1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
|
# -*- coding: utf-8 -*-
#
# License: BSD-3-Clause
from contextlib import nullcontext
from copy import deepcopy
import os
import os.path as op
import re
from shutil import copyfile
import numpy as np
from numpy.fft import fft
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_allclose, assert_equal, assert_array_less)
import pytest
from scipy import sparse
from scipy.optimize import fmin_cobyla
from scipy.spatial.distance import cdist
import mne
from mne import (stats, SourceEstimate, VectorSourceEstimate,
VolSourceEstimate, Label, read_source_spaces,
read_evokeds, MixedSourceEstimate, find_events, Epochs,
read_source_estimate, extract_label_time_course,
spatio_temporal_tris_adjacency, stc_near_sensors,
spatio_temporal_src_adjacency, read_cov, EvokedArray,
spatial_inter_hemi_adjacency, read_forward_solution,
spatial_src_adjacency, spatial_tris_adjacency, pick_info,
SourceSpaces, VolVectorSourceEstimate, read_trans, pick_types,
MixedVectorSourceEstimate, setup_volume_source_space,
convert_forward_solution, pick_types_forward,
compute_source_morph, labels_to_stc, scale_mri,
write_source_spaces)
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.io import read_info
from mne.io.constants import FIFF
from mne.morph_map import _make_morph_map_hemi
from mne.source_estimate import grade_to_tris, _get_vol_mask
from mne.source_space import _get_src_nn
from mne.transforms import apply_trans, invert_transform, transform_surface_to
from mne.minimum_norm import (read_inverse_operator, apply_inverse,
apply_inverse_epochs, make_inverse_operator)
from mne.label import read_labels_from_annot, label_sign_flip
from mne.utils import (requires_pandas, requires_sklearn, catch_logging,
requires_nibabel, requires_version, _record_warnings)
from mne.io import read_raw_fif
data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname_inv = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_inv_fixed = op.join(
data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-meg-fixed-inv.fif')
fname_fwd = op.join(
data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_cov = op.join(
data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif')
fname_evoked = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-ave.fif')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz')
fname_fs_t1 = op.join(data_path, 'subjects', 'fsaverage', 'mri', 'T1.mgz')
fname_aseg = op.join(data_path, 'subjects', 'sample', 'mri', 'aseg.mgz')
fname_src = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
fname_src_fs = op.join(data_path, 'subjects', 'fsaverage', 'bem',
'fsaverage-ico-5-src.fif')
bem_path = op.join(data_path, 'subjects', 'sample', 'bem')
fname_src_3 = op.join(bem_path, 'sample-oct-4-src.fif')
fname_src_vol = op.join(bem_path, 'sample-volume-7mm-src.fif')
fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg')
fname_vol = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w')
fname_vsrc = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_inv_vol = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
fname_nirx = op.join(data_path, 'NIRx', 'nirscout', 'nirx_15_0_recording')
rng = np.random.RandomState(0)
@testing.requires_testing_data
def test_stc_baseline_correction():
"""Test baseline correction for source estimate objects."""
# test on different source estimates
stcs = [read_source_estimate(fname_stc),
read_source_estimate(fname_vol, 'sample')]
# test on different "baseline" intervals
baselines = [(0., 0.1), (None, None)]
for stc in stcs:
times = stc.times
for (start, stop) in baselines:
# apply baseline correction, then check if it worked
stc = stc.apply_baseline(baseline=(start, stop))
t0 = start or stc.times[0]
t1 = stop or stc.times[-1]
# index for baseline interval (include boundary latencies)
imin = np.abs(times - t0).argmin()
imax = np.abs(times - t1).argmin() + 1
# data matrix from baseline interval
data_base = stc.data[:, imin:imax]
mean_base = data_base.mean(axis=1)
zero_array = np.zeros(mean_base.shape[0])
# test if baseline properly subtracted (mean=zero for all sources)
assert_array_almost_equal(mean_base, zero_array)
@testing.requires_testing_data
def test_spatial_inter_hemi_adjacency():
"""Test spatial adjacency between hemispheres."""
