) in (1, 2)
# Now let's do it with some real data
raw = read_raw_fif(raw_fname)
events = read_events(event_name)
sfreq_new = raw.info['sfreq'] / decim
with raw.info._unlock():
raw.info['lowpass'] = sfreq_new / 4. # suppress aliasing warnings
picks = pick_types(raw.info, meg=True, eeg=True, exclude=())
epochs = Epochs(raw, events, 1, -0.2, 0.5, picks=picks, preload=True)
for offset in (0, 1):
ev_ep_decim = epochs.copy().decimate(decim, offset).average()
ev_decim = epochs.average().decimate(decim, offset)
expected_times = epochs.times[offset::decim]
assert_allclose(ev_decim.times, expected_times)
assert_allclose(ev_ep_decim.times, expected_times)
expected_data = epochs.get_data()[:, :, offset::decim].mean(axis=0)
assert_allclose(ev_decim.data, expected_data)
assert_allclose(ev_ep_decim.data, expected_data)
assert_equal(ev_decim.info['sfreq'], sfreq_new)
assert_array_equal(ev_decim.times, expected_times)
def test_savgol_filter():
"""Test savgol filtering."""
h_freq = 10.
evoked = read_evokeds(fname, 0)
freqs = fftpack.fftfreq(len(evoked.times), 1. / evoked.info['sfreq'])
data = np.abs(fftpack.fft(evoked.data))
match_mask = np.logical_and(freqs >= 0, freqs <= h_freq / 2.)
mismatch_mask = np.logical_and(freqs >= h_freq * 2, freqs < 50.)
pytest.raises(ValueError, evoked.savgol_filter, evoked.info['sfreq'])
evoked_sg = evoked.copy().savgol_filter(h_freq)
data_filt = np.abs(fftpack.fft(evoked_sg.data))
# decent in pass-band
assert_allclose(np.mean(data[:, match_mask], 0),
np.mean(data_filt[:, match_mask], 0),
rtol=1e-4, atol=1e-2)
# suppression in stop-band
assert (np.mean(data[:, mismatch_mask]) >
np.mean(data_filt[:, mismatch_mask]) * 5)
# original preserved
assert_allclose(data, np.abs(fftpack.fft(evoked.data)), atol=1e-16)
def test_hash_evoked():
"""Test evoked hashing."""
ave = read_evokeds(fname, 0)
ave_2 = read_evokeds(fname, 0)
assert hash(ave) == hash(ave_2)
assert ave == ave_2
# do NOT use assert_equal here, failing output is terrible
assert pickle.dumps(ave) == pickle.dumps(ave_2)
ave_2.data[0, 0] -= 1
assert hash(ave) != hash(ave_2)
def _aspect_kinds():
"""Yield evoked aspect kinds."""
kinds = list()
for key in FIFF:
if not key.startswith('FIFFV_ASPECT_'):
continue
kinds.append(getattr(FIFF, str(key)))
return kinds
@pytest.mark.parametrize('aspect_kind', _aspect_kinds())
def test_evoked_aspects(aspect_kind, tmp_path):
"""Test handling of evoked aspects."""
# gh-6359
ave = read_evokeds(fname, 0)
ave._aspect_kind = aspect_kind
assert 'Evoked' in repr(ave)
# for completeness let's try a round-trip
temp_fname = op.join(str(tmp_path), 'test-ave.fif')
ave.save(temp_fname)
ave_2 = read_evokeds(temp_fname, condition=0)
assert_allclose(ave.data, ave_2.data)
assert ave.kind == ave_2.kind
@pytest.mark.slowtest
def test_io_evoked(tmp_path):
"""Test IO for evoked data (fif + gz) with integer and str args."""
