1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
import copy as cp
import os.path as op
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_allclose,
assert_equal)
import pytest
from scipy import linalg
from mne import (compute_proj_epochs, compute_proj_evoked, compute_proj_raw,
pick_types, read_events, Epochs, sensitivity_map,
read_source_estimate, compute_raw_covariance, create_info,
read_forward_solution, convert_forward_solution)
from mne.cov import regularize, compute_whitener
from mne.datasets import testing
from mne.io import read_raw_fif, RawArray
from mne.io.proj import (make_projector, activate_proj, setup_proj,
_needs_eeg_average_ref_proj, _EEG_AVREF_PICK_DICT)
from mne.preprocessing import maxwell_filter
from mne.proj import (read_proj, write_proj, make_eeg_average_ref_proj,
_has_eeg_average_ref_proj)
from mne.rank import _compute_rank_int
from mne.utils import _record_warnings
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_fname = op.join(base_dir, 'test-eve.fif')
proj_fname = op.join(base_dir, 'test-proj.fif')
proj_gz_fname = op.join(base_dir, 'test-proj.fif.gz')
bads_fname = op.join(base_dir, 'test_bads.txt')
sample_path = op.join(testing.data_path(download=False), 'MEG', 'sample')
fwd_fname = op.join(sample_path, 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
sensmap_fname = op.join(sample_path,
'sample_audvis_trunc-%s-oct-4-fwd-sensmap-%s.w')
eog_fname = op.join(sample_path, 'sample_audvis_eog-proj.fif')
ecg_fname = op.join(sample_path, 'sample_audvis_ecg-proj.fif')
def test_bad_proj():
"""Test dealing with bad projection application."""
raw = read_raw_fif(raw_fname, preload=True)
events = read_events(event_fname)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
picks = picks[2:18:3]
_check_warnings(raw, events, picks)
# still bad
raw.pick_channels([raw.ch_names[ii] for ii in picks])
_check_warnings(raw, events)
# "fixed"
raw.info.normalize_proj() # avoid projection warnings
_check_warnings(raw, events, count=0)
# eeg avg ref is okay
raw = read_raw_fif(raw_fname, preload=True).pick_types(meg=False, eeg=True)
raw.set_eeg_reference(projection=True)
_check_warnings(raw, events, count=0)
raw.info['bads'] = raw.ch_names[:10]
_check_warnings(raw, events, count=0)
raw = read_raw_fif(raw_fname)
pytest.raises(ValueError, raw.del_proj, 'foo')
n_proj = len(raw.info['projs'])
raw.del_proj(0)
assert_equal(len(raw.info['projs']), n_proj - 1)
raw.del_proj()
assert_equal(len(raw.info['projs']), 0)
# Ensure we deal with newer-style Neuromag projs properly, were getting:
#
# Projection vector "PCA-v2" has magnitude 1.00 (should be unity),
# applying projector with 101/306 of the original channels available
# may be dangerous.
raw = read_raw_fif(raw_fname).crop(0, 1)
raw.set_eeg_reference(projection=True)
raw.info['bads'] = ['MEG 0111']
meg_picks = pick_types(raw.info, meg=True, exclude=())
ch_names = [raw.ch_names[pick] for pick in meg_picks]
for p in raw.info['projs'][:-1]:
data = np.zeros((1, len(ch_names)))
idx = [ch_names.index(ch_name) for ch_name in p['data']['col_names']]
data[:, idx] = p['data']['data']
p['data'].update(ncol=len(meg_picks), col_names=ch_names, data=data)
# smoke test for no warnings during reg
regularize(compute_raw_covariance(raw, verbose='error'), raw.info)
def _check_warnings(raw, events, picks=None, count=3):
"""Count warnings."""
with _record_warnings() as w:
Epochs(raw, events, dict(aud_l=1, vis_l=3),
-0.2, 0.5, picks=picks, preload=True, proj=True)
assert len(w) == count
assert all('dangerous' in str(ww.message) for ww in w)
@testing.requires_testing_data
def test_sensitivity_maps():
"""Test sensitivity map computation."""
