File: test_rank.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (303 lines) | stat: -rw-r--r-- 12,217 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os.path as op
import itertools as itt

from numpy.testing import assert_array_equal
import numpy as np

import pytest

from mne import (read_evokeds, read_cov, compute_raw_covariance, pick_types,
                 pick_info)
from mne.cov import prepare_noise_cov
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.io.pick import _picks_by_type, _get_channel_types
from mne.io.proj import _has_eeg_average_ref_proj
from mne.proj import compute_proj_raw
from mne.rank import (estimate_rank, compute_rank, _get_rank_sss,
                      _compute_rank_int, _estimate_rank_raw)


base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
cov_fname = op.join(base_dir, 'test-cov.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
ave_fname = op.join(base_dir, 'test-ave.fif')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')

testing_path = testing.data_path(download=False)
data_dir = op.join(testing_path, 'MEG', 'sample')
mf_fif_fname = op.join(testing_path, 'SSS', 'test_move_anon_raw_sss.fif')


def test_estimate_rank():
    """Test rank estimation."""
    data = np.eye(10)
    assert_array_equal(estimate_rank(data, return_singular=True)[1],
                       np.ones(10))
    data[0, 0] = 0
    assert estimate_rank(data) == 9
    pytest.raises(ValueError, estimate_rank, data, 'foo')


@pytest.mark.slowtest
@pytest.mark.parametrize(
    'fname, ref_meg', ((raw_fname, False),
                       (hp_fif_fname, False),
                       (ctf_fname, False),
                       (ctf_fname, True)))
@pytest.mark.parametrize(
    'scalings', ('norm', dict(mag=1e11, grad=1e9, eeg=1e5)))
@pytest.mark.parametrize('tol_kind, tol', [
    ('absolute', 1e-4),
    ('relative', 1e-6),
])
def test_raw_rank_estimation(fname, ref_meg, scalings, tol_kind, tol):
    """Test raw rank estimation."""
    if ref_meg and scalings != 'norm':
        # Adjust for CTF data (scale factors are quite different)
        if tol_kind == 'relative':
            scalings = dict(mag=1.)
        else:
            scalings = dict(mag=1e31)
    raw = read_raw_fif(fname)
    raw.crop(0, min(4., raw.times[-1])).load_data()
    out = _picks_by_type(raw.info, ref_meg=ref_meg, meg_combined=True)
    has_eeg = 'eeg' in raw
    if has_eeg:
        (_, picks_meg), (_, picks_eeg) = out
    else:
        (_, picks_meg), = out
        picks_eeg = []
    n_meg = len(picks_meg)
    n_eeg = len(picks_eeg)

    if len(raw.info['proc_history']) == 0:
        expected_rank = n_meg + n_eeg
    else:
        expected_rank = _get_rank_sss(raw.info) + n_eeg
    got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg,
                                  tol=tol, tol_kind=tol_kind)
    assert got_rank == expected_rank
    if 'sss' in fname:
        raw.add_proj(compute_proj_raw(raw))
    raw.apply_proj()
    n_proj = len(raw.info['projs'])
    want_rank = expected_rank - (0 if 'sss' in fname else n_proj)
    got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg,
                                  tol=tol, tol_kind=tol_kind)
    assert got_rank == want_rank


@pytest.mark.slowtest
@pytest.mark.parametrize('meg', ('separate', 'combined'))
@pytest.mark.parametrize('rank_method, proj', [('info', True),
                                               ('info', False),
                                               (None, True),
                                               (None, False)])
def test_cov_rank_estimation(rank_method, proj, meg):
    """Test cov rank estimation."""
    # Test that our rank estimation works properly on a simple case
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=False)
    cov = read_cov(cov_fname)
    ch_names = [ch for ch in evoked.info['ch_names'] if '053' not in ch and
                ch.startswith('EEG')]
    cov = prepare_noise_cov(cov, evoked.info, ch_names, None)
    assert cov['eig'][0] <= 1e-25  # avg projector should set this to zero
    assert (cov['eig'][1:] > 1e-16).all()  # all else should be > 0