ave = read_evokeds(fname, 0)
ave_double = ave.copy()
ave_double.comment = ave.comment + ' doubled nave'
ave_double.nave = ave.nave * 2
write_evokeds(tmp_path / 'evoked-ave.fif', [ave, ave_double])
ave2, ave_double = read_evokeds(op.join(tmp_path, 'evoked-ave.fif'))
assert ave2.nave * 2 == ave_double.nave
# This not being assert_array_equal due to windows rounding
assert (np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
assert_array_almost_equal(ave.times, ave2.times)
assert_equal(ave.nave, ave2.nave)
assert_equal(ave._aspect_kind, ave2._aspect_kind)
assert_equal(ave.kind, ave2.kind)
assert_equal(ave.last, ave2.last)
assert_equal(ave.first, ave2.first)
assert (repr(ave))
assert (ave._repr_html_()) # test _repr_html_
# test compressed i/o
ave2 = read_evokeds(fname_gz, 0)
assert (np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))
# test str access
condition = 'Left Auditory'
pytest.raises(ValueError, read_evokeds, fname, condition, kind='stderr')
pytest.raises(ValueError, read_evokeds, fname, condition,
kind='standard_error')
ave3 = read_evokeds(fname, condition)
assert_array_almost_equal(ave.data, ave3.data, 19)
# test read_evokeds and write_evokeds
aves1 = read_evokeds(fname)[1::2]
aves2 = read_evokeds(fname, [1, 3])
aves3 = read_evokeds(fname, ['Right Auditory', 'Right visual'])
write_evokeds(tmp_path / 'evoked-ave.fif', aves1, overwrite=True)
aves4 = read_evokeds(tmp_path / 'evoked-ave.fif')
for aves in [aves2, aves3, aves4]:
for [av1, av2] in zip(aves1, aves):
assert_array_almost_equal(av1.data, av2.data)
assert_array_almost_equal(av1.times, av2.times)
assert_equal(av1.nave, av2.nave)
assert_equal(av1.kind, av2.kind)
assert_equal(av1._aspect_kind, av2._aspect_kind)
assert_equal(av1.last, av2.last)
assert_equal(av1.first, av2.first)
assert_equal(av1.comment, av2.comment)
# test saving and reading complex numbers in evokeds
ave_complex = ave.copy()
ave_complex._data = 1j * ave_complex.data
fname_temp = str(tmp_path / 'complex-ave.fif')
ave_complex.save(fname_temp)
ave_complex = read_evokeds(fname_temp)[0]
assert_allclose(ave.data, ave_complex.data.imag)
# test warnings on bad filenames
fname2 = tmp_path / 'test-bad-name.fif'
with pytest.warns(RuntimeWarning, match='-ave.fif'):
write_evokeds(fname2, ave)
with pytest.warns(RuntimeWarning, match='-ave.fif'):
read_evokeds(fname2)
# test writing when order of bads doesn't match
fname3 = tmp_path / 'test-bad-order-ave.fif'
condition = 'Left Auditory'
ave4 = read_evokeds(fname, condition)
ave4.info['bads'] = ave4.ch_names[:3]
ave5 = ave4.copy()
ave5.info['bads'] = ave4.info['bads'][::-1]
write_evokeds(fname3, [ave4, ave5])
# constructor
pytest.raises(TypeError, Evoked, fname)
# MaxShield
fname_ms = tmp_path / 'test-ave.fif'
assert (ave.info['maxshield'] is False)
with ave.info._unlock():
ave.info['maxshield'] = True
ave.save(fname_ms)
pytest.raises(ValueError, read_evokeds, fname_ms)
with pytest.warns(RuntimeWarning, match='Elekta'):
aves = read_evokeds(fname_ms, allow_maxshield=True)
assert all(ave.info['maxshield'] is True for ave in aves)
aves = read_evokeds(fname_ms, allow_maxshield='yes')
assert (all(ave.info['maxshield'] is True for ave in aves))
def test_shift_time_evoked(tmp_path):
"""Test for shifting of time scale."""