fwd = read_forward_solution(fwd_fname)
fwd = convert_forward_solution(fwd, surf_ori=True)
projs = read_proj(eog_fname)
projs.extend(read_proj(ecg_fname))
decim = 6
for ch_type in ['eeg', 'grad', 'mag']:
w = read_source_estimate(sensmap_fname % (ch_type, 'lh')).data
stc = sensitivity_map(fwd, projs=None, ch_type=ch_type,
mode='free', exclude='bads')
assert_array_almost_equal(stc.data, w, decim)
assert stc.subject == 'sample'
# let's just make sure the others run
if ch_type == 'grad':
# fixed (2)
w = read_source_estimate(sensmap_fname % (ch_type, '2-lh')).data
stc = sensitivity_map(fwd, projs=None, mode='fixed',
ch_type=ch_type, exclude='bads')
assert_array_almost_equal(stc.data, w, decim)
if ch_type == 'mag':
# ratio (3)
w = read_source_estimate(sensmap_fname % (ch_type, '3-lh')).data
stc = sensitivity_map(fwd, projs=None, mode='ratio',
ch_type=ch_type, exclude='bads')
assert_array_almost_equal(stc.data, w, decim)
if ch_type == 'eeg':
# radiality (4), angle (5), remaining (6), and dampening (7)
modes = ['radiality', 'angle', 'remaining', 'dampening']
ends = ['4-lh', '5-lh', '6-lh', '7-lh']
for mode, end in zip(modes, ends):
w = read_source_estimate(sensmap_fname % (ch_type, end)).data
stc = sensitivity_map(fwd, projs=projs, mode=mode,
ch_type=ch_type, exclude='bads')
assert_array_almost_equal(stc.data, w, decim)
# test corner case for EEG
stc = sensitivity_map(fwd, projs=[make_eeg_average_ref_proj(fwd['info'])],
ch_type='eeg', exclude='bads')
# test corner case for projs being passed but no valid ones (#3135)
pytest.raises(ValueError, sensitivity_map, fwd, projs=None, mode='angle')
pytest.raises(RuntimeError, sensitivity_map, fwd, projs=[], mode='angle')
# test volume source space
fname = op.join(sample_path, 'sample_audvis_trunc-meg-vol-7-fwd.fif')
fwd = read_forward_solution(fname)
sensitivity_map(fwd)
def test_compute_proj_epochs(tmp_path):
"""Test SSP computation on epochs."""
tempdir = str(tmp_path)
event_id, tmin, tmax = 1, -0.2, 0.3
raw = read_raw_fif(raw_fname, preload=True)
events = read_events(event_fname)
bad_ch = 'MEG 2443'
picks = pick_types(raw.info, meg=True, eeg=False, stim=False, eog=False,
exclude=[])
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=None, proj=False)
evoked = epochs.average()
projs = compute_proj_epochs(epochs, n_grad=1, n_mag=1, n_eeg=0)
write_proj(op.join(tempdir, 'test-proj.fif.gz'), projs)
for p_fname in [proj_fname, proj_gz_fname,
op.join(tempdir, 'test-proj.fif.gz')]:
projs2 = read_proj(p_fname)
assert len(projs) == len(projs2)
for p1, p2 in zip(projs, projs2):
assert p1['desc'] == p2['desc']
assert p1['data']['col_names'] == p2['data']['col_names']
assert p1['active'] == p2['active']
# compare with sign invariance
p1_data = p1['data']['data'] * np.sign(p1['data']['data'][0, 0])
p2_data = p2['data']['data'] * np.sign(p2['data']['data'][0, 0])
if bad_ch in p1['data']['col_names']:
bad = p1['data']['col_names'].index('MEG 2443')
mask = np.ones(p1_data.size, dtype=bool)
mask[bad] = False
p1_data = p1_data[:, mask]
p2_data = p2_data[:, mask]
corr = np.corrcoef(p1_data, p2_data)[0, 1]
assert_array_almost_equal(corr, 1.0, 5)
if p2['explained_var']:
assert isinstance(p2['explained_var'], float)
assert_array_almost_equal(p1['explained_var'],
p2['explained_var'])
# test that you can compute the projection matrix
projs = activate_proj(projs)
proj, nproj, U = make_projector(projs, epochs.ch_names, bads=[])
assert nproj == 2
assert U.shape[1] == 2
# test that you can save them
with epochs.info._unlock():
epochs.info['projs'] += projs
evoked = epochs.average()
evoked.save(op.join(tempdir, 'foo-ave.fif'))
projs = read_proj(proj_fname)
projs_evoked = compute_proj_evoked(evoked, n_grad=1, n_mag=1, n_eeg=0)
assert len(projs_evoked) == 2
# XXX : test something
# test parallelization
projs = compute_proj_epochs(epochs, n_grad=1, n_mag=1, n_eeg=0,
desc_prefix='foobar')
assert all('foobar' in x['desc'] for x in projs)
projs = activate_proj(projs)
proj_par, _, _ = make_projector(projs, epochs.ch_names, bads=[])
assert_allclose(proj, proj_par, rtol=1e-8, atol=1e-16)
# test warnings on bad filenames
proj_badname = op.join(tempdir, 'test-bad-name.fif.gz')
with pytest.warns(RuntimeWarning, match='-proj.fif'):
write_proj(proj_badname, projs)
with pytest.warns(RuntimeWarning, match='-proj.fif'):
read_proj(proj_badname)
# bad inputs
fname = op.join(tempdir, 'out-proj.fif')
with pytest.raises(TypeError, match='projs'):
write_proj(fname, 'foo')
with pytest.raises(TypeError, match=r'projs\[0\] must be .*'):
write_proj(fname, ['foo'], overwrite=True)
@pytest.mark.slowtest
def test_compute_proj_raw(tmp_path):
"""Test SSP computation on raw."""