# trivial cases
conn = spatial_inter_hemi_adjacency(fname_src_3, 5e-6)
assert_equal(conn.data.size, 0)
conn = spatial_inter_hemi_adjacency(fname_src_3, 5e6)
assert_equal(conn.data.size, np.prod(conn.shape) // 2)
# actually interesting case (1cm), should be between 2 and 10% of verts
src = read_source_spaces(fname_src_3)
conn = spatial_inter_hemi_adjacency(src, 10e-3)
conn = conn.tocsr()
n_src = conn.shape[0]
assert (n_src * 0.02 < conn.data.size < n_src * 0.10)
assert_equal(conn[:src[0]['nuse'], :src[0]['nuse']].data.size, 0)
assert_equal(conn[-src[1]['nuse']:, -src[1]['nuse']:].data.size, 0)
c = (conn.T + conn) / 2. - conn
c.eliminate_zeros()
assert_equal(c.data.size, 0)
# check locations
upper_right = conn[:src[0]['nuse'], src[0]['nuse']:].toarray()
assert_equal(upper_right.sum(), conn.sum() // 2)
good_labels = ['S_pericallosal', 'Unknown', 'G_and_S_cingul-Mid-Post',
'G_cuneus']
for hi, hemi in enumerate(('lh', 'rh')):
has_neighbors = src[hi]['vertno'][np.where(np.any(upper_right,
axis=1 - hi))[0]]
labels = read_labels_from_annot('sample', 'aparc.a2009s', hemi,
subjects_dir=subjects_dir)
use_labels = [label.name[:-3] for label in labels
if np.in1d(label.vertices, has_neighbors).any()]
assert (set(use_labels) - set(good_labels) == set())
@pytest.mark.slowtest
@testing.requires_testing_data
@requires_version('h5io')
def test_volume_stc(tmp_path):
"""Test volume STCs."""
from h5io import write_hdf5
N = 100
data = np.arange(N)[:, np.newaxis]
datas = [data,
data,
np.arange(2)[:, np.newaxis],
np.arange(6).reshape(2, 3, 1)]
vertno = np.arange(N)
vertnos = [vertno,
vertno[:, np.newaxis],
np.arange(2)[:, np.newaxis],
np.arange(2)]
vertno_reads = [vertno, vertno, np.arange(2), np.arange(2)]
for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads):
if data.ndim in (1, 2):
stc = VolSourceEstimate(data, [vertno], 0, 1)
ext = 'stc'
klass = VolSourceEstimate
else:
assert data.ndim == 3
stc = VolVectorSourceEstimate(data, [vertno], 0, 1)
ext = 'h5'
klass = VolVectorSourceEstimate
fname_temp = tmp_path / ('temp-vl.' + ext)
stc_new = stc
n = 3 if ext == 'h5' else 2
for ii in range(n):
if ii < 2:
stc_new.save(fname_temp, overwrite=True)
else:
# Pass stc.vertices[0], an ndarray, to ensure support for
# the way we used to write volume STCs
write_hdf5(
str(fname_temp), dict(
vertices=stc.vertices[0], data=stc.data,
tmin=stc.tmin, tstep=stc.tstep,
subject=stc.subject, src_type=stc._src_type),
title='mnepython', overwrite=True)
stc_new = read_source_estimate(fname_temp)
assert isinstance(stc_new, klass)
assert_array_equal(vertno_read, stc_new.vertices[0])
assert_array_almost_equal(stc.data, stc_new.data)
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, 'sample')
assert isinstance(stc, VolSourceEstimate)
assert 'sample' in repr(stc)
assert ' kB' in repr(stc)
stc_new = stc
fname_temp = tmp_path / ('temp-vl.stc')
with pytest.raises(ValueError, match="'ftype' parameter"):
stc.save(fname_vol, ftype='whatever', overwrite=True)
for ftype in ['w', 'h5']:
for _ in range(2):
fname_temp = tmp_path / ('temp-vol.%s' % ftype)
stc_new.save(fname_temp, ftype=ftype, overwrite=True)
stc_new = read_source_estimate(fname_temp)
assert (isinstance(stc_new, VolSourceEstimate))
assert_array_equal(stc.vertices[0], stc_new.vertices[0])
assert_array_almost_equal(stc.data, stc_new.data)
@requires_nibabel()
@testing.requires_testing_data
def test_stc_as_volume():
"""Test previous volume source estimate morph."""
import nibabel as nib
inverse_operator_vol = read_inverse_operator(fname_inv_vol)
# Apply inverse operator
stc_vol = read_source_estimate(fname_vol, 'sample')
img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=True,
dest='42')
t1_img = nib.load(fname_t1)
# always assure nifti and dimensionality
assert isinstance(img, nib.Nifti1Image)
assert img.header.get_zooms()[:3] == t1_img.header.get_zooms()[:3]
img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=False)
assert isinstance(img, nib.Nifti1Image)
assert img.shape[:3] == inverse_operator_vol['src'][0]['shape'][:3]
with pytest.raises(ValueError, match='Invalid value.*output.*'):
stc_vol.as_volume(inverse_operator_vol['src'], format='42')
@testing.requires_testing_data
@requires_nibabel()
def test_save_vol_stc_as_nifti(tmp_path):
"""Save the stc as a nifti file and export."""