tempdir = str(tmp_path)
# Shift backward
ave = read_evokeds(fname, 0).shift_time(-0.1, relative=True)
fname_temp = op.join(tempdir, 'evoked-ave.fif')
write_evokeds(fname_temp, ave)
# Shift forward twice the amount
ave_bshift = read_evokeds(fname_temp, 0)
ave_bshift.shift_time(0.2, relative=True)
write_evokeds(fname_temp, ave_bshift, overwrite=True)
# Shift backward again
ave_fshift = read_evokeds(fname_temp, 0)
ave_fshift.shift_time(-0.1, relative=True)
write_evokeds(fname_temp, ave_fshift, overwrite=True)
ave_normal = read_evokeds(fname, 0)
ave_relative = read_evokeds(fname_temp, 0)
assert_allclose(ave_normal.data, ave_relative.data, atol=1e-16, rtol=1e-3)
assert_array_almost_equal(ave_normal.times, ave_relative.times, 8)
assert_equal(ave_normal.last, ave_relative.last)
assert_equal(ave_normal.first, ave_relative.first)
# Absolute time shift
ave = read_evokeds(fname, 0)
ave.shift_time(-0.3, relative=False)
write_evokeds(fname_temp, ave, overwrite=True)
ave_absolute = read_evokeds(fname_temp, 0)
assert_allclose(ave_normal.data, ave_absolute.data, atol=1e-16, rtol=1e-3)
assert_equal(ave_absolute.first, int(-0.3 * ave.info['sfreq']))
# subsample shift
shift = 1e-6 # 1 µs, should be well below 1/sfreq
ave = read_evokeds(fname, 0)
times = ave.times
ave.shift_time(shift)
assert_allclose(times + shift, ave.times, atol=1e-16, rtol=1e-12)
# test handling of Evoked.first, Evoked.last
ave = read_evokeds(fname, 0)
first_last = np.array([ave.first, ave.last])
# should shift by 0 samples
ave.shift_time(1e-6)
assert_array_equal(first_last, np.array([ave.first, ave.last]))
write_evokeds(fname_temp, ave, overwrite=True)
ave_loaded = read_evokeds(fname_temp, 0)
assert_array_almost_equal(ave.times, ave_loaded.times, 8)
# should shift by 57 samples
ave.shift_time(57. / ave.info['sfreq'])
assert_array_equal(first_last + 57, np.array([ave.first, ave.last]))
write_evokeds(fname_temp, ave, overwrite=True)
ave_loaded = read_evokeds(fname_temp, 0)
assert_array_almost_equal(ave.times, ave_loaded.times, 8)
def test_tmin_tmax():
"""Test that the tmin and tmax attributes return the correct time."""
evoked = read_evokeds(fname, 0)
assert evoked.times[0] == evoked.tmin
assert evoked.times[-1] == evoked.tmax
def test_evoked_resample(tmp_path):
"""Test resampling evoked data."""
tempdir = str(tmp_path)
# upsample, write it out, read it in
ave = read_evokeds(fname, 0)
orig_lp = ave.info['lowpass']
sfreq_normal = ave.info['sfreq']
ave.resample(2 * sfreq_normal, npad=100)
assert ave.info['lowpass'] == orig_lp
fname_temp = op.join(tempdir, 'evoked-ave.fif')
write_evokeds(fname_temp, ave)
ave_up = read_evokeds(fname_temp, 0)
# compare it to the original
ave_normal = read_evokeds(fname, 0)
# and compare the original to the downsampled upsampled version
ave_new = read_evokeds(fname_temp, 0)
ave_new.resample(sfreq_normal, npad=100)
assert ave.info['lowpass'] == orig_lp
assert_array_almost_equal(ave_normal.data, ave_new.data, 2)
assert_array_almost_equal(ave_normal.times, ave_new.times)
assert_equal(ave_normal.nave, ave_new.nave)
assert_equal(ave_normal._aspect_kind, ave_new._aspect_kind)
assert_equal(ave_normal.kind, ave_new.kind)
assert_equal(ave_normal.last, ave_new.last)
assert_equal(ave_normal.first, ave_new.first)
# for the above to work, the upsampling just about had to, but
# we'll add a couple extra checks anyway
assert (len(ave_up.times) == 2 * len(ave_normal.times))
assert (ave_up.data.shape[1] == 2 * ave_normal.data.shape[1])
ave_new.resample(50)
assert ave_new.info['sfreq'] == 50.
assert ave_new.info['lowpass'] == 25.
def test_evoked_filter():
"""Test filtering evoked data."""
# this is mostly a smoke test as the Epochs and raw tests are more complete
ave = read_evokeds(fname, 0).pick_types(meg='grad')
ave.data[:] = 1.
assert round(ave.info['lowpass']) == 172
ave_filt = ave.copy().filter(None, 40., fir_design='firwin')
assert ave_filt.info['lowpass'] == 40.
assert_allclose(ave.data, 1., atol=1e-6)
def test_evoked_detrend():
"""Test for detrending evoked data."""
ave = read_evokeds(fname, 0)
ave_normal = read_evokeds(fname, 0)
ave.detrend(0)
ave_normal.data -= np.mean(ave_normal.data, axis=1)[:, np.newaxis]
picks = pick_types(ave.info, meg=True, eeg=True, exclude='bads')
assert_allclose(ave.data[picks], ave_normal.data[picks],
rtol=1e-8, atol=1e-16)
@requires_pandas
def test_to_data_frame():
"""Test evoked Pandas exporter."""