tempdir = str(tmp_path)
# Test that the raw projectors work
raw_time = 2.5 # Do shorter amount for speed
raw = read_raw_fif(raw_fname).crop(0, raw_time)
raw.load_data()
for ii in (0.25, 0.5, 1, 2):
with pytest.warns(RuntimeWarning, match='Too few samples'):
projs = compute_proj_raw(raw, duration=ii - 0.1, stop=raw_time,
n_grad=1, n_mag=1, n_eeg=0)
# test that you can compute the projection matrix
projs = activate_proj(projs)
proj, nproj, U = make_projector(projs, raw.ch_names, bads=[])
assert nproj == 2
assert U.shape[1] == 2
# test that you can save them
with raw.info._unlock():
raw.info['projs'] += projs
raw.save(op.join(tempdir, 'foo_%d_raw.fif' % ii), overwrite=True)
# Test that purely continuous (no duration) raw projection works
with pytest.warns(RuntimeWarning, match='Too few samples'):
projs = compute_proj_raw(raw, duration=None, stop=raw_time,
n_grad=1, n_mag=1, n_eeg=0)
# test that you can compute the projection matrix
projs = activate_proj(projs)
proj, nproj, U = make_projector(projs, raw.ch_names, bads=[])
assert nproj == 2
assert U.shape[1] == 2
# test that you can save them
with raw.info._unlock():
raw.info['projs'] += projs
raw.save(op.join(tempdir, 'foo_rawproj_continuous_raw.fif'))
# test resampled-data projector, upsampling instead of downsampling
# here to save an extra filtering (raw would have to be LP'ed to be equiv)
raw_resamp = cp.deepcopy(raw)
raw_resamp.resample(raw.info['sfreq'] * 2, n_jobs=2, npad='auto')
projs = compute_proj_raw(raw_resamp, duration=None, stop=raw_time,
n_grad=1, n_mag=1, n_eeg=0)
projs = activate_proj(projs)
proj_new, _, _ = make_projector(projs, raw.ch_names, bads=[])
assert_array_almost_equal(proj_new, proj, 4)
# test with bads
raw.load_bad_channels(bads_fname) # adds 2 bad mag channels
with pytest.warns(RuntimeWarning, match='Too few samples'):
projs = compute_proj_raw(raw, n_grad=0, n_mag=0, n_eeg=1)
assert len(projs) == 1
# test that bad channels can be excluded, and empty support
for projs_ in (projs, []):
proj, nproj, U = make_projector(projs_, raw.ch_names,
bads=raw.ch_names)
assert_array_almost_equal(proj, np.eye(len(raw.ch_names)))
assert nproj == 0 # all channels excluded
assert U.shape == (len(raw.ch_names), nproj)
@pytest.mark.parametrize('duration', [1, np.pi / 2.])
@pytest.mark.parametrize('sfreq', [600.614990234375, 1000.])
def test_proj_raw_duration(duration, sfreq):
"""Test equivalence of `duration` options."""
n_ch, n_dim = 30, 3
rng = np.random.RandomState(0)
signals = rng.randn(n_dim, 10000)
mixing = rng.randn(n_ch, n_dim) + [0, 1, 2]
data = np.dot(mixing, signals)
raw = RawArray(data, create_info(n_ch, sfreq, 'eeg'))
raw.set_eeg_reference(projection=True)
n_eff = int(round(raw.info['sfreq'] * duration))
# crop to an even "duration" number of epochs
stop = ((len(raw.times) // n_eff) * n_eff - 1) / raw.info['sfreq']
raw.crop(0, stop)
proj_def = compute_proj_raw(raw, n_eeg=n_dim)
proj_dur = compute_proj_raw(raw, duration=duration, n_eeg=n_dim)
proj_none = compute_proj_raw(raw, duration=None, n_eeg=n_dim)
assert len(proj_dur) == len(proj_none) == len(proj_def) == n_dim
# proj_def is not in here because it does not necessarily evenly divide
# the signal length:
for pu, pn in zip(proj_dur, proj_none):
assert_allclose(pu['data']['data'], pn['data']['data'])
# but we can test it here since it should still be a small subspace angle:
for proj in (proj_dur, proj_none, proj_def):
computed = np.concatenate([p['data']['data'] for p in proj], 0)
angle = np.rad2deg(linalg.subspace_angles(computed.T, mixing)[0])
assert angle < 1e-5
def test_make_eeg_average_ref_proj():
"""Test EEG average reference projection."""