import nibabel as nib
src = read_source_spaces(fname_vsrc)
vol_fname = tmp_path / 'stc.nii.gz'
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, 'sample')
assert (isinstance(stc, VolSourceEstimate))
stc.save_as_volume(vol_fname, src,
dest='surf', mri_resolution=False)
with _record_warnings(): # nib<->numpy
img = nib.load(str(vol_fname))
assert (img.shape == src[0]['shape'] + (len(stc.times),))
with _record_warnings(): # nib<->numpy
t1_img = nib.load(fname_t1)
stc.save_as_volume(vol_fname, src, dest='mri', mri_resolution=True,
overwrite=True)
with _record_warnings(): # nib<->numpy
img = nib.load(str(vol_fname))
assert (img.shape == t1_img.shape + (len(stc.times),))
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
# export without saving
img = stc.as_volume(src, dest='mri', mri_resolution=True)
assert (img.shape == t1_img.shape + (len(stc.times),))
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
src = SourceSpaces([src[0], src[0]])
stc = VolSourceEstimate(np.r_[stc.data, stc.data],
[stc.vertices[0], stc.vertices[0]],
tmin=stc.tmin, tstep=stc.tstep, subject='sample')
img = stc.as_volume(src, dest='mri', mri_resolution=False)
assert (img.shape == src[0]['shape'] + (len(stc.times),))
@testing.requires_testing_data
def test_expand():
"""Test stc expansion."""
stc_ = read_source_estimate(fname_stc, 'sample')
vec_stc_ = VectorSourceEstimate(np.zeros((stc_.data.shape[0], 3,
stc_.data.shape[1])),
stc_.vertices, stc_.tmin, stc_.tstep,
stc_.subject)
for stc in [stc_, vec_stc_]:
assert ('sample' in repr(stc))
labels_lh = read_labels_from_annot('sample', 'aparc', 'lh',
subjects_dir=subjects_dir)
new_label = labels_lh[0] + labels_lh[1]
stc_limited = stc.in_label(new_label)
stc_new = stc_limited.copy()
stc_new.data.fill(0)
for label in labels_lh[:2]:
stc_new += stc.in_label(label).expand(stc_limited.vertices)
pytest.raises(TypeError, stc_new.expand, stc_limited.vertices[0])
pytest.raises(ValueError, stc_new.expand, [stc_limited.vertices[0]])
# make sure we can't add unless vertno agree
pytest.raises(ValueError, stc.__add__, stc.in_label(labels_lh[0]))
def _fake_stc(n_time=10, is_complex=False):
np.random.seed(7)
verts = [np.arange(10), np.arange(90)]
data = np.random.rand(100, n_time)
if is_complex:
data.astype(complex)
return SourceEstimate(data, verts, 0, 1e-1, 'foo')
def _fake_vec_stc(n_time=10, is_complex=False):
np.random.seed(7)
verts = [np.arange(10), np.arange(90)]
data = np.random.rand(100, 3, n_time)
if is_complex:
data.astype(complex)
return VectorSourceEstimate(data, verts, 0, 1e-1,
'foo')
@testing.requires_testing_data
def test_stc_snr():
"""Test computing SNR from a STC."""
inv = read_inverse_operator(fname_inv_fixed)
fwd = read_forward_solution(fname_fwd)
cov = read_cov(fname_cov)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
stc = apply_inverse(evoked, inv)
assert (stc.data < 0).any()
with pytest.warns(RuntimeWarning, match='nAm'):
stc.estimate_snr(evoked.info, fwd, cov) # dSPM
with pytest.warns(RuntimeWarning, match='free ori'):
abs(stc).estimate_snr(evoked.info, fwd, cov)
stc = apply_inverse(evoked, inv, method='MNE')
snr = stc.estimate_snr(evoked.info, fwd, cov)
assert_allclose(snr.times, evoked.times)
snr = snr.data
assert snr.max() < -10
assert snr.min() > -120
def test_stc_attributes():
"""Test STC attributes."""