ave = read_evokeds(fname, 0)
# test index checking
with pytest.raises(ValueError, match='options. Valid index options are'):
ave.to_data_frame(index=['foo', 'bar'])
with pytest.raises(ValueError, match='"qux" is not a valid option'):
ave.to_data_frame(index='qux')
with pytest.raises(TypeError, match='index must be `None` or a string or'):
ave.to_data_frame(index=np.arange(400))
# test setting index
df = ave.to_data_frame(index='time')
assert 'time' not in df.columns
assert 'time' in df.index.names
# test wide and long formats
df_wide = ave.to_data_frame()
assert all(np.in1d(ave.ch_names, df_wide.columns))
df_long = ave.to_data_frame(long_format=True)
expected = ('time', 'channel', 'ch_type', 'value')
assert set(expected) == set(df_long.columns)
assert set(ave.ch_names) == set(df_long['channel'])
assert len(df_long) == ave.data.size
del df_wide, df_long
# test scalings
df = ave.to_data_frame(index='time')
assert ((df.columns == ave.ch_names).all())
assert_array_equal(df.values[:, 0], ave.data[0] * 1e13)
assert_array_equal(df.values[:, 2], ave.data[2] * 1e15)
@requires_pandas
@pytest.mark.parametrize('time_format', (None, 'ms', 'timedelta'))
def test_to_data_frame_time_format(time_format):
"""Test time conversion in evoked Pandas exporter."""
from pandas import Timedelta
ave = read_evokeds(fname, 0)
# test time_format
df = ave.to_data_frame(time_format=time_format)
dtypes = {None: np.float64, 'ms': np.int64, 'timedelta': Timedelta}
assert isinstance(df['time'].iloc[0], dtypes[time_format])
def test_evoked_proj():
"""Test SSP proj operations."""
for proj in [True, False]:
ave = read_evokeds(fname, condition=0, proj=proj)
assert (all(p['active'] == proj for p in ave.info['projs']))
# test adding / deleting proj
if proj:
pytest.raises(ValueError, ave.add_proj, [],
{'remove_existing': True})
pytest.raises(ValueError, ave.del_proj, 0)
else:
projs = deepcopy(ave.info['projs'])
n_proj = len(ave.info['projs'])
ave.del_proj(0)
assert (len(ave.info['projs']) == n_proj - 1)
# Test that already existing projections are not added.
ave.add_proj(projs, remove_existing=False)
assert (len(ave.info['projs']) == n_proj)
ave.add_proj(projs[:-1], remove_existing=True)
assert (len(ave.info['projs']) == n_proj - 1)
ave = read_evokeds(fname, condition=0, proj=False)
data = ave.data.copy()
ave.apply_proj()
assert_allclose(np.dot(ave._projector, data), ave.data)
def test_get_peak():
"""Test peak getter."""
evoked = read_evokeds(fname, condition=0, proj=True)
with pytest.raises(ValueError, match='tmin.*must be <= tmax'):
evoked.get_peak(ch_type='mag', tmin=1)
with pytest.raises(ValueError, match='tmax.*is out of bounds'):
evoked.get_peak(ch_type='mag', tmax=0.9)
with pytest.raises(ValueError, match='tmin.*must be <= tmax'):
evoked.get_peak(ch_type='mag', tmin=0.02, tmax=0.01)
with pytest.raises(ValueError, match="Invalid.*'mode' parameter"):
evoked.get_peak(ch_type='mag', mode='foo')
with pytest.raises(RuntimeError, match='Multiple data channel types'):
evoked.get_peak(ch_type=None, mode='foo')
with pytest.raises(ValueError, match='Channel type.*not found'):
evoked.get_peak(ch_type='misc', mode='foo')
ch_name, time_idx = evoked.get_peak(ch_type='mag')
assert (ch_name in evoked.ch_names)
assert (time_idx in evoked.times)
ch_name, time_idx, max_amp = evoked.get_peak(ch_type='mag',
time_as_index=True,
return_amplitude=True)
assert (time_idx < len(evoked.times))
assert_equal(ch_name, 'MEG 1421')
assert_allclose(max_amp, 7.17057e-13, rtol=1e-5)
with pytest.raises(ValueError, match='must be "grad" for merge_grads'):
evoked.get_peak(ch_type='mag', merge_grads=True)
with pytest.raises(ValueError, match='Negative mode.*does not make sense'):
evoked.get_peak(ch_type='grad', merge_grads=True, mode='neg')
ch_name, time_idx = evoked.get_peak(ch_type='grad', merge_grads=True)
assert_equal(ch_name, 'MEG 244X')
data = np.array([[0., 1., 2.],
[0., -3., 0]])
times = np.array([.1, .2, .3])
ch_idx, time_idx, max_amp = _get_peak(data, times, mode='abs')
assert_equal(ch_idx, 1)
assert_equal(time_idx, 1)
assert_allclose(max_amp, -3.)