raw = read_raw_fif(raw_fname, preload=True)
eeg = pick_types(raw.info, meg=False, eeg=True)
# No average EEG reference
assert not np.all(raw._data[eeg].mean(axis=0) < 1e-19)
# Apply average EEG reference
car = make_eeg_average_ref_proj(raw.info)
reref = raw.copy()
reref.add_proj(car)
reref.apply_proj()
assert_array_almost_equal(reref._data[eeg].mean(axis=0), 0, decimal=18)
# Error when custom reference has already been applied
with raw.info._unlock():
raw.info['custom_ref_applied'] = True
pytest.raises(RuntimeError, make_eeg_average_ref_proj, raw.info)
# test that an average EEG ref is not added when doing proj
raw.set_eeg_reference(projection=True)
assert _has_eeg_average_ref_proj(raw.info)
raw.del_proj(idx=-1)
assert not _has_eeg_average_ref_proj(raw.info)
raw.apply_proj()
assert not _has_eeg_average_ref_proj(raw.info)
@pytest.mark.parametrize('ch_type', tuple(_EEG_AVREF_PICK_DICT) + ('all',))
def test_has_eeg_average_ref_proj(ch_type):
"""Test checking whether an (i)EEG average reference exists."""
all_ref_ch_types = list(_EEG_AVREF_PICK_DICT)
if ch_type == 'all':
ch_types = all_ref_ch_types
set_eeg_ref_ch_type = all_ref_ch_types
else:
ch_types = [ch_type] * len(all_ref_ch_types)
set_eeg_ref_ch_type = ch_type
empty_info = create_info(len(all_ref_ch_types), 1000., ch_types)
assert not _has_eeg_average_ref_proj(empty_info)
raw = read_raw_fif(raw_fname)
raw.del_proj()
raw.load_data()
picks = pick_types(raw.info, eeg=True)
assert len(picks) == 60
# repeat `ch_types` over and over again
ch_types = sum(
[ch_types] * (len(picks) // len(ch_types) + 1), [])[:len(picks)]
raw.set_channel_types(
{raw.ch_names[pick]: ch_type
for pick, ch_type in zip(picks, ch_types)})
raw._data[picks] = 1. # set all to unity
# For individual channel types, set them and return from the test early
if ch_type != 'all':
for ch_type in ('auto', set_eeg_ref_ch_type):
raw.set_eeg_reference(projection=True, ch_type=ch_type)
assert len(raw.info['projs']) == 1
assert _has_eeg_average_ref_proj(raw.info)
assert not _needs_eeg_average_ref_proj(raw.info)
if ch_type == 'auto':
with pytest.warns(RuntimeWarning, match='added.*untouched'):
raw.set_eeg_reference(
projection=True, ch_type=ch_type)
raw.del_proj()
desc = raw.info['projs'][0]['desc'].lower()
assert ch_type in desc
data = raw.copy().apply_proj()[picks][0]
assert_allclose(data, 0., atol=1e-12) # zeroed out
return
# Now for ch_type == 'all', ensure that we can make one proj or
# len(all_ref_ch_types) projs
# One big joint proj
raw.set_eeg_reference(
projection=True, ch_type=set_eeg_ref_ch_type)
assert len(raw.info['projs']) == len(all_ref_ch_types)
raw.del_proj()
raw.set_eeg_reference(
projection=True, ch_type=set_eeg_ref_ch_type, joint=True)
assert len(raw.info['projs']) == 1
assert _has_eeg_average_ref_proj(raw.info)
assert not _needs_eeg_average_ref_proj(raw.info)
desc = raw.info['projs'][0]['desc'].lower()
assert all(ch_type in desc for ch_type in all_ref_ch_types)
for ch_type in all_ref_ch_types + [all_ref_ch_types]:
with pytest.warns(RuntimeWarning, match='already added.*untouch'):
raw.set_eeg_reference(projection=True, ch_type=ch_type)
data = raw.copy().apply_proj()[picks][0]
assert_allclose(data, 0., atol=1e-12) # zeroed out
raw.del_proj()