    # Now do some more comprehensive tests
    raw_sample = read_raw_fif(raw_fname)
    assert not _has_eeg_average_ref_proj(raw_sample.info)

    raw_sss = read_raw_fif(hp_fif_fname)
    assert not _has_eeg_average_ref_proj(raw_sss.info)
    raw_sss.add_proj(compute_proj_raw(raw_sss, meg=meg))

    cov_sample = compute_raw_covariance(raw_sample)
    cov_sample_proj = compute_raw_covariance(raw_sample.copy().apply_proj())

    cov_sss = compute_raw_covariance(raw_sss)
    cov_sss_proj = compute_raw_covariance(raw_sss.copy().apply_proj())

    picks_all_sample = pick_types(raw_sample.info, meg=True, eeg=True)
    picks_all_sss = pick_types(raw_sss.info, meg=True, eeg=True)

    info_sample = pick_info(raw_sample.info, picks_all_sample)
    picks_stack_sample = [('eeg', pick_types(info_sample, meg=False,
                                             eeg=True))]
    picks_stack_sample += [('meg', pick_types(info_sample, meg=True))]
    picks_stack_sample += [('all',
                            pick_types(info_sample, meg=True, eeg=True))]

    info_sss = pick_info(raw_sss.info, picks_all_sss)
    picks_stack_somato = [('eeg', pick_types(info_sss, meg=False, eeg=True))]
    picks_stack_somato += [('meg', pick_types(info_sss, meg=True))]
    picks_stack_somato += [('all',
                            pick_types(info_sss, meg=True, eeg=True))]

    iter_tests = list(itt.product(
        [(cov_sample, picks_stack_sample, info_sample),
         (cov_sample_proj, picks_stack_sample, info_sample),
         (cov_sss, picks_stack_somato, info_sss),
         (cov_sss_proj, picks_stack_somato, info_sss)],  # sss
        [dict(mag=1e15, grad=1e13, eeg=1e6)],
    ))

    for (cov, picks_list, iter_info), scalings in iter_tests:
        rank = compute_rank(cov, rank_method, scalings, iter_info,
                            proj=proj)
        rank['all'] = sum(rank.values())
        for ch_type, picks in picks_list:

            this_info = pick_info(iter_info, picks)

            # compute subset of projs, active and inactive
            n_projs_applied = sum(proj['active'] and
                                  len(set(proj['data']['col_names']) &
                                      set(this_info['ch_names'])) > 0
                                  for proj in cov['projs'])
            n_projs_info = sum(len(set(proj['data']['col_names']) &
                                   set(this_info['ch_names'])) > 0
                               for proj in this_info['projs'])

            # count channel types
            ch_types = _get_channel_types(this_info)
            n_eeg, n_mag, n_grad = [ch_types.count(k) for k in
                                    ['eeg', 'mag', 'grad']]
            n_meg = n_mag + n_grad
            has_sss = (n_meg > 0 and len(this_info['proc_history']) > 0)
            if has_sss:
                n_meg = _get_rank_sss(this_info)

            expected_rank = n_meg + n_eeg
            if rank_method is None:
                if meg == 'combined' or not has_sss:
                    if proj:
                        expected_rank -= n_projs_info
                    else:
                        expected_rank -= n_projs_applied
            else:
                # XXX for now it just uses the total count
                assert rank_method == 'info'
                if proj:
                    expected_rank -= n_projs_info

            assert rank[ch_type] == expected_rank


@pytest.mark.slowtest  # ~3 sec apiece on Azure means overall it's slow
@testing.requires_testing_data
@pytest.mark.parametrize('fname, rank_orig', ((hp_fif_fname, 120),
                                              (mf_fif_fname, 67)))
@pytest.mark.parametrize('n_proj, meg', ((0, 'combined'),
                                         (10, 'combined'),
                                         (10, 'separate')))
@pytest.mark.parametrize('tol_kind, tol', [
    ('absolute', 'float32'),
    ('relative', 'float32'),
    ('relative', 1e-5),
])
def test_maxfilter_get_rank(n_proj, fname, rank_orig, meg, tol_kind, tol):
    """Test maxfilter rank lookup."""
    raw = read_raw_fif(fname).crop(0, 5).load_data().pick_types(meg=True)
    assert raw.info['projs'] == []
    mf = raw.info['proc_history'][0]['max_info']
    assert mf['sss_info']['nfree'] == rank_orig