stc = _fake_stc(n_time=10)
vec_stc = _fake_vec_stc(n_time=10)
n_times = len(stc.times)
assert_equal(stc._data.shape[-1], n_times)
assert_array_equal(stc.times, stc.tmin + np.arange(n_times) * stc.tstep)
assert_array_almost_equal(
stc.times, [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
def attempt_times_mutation(stc):
stc.times -= 1
def attempt_assignment(stc, attr, val):
setattr(stc, attr, val)
# .times is read-only
pytest.raises(ValueError, attempt_times_mutation, stc)
pytest.raises(ValueError, attempt_assignment, stc, 'times', [1])
# Changing .tmin or .tstep re-computes .times
stc.tmin = 1
assert (type(stc.tmin) == float)
assert_array_almost_equal(
stc.times, [1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
stc.tstep = 1
assert (type(stc.tstep) == float)
assert_array_almost_equal(
stc.times, [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
# tstep <= 0 is not allowed
pytest.raises(ValueError, attempt_assignment, stc, 'tstep', 0)
pytest.raises(ValueError, attempt_assignment, stc, 'tstep', -1)
# Changing .data re-computes .times
stc.data = np.random.rand(100, 5)
assert_array_almost_equal(
stc.times, [1., 2., 3., 4., 5.])
# .data must match the number of vertices
pytest.raises(ValueError, attempt_assignment, stc, 'data', [[1]])
pytest.raises(ValueError, attempt_assignment, stc, 'data', None)
# .data much match number of dimensions
pytest.raises(ValueError, attempt_assignment, stc, 'data', np.arange(100))
pytest.raises(ValueError, attempt_assignment, vec_stc, 'data',
[np.arange(100)])
pytest.raises(ValueError, attempt_assignment, vec_stc, 'data',
[[[np.arange(100)]]])
# .shape attribute must also work when ._data is None
stc._kernel = np.zeros((2, 2))
stc._sens_data = np.zeros((2, 3))
stc._data = None
assert_equal(stc.shape, (2, 3))
# bad size of data
stc = _fake_stc()
data = stc.data[:, np.newaxis, :]
with pytest.raises(ValueError, match='2 dimensions for SourceEstimate'):
SourceEstimate(data, stc.vertices, 0, 1)
stc = SourceEstimate(data[:, 0, 0], stc.vertices, 0, 1)
assert stc.data.shape == (len(data), 1)
def test_io_stc(tmp_path):
"""Test IO for STC files."""
stc = _fake_stc()
stc.save(tmp_path / "tmp.stc")
stc2 = read_source_estimate(tmp_path / "tmp.stc")
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.tmin, stc2.tmin)
assert_equal(len(stc.vertices), len(stc2.vertices))
for v1, v2 in zip(stc.vertices, stc2.vertices):
assert_array_almost_equal(v1, v2)
assert_array_almost_equal(stc.tstep, stc2.tstep)
# test warning for complex data
stc2.data = stc2.data.astype(np.complex128)
with pytest.raises(ValueError, match='Cannot save complex-valued STC'):
stc2.save(tmp_path / 'complex.stc')
@requires_version('h5io')
@pytest.mark.parametrize('is_complex', (True, False))
@pytest.mark.parametrize('vector', (True, False))
def test_io_stc_h5(tmp_path, is_complex, vector):
"""Test IO for STC files using HDF5."""
if vector:
stc = _fake_vec_stc(is_complex=is_complex)
else:
stc = _fake_stc(is_complex=is_complex)
match = 'can only be written' if vector else "Invalid value for the 'ftype"
with pytest.raises(ValueError, match=match):
stc.save(tmp_path / 'tmp.h5', ftype='foo')
out_name = str(tmp_path / 'tmp')
stc.save(out_name, ftype='h5')
# test overwrite
assert op.isfile(out_name + '-stc.h5')
with pytest.raises(FileExistsError, match='Destination file exists'):
stc.save(out_name, ftype='h5')
stc.save(out_name, ftype='h5', overwrite=True)
stc3 = read_source_estimate(out_name)
stc4 = read_source_estimate(out_name + '-stc')
stc5 = read_source_estimate(out_name + '-stc.h5')
pytest.raises(RuntimeError, read_source_estimate, out_name,
subject='bar')
for stc_new in stc3, stc4, stc5:
assert_equal(stc_new.subject, stc.subject)
assert_array_equal(stc_new.data, stc.data)
assert_array_equal(stc_new.tmin, stc.tmin)
assert_array_equal(stc_new.tstep, stc.tstep)
assert_equal(len(stc_new.vertices), len(stc.vertices))
for v1, v2 in zip(stc_new.vertices, stc.vertices):
assert_array_equal(v1, v2)
def test_io_w(tmp_path):
"""Test IO for w files."""