# len(all_kinds) separate projs, with data for each channel type that
# is a different non-zero integer (EEG=1, SEEG=2, ...)
for ci, ch_type in enumerate(all_ref_ch_types):
raw._data[pick_types(raw.info, **{ch_type: True})] = ci + 1
for ci, ch_type in enumerate(all_ref_ch_types):
raw.set_eeg_reference(projection=True, ch_type=ch_type)
assert len(raw.info['projs']) == ci + 1
if ci < len(all_ref_ch_types) < 1:
assert not _has_eeg_average_ref_proj(raw.info)
assert _needs_eeg_average_ref_proj(raw.info)
assert len(raw.info['projs']) == len(all_ref_ch_types)
assert _has_eeg_average_ref_proj(raw.info)
assert not _needs_eeg_average_ref_proj(raw.info)
descs = [p['desc'].lower() for p in raw.info['projs']]
assert len(descs) == len(all_ref_ch_types)
for desc, ch_type in zip(descs, all_ref_ch_types):
assert ch_type in desc
assert_allclose(raw[picks][0], raw[all_ref_ch_types][0], atol=1e-12)
data = raw.copy().apply_proj()[picks][0]
assert len(data) == len(picks)
assert_allclose(data, 0., atol=1e-12) # zeroed out
# a single joint proj will *not* zero out given these integer 1/2/3...
# values per channel type assuming we have an even number of channels.
# If this changes we'll have to make this check better
assert len(all_ref_ch_types) % 2 == 0
data_nz = raw.del_proj().set_eeg_reference(
projection=True, ch_type=all_ref_ch_types,
joint=True).apply_proj()[picks][0]
assert not np.isclose(data_nz, 0.).any()
def test_needs_eeg_average_ref_proj():
"""Test checking whether a recording needs an EEG average reference."""
raw = read_raw_fif(raw_fname)
assert _needs_eeg_average_ref_proj(raw.info)
raw.set_eeg_reference(projection=True)
assert not _needs_eeg_average_ref_proj(raw.info)
# No EEG channels
raw = read_raw_fif(raw_fname, preload=True)
eeg = [raw.ch_names[c] for c in pick_types(raw.info, meg=False, eeg=True)]
raw.drop_channels(eeg)
assert not _needs_eeg_average_ref_proj(raw.info)
# Custom ref flag set
raw = read_raw_fif(raw_fname)
with raw.info._unlock():
raw.info['custom_ref_applied'] = True
assert not _needs_eeg_average_ref_proj(raw.info)
def test_sss_proj():
"""Test `meg` proj option."""
raw = read_raw_fif(raw_fname)
raw.crop(0, 1.0).load_data().pick_types(meg=True, exclude=())
raw.pick_channels(raw.ch_names[:51]).del_proj()
raw_sss = maxwell_filter(raw, int_order=5, ext_order=2)
sss_rank = 21 # really low due to channel picking
assert len(raw_sss.info['projs']) == 0
for meg, n_proj, want_rank in (('separate', 6, sss_rank),
('combined', 3, sss_rank - 3)):
proj = compute_proj_raw(raw_sss, n_grad=3, n_mag=3, meg=meg,
verbose='error')
this_raw = raw_sss.copy().add_proj(proj).apply_proj()
assert len(this_raw.info['projs']) == n_proj
sss_proj_rank = _compute_rank_int(this_raw)
cov = compute_raw_covariance(this_raw, verbose='error')
W, ch_names, rank = compute_whitener(cov, this_raw.info,
return_rank=True)
assert ch_names == this_raw.ch_names
assert want_rank == sss_proj_rank == rank # proper reduction
if meg == 'combined':
assert this_raw.info['projs'][0]['data']['col_names'] == ch_names
else:
mag_names = ch_names[2::3]
assert this_raw.info['projs'][3]['data']['col_names'] == mag_names
def test_eq_ne():
"""Test == and != between projectors."""
raw = read_raw_fif(raw_fname, preload=False)
assert len(raw.info["projs"]) == 3
raw.set_eeg_reference(projection=True)
pca1 = cp.deepcopy(raw.info["projs"][0])
pca2 = cp.deepcopy(raw.info["projs"][1])
car = cp.deepcopy(raw.info["projs"][3])
assert pca1 != pca2
assert pca1 != car
assert pca2 != car
assert pca1 == raw.info["projs"][0]
assert pca2 == raw.info["projs"][1]
assert car == raw.info["projs"][3]
def test_setup_proj():
"""Test setup_proj."""
raw = read_raw_fif(raw_fname)
assert _needs_eeg_average_ref_proj(raw.info)
raw.del_proj()
setup_proj(raw.info)
|