    assert compute_rank(raw, 'info')['meg'] == rank_orig
    assert compute_rank(raw.copy().pick('grad'), 'info')['grad'] == rank_orig
    assert compute_rank(raw.copy().pick('mag'), 'info')['mag'] == rank_orig

    mult = 1 + (meg == 'separate')
    rank = rank_orig - mult * n_proj
    if n_proj > 0:
        # Let's do some projection
        raw.add_proj(compute_proj_raw(raw, n_mag=n_proj, n_grad=n_proj,
                                      meg=meg, verbose=True))
    raw.apply_proj()
    data_orig = raw[:][0]

    # degenerate cases
    with pytest.raises(ValueError, match='tol must be'):
        _estimate_rank_raw(raw, tol='foo')
    with pytest.raises(TypeError, match='must be a string or a'):
        _estimate_rank_raw(raw, tol=None)

    allowed_rank = [rank_orig if meg == 'separate' else rank]
    if fname == mf_fif_fname:
        # Here we permit a -1 because for mf_fif_fname we miss by 1, which is
        # probably acceptable. If we use the entire duration instead of 5 sec
        # this problem goes away, but the test is much slower.
        allowed_rank.append(allowed_rank[0] - 1)

    # multiple ways of hopefully getting the same thing
    # default tol=1e-4, scalings='norm'
    rank_new = _estimate_rank_raw(raw, tol_kind=tol_kind)
    assert rank_new in allowed_rank

    rank_new = _estimate_rank_raw(
        raw, tol=tol, tol_kind=tol_kind)
    if fname == mf_fif_fname and tol_kind == 'relative' and tol != 'auto':
        pass  # does not play nicely with row norms of _estimate_rank_raw
    else:
        assert rank_new in allowed_rank
    rank_new = _estimate_rank_raw(
        raw, scalings=dict(), tol=tol, tol_kind=tol_kind)
    assert rank_new in allowed_rank
    scalings = dict(grad=1e13, mag=1e15)
    rank_new = _compute_rank_int(
        raw, None, scalings=scalings, tol=tol, tol_kind=tol_kind,
        verbose='debug')
    assert rank_new in allowed_rank
    # XXX default scalings mis-estimate sometimes :(
    if fname == hp_fif_fname:
        allowed_rank.append(allowed_rank[0] - 2)
    rank_new = _compute_rank_int(
        raw, None, tol=tol, tol_kind=tol_kind, verbose='debug')
    assert rank_new in allowed_rank
    del allowed_rank

    rank_new = _compute_rank_int(raw, 'info')
    assert rank_new == rank
    assert_array_equal(raw[:][0], data_orig)


def test_explicit_bads_pick():
    """Test when bads channels are explicitly passed + default picks=None."""
    raw = read_raw_fif(raw_fname).crop(0, 5).load_data()
    raw.pick_types(eeg=True, meg=True, ref_meg=True)

    # Covariance
    # Default picks=None
    raw.info['bads'] = list()
    noise_cov_1 = compute_raw_covariance(raw, picks=None)
    rank = compute_rank(noise_cov_1, info=raw.info)
    assert rank == dict(meg=303, eeg=60)
    assert raw.info['bads'] == []

    raw.info['bads'] = ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']
    noise_cov = compute_raw_covariance(raw, picks=None)
    rank = compute_rank(noise_cov, info=raw.info)
    assert rank == dict(meg=302, eeg=57)
    assert raw.info['bads'] == ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']

    # Explicit picks
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=[])
    noise_cov_2 = compute_raw_covariance(raw, picks=picks)
    rank = compute_rank(noise_cov_2, info=raw.info)
    assert rank == dict(meg=303, eeg=60)
    assert raw.info['bads'] == ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']

    assert_array_equal(noise_cov_1['data'], noise_cov_2['data'])
    assert noise_cov_1['names'] == noise_cov_2['names']

    # Raw
    raw.info['bads'] = list()
    rank = compute_rank(raw)
    assert rank == dict(meg=303, eeg=60)

    raw.info['bads'] = ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']
    rank = compute_rank(raw)
    assert rank == dict(meg=302, eeg=57)