ch_idx, time_idx, max_amp = _get_peak(data * -1, times, mode='neg')
assert_equal(ch_idx, 0)
assert_equal(time_idx, 2)
assert_allclose(max_amp, -2.)
ch_idx, time_idx, max_amp = _get_peak(data, times, mode='pos')
assert_equal(ch_idx, 0)
assert_equal(time_idx, 2)
assert_allclose(max_amp, 2.)
# Check behavior if `mode` doesn't match the available data
evoked_all_pos = evoked.copy().crop(0, 0.1).pick('EEG 001')
evoked_all_neg = evoked.copy().crop(0, 0.1).pick('EEG 001')
evoked_all_pos.data = np.abs(evoked_all_pos.data) # all values positive
evoked_all_neg.data = -np.abs(evoked_all_neg.data) # all negative
with pytest.raises(ValueError, match='No negative values'):
evoked_all_pos.get_peak(mode='neg')
with pytest.raises(ValueError, match='No positive values'):
evoked_all_neg.get_peak(mode='pos')
# Test interaction between `mode` and `tmin` / `tmax`
# For the test, create an Evoked where half of the values are negative
# and the rest is positive
evoked_neg_and_pos = evoked_all_neg.copy()
time_sep_neg_and_pos = 0.05
idx_time_sep_neg_and_pos = evoked_neg_and_pos.time_as_index(
time_sep_neg_and_pos
)[0]
evoked_neg_and_pos.data[:, idx_time_sep_neg_and_pos:] *= -1
with pytest.raises(ValueError, match='No positive values'):
evoked_neg_and_pos.get_peak(
mode='pos',
# subtract 1 time instant, otherwise were off-by-one
tmax=time_sep_neg_and_pos - 1 / evoked_neg_and_pos.info['sfreq']
)
with pytest.raises(ValueError, match='No negative values'):
evoked_neg_and_pos.get_peak(mode='neg', tmin=time_sep_neg_and_pos)
def test_drop_channels_mixin():
"""Test channels-dropping functionality."""
evoked = read_evokeds(fname, condition=0, proj=True)
drop_ch = evoked.ch_names[:3]
ch_names = evoked.ch_names[3:]
ch_names_orig = evoked.ch_names
dummy = evoked.copy().drop_channels(drop_ch)
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, evoked.ch_names)
assert_equal(len(ch_names_orig), len(evoked.data))
dummy2 = evoked.copy().drop_channels([drop_ch[0]])
assert_equal(dummy2.ch_names, ch_names_orig[1:])
evoked.drop_channels(drop_ch)
assert_equal(ch_names, evoked.ch_names)
assert_equal(len(ch_names), len(evoked.data))
for ch_names in ([1, 2], "fake", ["fake"]):
pytest.raises(ValueError, evoked.drop_channels, ch_names)
def test_pick_channels_mixin():
"""Test channel-picking functionality."""
evoked = read_evokeds(fname, condition=0, proj=True)
ch_names = evoked.ch_names[:3]
ch_names_orig = evoked.ch_names
dummy = evoked.copy().pick_channels(ch_names)
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, evoked.ch_names)
assert_equal(len(ch_names_orig), len(evoked.data))
evoked.pick_channels(ch_names)
assert_equal(ch_names, evoked.ch_names)
assert_equal(len(ch_names), len(evoked.data))
evoked = read_evokeds(fname, condition=0, proj=True)
assert ('meg' in evoked)
assert ('eeg' in evoked)
evoked.pick_types(meg=False, eeg=True)
assert ('meg' not in evoked)
assert ('eeg' in evoked)
assert (len(evoked.ch_names) == 60)
def test_equalize_channels():
"""Test equalization of channels."""
evoked1 = read_evokeds(fname, condition=0, proj=True)
evoked2 = evoked1.copy()
ch_names = evoked1.ch_names[2:]
evoked1.drop_channels(evoked1.ch_names[:1])
evoked2.drop_channels(evoked2.ch_names[1:2])
my_comparison = [evoked1, evoked2]
my_comparison = equalize_channels(my_comparison)
for e in my_comparison:
assert_equal(ch_names, e.ch_names)
def test_arithmetic():
"""Test evoked arithmetic."""
ev = read_evokeds(fname, condition=0)
ev20 = EvokedArray(np.ones_like(ev.data), ev.info, ev.times[0], nave=20)
ev30 = EvokedArray(np.ones_like(ev.data), ev.info, ev.times[0], nave=30)
tol = dict(rtol=1e-9, atol=0)
# test subtraction
sub1 = combine_evoked([ev, ev], weights=[1, -1])
sub2 = combine_evoked([ev, -ev], weights=[1, 1])
assert np.allclose(sub1.data, np.zeros_like(sub1.data), atol=1e-20)
assert np.allclose(sub2.data, np.zeros_like(sub2.data), atol=1e-20)
# test nave weighting. Expect signal ampl.: 1*(20/50) + 1*(30/50) == 1
# and expect nave == ev1.nave + ev2.nave
ev = combine_evoked([ev20, ev30], weights='nave')
assert np.allclose(ev.nave, ev20.nave + ev30.nave)
assert np.allclose(ev.data, np.ones_like(ev.data), **tol)
# test equal-weighted sum. Expect signal ampl. == 2
# and expect nave == 1/sum(1/naves) == 1/(1/20 + 1/30) == 12
ev = combine_evoked([ev20, ev30], weights=[1, 1])
assert np.allclose(ev.nave, 12.)
assert np.allclose(ev.data, ev20.data + ev30.data, **tol)
# test equal-weighted average. Expect signal ampl. == 1
# and expect nave == 1/sum(weights²/naves) == 1/(0.5²/20 + 0.5²/30) == 48
ev = combine_evoked([ev20, ev30], weights='equal')
assert np.allclose(ev.nave, 48.)
assert np.allclose(ev.data, np.mean([ev20.data, ev30.data], axis=0), **tol)
# test zero weights
ev = combine_evoked([ev20, ev30], weights=[1, 0])
assert ev.nave == ev20.nave
assert np.allclose(ev.data, ev20.data, **tol)
# default comment behavior if evoked.comment is None
old_comment1 = ev20.comment
ev20.comment = None
ev = combine_evoked([ev20, -ev30], weights=[1, -1])
assert_equal(ev.comment.count('unknown'), 2)
assert ev.comment == 'unknown + unknown'
ev20.comment = old_comment1
with pytest.raises(ValueError, match="Invalid value for the 'weights'"):
combine_evoked([ev20, ev30], weights='foo')
with pytest.raises(ValueError, match='weights must be the same size as'):
combine_evoked([ev20, ev30], weights=[1])
# grand average
evoked1, evoked2 = read_evokeds(fname, condition=[0, 1], proj=True)
ch_names = evoked1.ch_names[2:]
evoked1.info['bads'] = ['EEG 008'] # test interpolation
evoked1.drop_channels(evoked1.ch_names[:1])
evoked2.drop_channels(evoked2.ch_names[1:2])
gave = grand_average([evoked1, evoked2])
assert_equal(gave.data.shape, [len(ch_names), evoked1.data.shape[1]])
assert_equal(ch_names, gave.ch_names)
assert_equal(gave.nave, 2)
with pytest.raises(TypeError, match='All elements must be an instance of'):
grand_average([1, evoked1])
gave = grand_average([ev20, ev20, -ev30]) # (1 + 1 + -1) / 3 = 1/3
assert_allclose(gave.data, np.full_like(gave.data, 1. / 3.))
# test channel (re)ordering
evoked1, evoked2 = read_evokeds(fname, condition=[0, 1], proj=True)
data2 = evoked2.data # assumes everything is ordered to the first evoked
data = (evoked1.data + evoked2.data) / 2.
evoked2.reorder_channels(evoked2.ch_names[::-1])
assert not np.allclose(data2, evoked2.data)
with pytest.warns(RuntimeWarning, match='reordering'):
evoked3 = combine_evoked([evoked1, evoked2], weights=[0.5, 0.5])
assert np.allclose(evoked3.data, data)
assert evoked1.ch_names != evoked2.ch_names
assert evoked1.ch_names == evoked3.ch_names
def test_array_epochs(tmp_path):
"""Test creating evoked from array."""
tempdir = str(tmp_path)
# creating
rng = np.random.RandomState(42)
data1 = rng.randn(20, 60)
sfreq = 1e3
ch_names = ['EEG %03d' % (i + 1) for i in range(20)]
types = ['eeg'] * 20
info = create_info(ch_names, sfreq, types)
evoked1 = EvokedArray(data1, info, tmin=-0.01)
# save, read, and compare evokeds
tmp_fname = op.join(tempdir, 'evkdary-ave.fif')
evoked1.save(tmp_fname)
evoked2 = read_evokeds(tmp_fname)[0]
data2 = evoked2.data
assert_allclose(data1, data2)
assert_array_almost_equal(evoked1.times, evoked2.times, 8)
assert_equal(evoked1.first, evoked2.first)
assert_equal(evoked1.last, evoked2.last)
assert_equal(evoked1.kind, evoked2.kind)
assert_equal(evoked1.nave, evoked2.nave)
# now compare with EpochsArray (with single epoch)
data3 = data1[np.newaxis, :, :]
events = np.c_[10, 0, 1]
evoked3 = EpochsArray(data3, info, events=events, tmin=-0.01).average()
assert_allclose(evoked1.data, evoked3.data)
assert_allclose(evoked1.times, evoked3.times)
assert_equal(evoked1.first, evoked3.first)
assert_equal(evoked1.last, evoked3.last)
assert_equal(evoked1.kind, evoked3.kind)
assert_equal(evoked1.nave, evoked3.nave)
# test kind check
with pytest.raises(ValueError, match='Invalid value'):
EvokedArray(data1, info, tmin=0, kind=1)
with pytest.raises(ValueError, match='Invalid value'):
EvokedArray(data1, info, kind='mean')
# test match between channels info and data
ch_names = ['EEG %03d' % (i + 1) for i in range(19)]
types = ['eeg'] * 19
info = create_info(ch_names, sfreq, types)
pytest.raises(ValueError, EvokedArray, data1, info, tmin=-0.01)
def test_time_as_index_and_crop():
"""Test time as index and cropping."""
tmin, tmax = -0.1, 0.1
evoked = read_evokeds(fname, condition=0).crop(tmin, tmax)
delta = 1. / evoked.info['sfreq']
atol = 0.5 * delta
assert_allclose(evoked.times[[0, -1]], [tmin, tmax], atol=atol)
assert_array_equal(evoked.time_as_index([-.1, .1], use_rounding=True),
[0, len(evoked.times) - 1])
evoked.crop(evoked.tmin, evoked.tmax, include_tmax=False)
n_times = len(evoked.times)
with pytest.warns(RuntimeWarning, match='tmax is set to'):
evoked.crop(tmin, tmax, include_tmax=False)
assert len(evoked.times) == n_times
assert_allclose(evoked.times[[0, -1]], [tmin, tmax - delta], atol=atol)
def test_add_channels():
"""Test evoked splitting / re-appending channel types."""
evoked = read_evokeds(fname, condition=0)
hpi_coils = [{'event_bits': []},
{'event_bits': np.array([256, 0, 256, 256])},
{'event_bits': np.array([512, 0, 512, 512])}]
with evoked.info._unlock():
evoked.info['hpi_subsystem'] = dict(hpi_coils=hpi_coils, ncoil=2)
evoked_eeg = evoked.copy().pick_types(meg=False, eeg=True)
evoked_meg = evoked.copy().pick_types(meg=True)
evoked_stim = evoked.copy().pick_types(meg=False, stim=True)
evoked_eeg_meg = evoked.copy().pick_types(meg=True, eeg=True)
evoked_new = evoked_meg.copy().add_channels([evoked_eeg, evoked_stim])
assert (all(ch in evoked_new.ch_names
for ch in evoked_stim.ch_names + evoked_meg.ch_names))
evoked_new = evoked_meg.copy().add_channels([evoked_eeg])
assert (ch in evoked_new.ch_names for ch in evoked.ch_names)
assert_array_equal(evoked_new.data, evoked_eeg_meg.data)
assert (all(ch not in evoked_new.ch_names
for ch in evoked_stim.ch_names))
# Now test errors
evoked_badsf = evoked_eeg.copy()
with evoked_badsf.info._unlock():
evoked_badsf.info['sfreq'] = 3.1415927
evoked_eeg = evoked_eeg.crop(-.1, .1)
pytest.raises(RuntimeError, evoked_meg.add_channels, [evoked_badsf])
pytest.raises(ValueError, evoked_meg.add_channels, [evoked_eeg])
pytest.raises(ValueError, evoked_meg.add_channels, [evoked_meg])
pytest.raises(TypeError, evoked_meg.add_channels, evoked_badsf)
def test_evoked_baseline(tmp_path):
"""Test evoked baseline."""
evoked = read_evokeds(fname, condition=0, baseline=None)
# Here we create a data_set with constant data.
evoked = EvokedArray(np.ones_like(evoked.data), evoked.info,
evoked.times[0])
assert evoked.baseline is None
evoked_baselined = EvokedArray(np.ones_like(evoked.data), evoked.info,
evoked.times[0], baseline=(None, 0))
assert_allclose(evoked_baselined.baseline, (evoked_baselined.tmin, 0))
del evoked_baselined
# Mean baseline correction is applied, since the data is equal to its mean
# the resulting data should be a matrix of zeroes.
baseline = (None, None)
evoked.apply_baseline(baseline)
assert_allclose(evoked.baseline, (evoked.tmin, evoked.tmax))
assert_allclose(evoked.data, np.zeros_like(evoked.data))
# Test that the .baseline attribute changes if we apply a different
# baseline now.
baseline = (None, 0)
evoked.apply_baseline(baseline)
assert_allclose(evoked.baseline, (evoked.tmin, 0))
# By default for our test file, no baseline should be set upon reading
evoked = read_evokeds(fname, condition=0)
assert evoked.baseline is None
# Test that the .baseline attribute is set when we call read_evokeds()
# with a `baseline` parameter.
baseline = (-0.2, -0.1)
evoked = read_evokeds(fname, condition=0, baseline=baseline)
assert_allclose(evoked.baseline, baseline)
# Test that the .baseline attribute survives an I/O roundtrip.
evoked = read_evokeds(fname, condition=0)
baseline = (-0.2, -0.1)
evoked.apply_baseline(baseline)
assert_allclose(evoked.baseline, baseline)
tmp_fname = tmp_path / 'test-ave.fif'
evoked.save(tmp_fname)
evoked_read = read_evokeds(tmp_fname, condition=0)
assert_allclose(evoked_read.baseline, evoked.baseline)
# We shouldn't be able to remove a baseline correction after it has been
# applied.
evoked = read_evokeds(fname, condition=0)
baseline = (-0.2, -0.1)
evoked.apply_baseline(baseline)
with pytest.raises(ValueError, match='already been baseline-corrected'):
evoked.apply_baseline(None)
def test_hilbert():
"""Test hilbert on raw, epochs, and evoked."""
raw = read_raw_fif(raw_fname).load_data()
raw.del_proj()
raw.pick_channels(raw.ch_names[:2])
events = read_events(event_name)
epochs = Epochs(raw, events)
with pytest.raises(RuntimeError, match='requires epochs data to be load'):
epochs.apply_hilbert()
epochs.load_data()
evoked = epochs.average()
raw_hilb = raw.apply_hilbert()
epochs_hilb = epochs.apply_hilbert()
evoked_hilb = evoked.copy().apply_hilbert()
evoked_hilb_2_data = epochs_hilb.get_data().mean(0)
assert_allclose(evoked_hilb.data, evoked_hilb_2_data)
# This one is only approximate because of edge artifacts
evoked_hilb_3 = Epochs(raw_hilb, events).average()
corr = np.corrcoef(np.abs(evoked_hilb_3.data.ravel()),
np.abs(evoked_hilb.data.ravel()))[0, 1]
assert 0.96 < corr < 0.98
# envelope=True mode
evoked_hilb_env = evoked.apply_hilbert(envelope=True)
assert_allclose(evoked_hilb_env.data, np.abs(evoked_hilb.data))
def test_apply_function_evk():
"""Check the apply_function method for evoked data."""
# create fake evoked data to use for checking apply_function
data = np.random.rand(10, 1000)
info = create_info(10, 1000., 'eeg')
evoked = EvokedArray(data, info)
evoked_data = evoked.data.copy()
# check apply_function channel-wise
def fun(data, multiplier):
return data * multiplier
mult = -1
applied = evoked.apply_function(fun, n_jobs=None, multiplier=mult)
assert np.shape(applied.data) == np.shape(evoked_data)
assert np.equal(applied.data, evoked_data * mult).all()
|