stc = _fake_stc(n_time=1)
w_fname = tmp_path / 'fake'
stc.save(w_fname, ftype='w')
src = read_source_estimate(w_fname)
src.save(tmp_path / 'tmp', ftype='w')
src2 = read_source_estimate(tmp_path / 'tmp-lh.w')
assert_array_almost_equal(src.data, src2.data)
assert_array_almost_equal(src.lh_vertno, src2.lh_vertno)
assert_array_almost_equal(src.rh_vertno, src2.rh_vertno)
def test_stc_arithmetic():
"""Test arithmetic for STC files."""
stc = _fake_stc()
data = stc.data.copy()
vec_stc = _fake_vec_stc()
vec_data = vec_stc.data.copy()
out = list()
for a in [data, stc, vec_data, vec_stc]:
a = a + a * 3 + 3 * a - a ** 2 / 2
a += a
a -= a
with np.errstate(invalid='ignore'):
a /= 2 * a
a *= -a
a += 2
a -= 1
a *= -1
a /= 2
b = 2 + a
b = 2 - a
b = +a
assert_array_equal(b.data, a.data)
with np.errstate(invalid='ignore'):
a **= 3
out.append(a)
assert_array_equal(out[0], out[1].data)
assert_array_equal(out[2], out[3].data)
assert_array_equal(stc.sqrt().data, np.sqrt(stc.data))
assert_array_equal(vec_stc.sqrt().data, np.sqrt(vec_stc.data))
assert_array_equal(abs(stc).data, abs(stc.data))
assert_array_equal(abs(vec_stc).data, abs(vec_stc.data))
stc_sum = stc.sum()
assert_array_equal(stc_sum.data, stc.data.sum(1, keepdims=True))
stc_mean = stc.mean()
assert_array_equal(stc_mean.data, stc.data.mean(1, keepdims=True))
vec_stc_mean = vec_stc.mean()
assert_array_equal(vec_stc_mean.data, vec_stc.data.mean(2, keepdims=True))
@pytest.mark.slowtest
@testing.requires_testing_data
def test_stc_methods():
"""Test stc methods lh_data, rh_data, bin(), resample()."""
stc_ = read_source_estimate(fname_stc)
# Make a vector version of the above source estimate
x = stc_.data[:, np.newaxis, :]
yz = np.zeros((x.shape[0], 2, x.shape[2]))
vec_stc_ = VectorSourceEstimate(
np.concatenate((x, yz), 1),
stc_.vertices, stc_.tmin, stc_.tstep, stc_.subject
)
for stc in [stc_, vec_stc_]:
# lh_data / rh_data
assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)])
assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):])
# bin
binned = stc.bin(.12)
a = np.mean(stc.data[..., :np.searchsorted(stc.times, .12)], axis=-1)
assert_array_equal(a, binned.data[..., 0])
stc = read_source_estimate(fname_stc)
stc.subject = 'sample'
label_lh = read_labels_from_annot('sample', 'aparc', 'lh',
subjects_dir=subjects_dir)[0]
label_rh = read_labels_from_annot('sample', 'aparc', 'rh',
subjects_dir=subjects_dir)[0]
label_both = label_lh + label_rh
for label in (label_lh, label_rh, label_both):
assert (isinstance(stc.shape, tuple) and len(stc.shape) == 2)
stc_label = stc.in_label(label)
if label.hemi != 'both':
if label.hemi == 'lh':
verts = stc_label.vertices[0]
else: # label.hemi == 'rh':
verts = stc_label.vertices[1]
n_vertices_used = len(label.get_vertices_used(verts))
assert_equal(len(stc_label.data), n_vertices_used)
stc_lh = stc.in_label(label_lh)
pytest.raises(ValueError, stc_lh.in_label, label_rh)
label_lh.subject = 'foo'
pytest.raises(RuntimeError, stc.in_label, label_lh)
stc_new = deepcopy(stc)
o_sfreq = 1.0 / stc.tstep
# note that using no padding for this STC reduces edge ringing...
stc_new.resample(2 * o_sfreq, npad=0)
assert (stc_new.data.shape[1] == 2 * stc.data.shape[1])
assert (stc_new.tstep == stc.tstep / 2)
stc_new.resample(o_sfreq, npad=0)
assert (stc_new.data.shape[1] == stc.data.shape[1])
assert (stc_new.tstep == stc.tstep)
assert_array_almost_equal(stc_new.data, stc.data, 5)
@testing.requires_testing_data
def test_center_of_mass():
"""Test computing the center of mass on an stc."""
stc = read_source_estimate(fname_stc)
pytest.raises(ValueError, stc.center_of_mass, 'sample')
stc.lh_data[:] = 0
vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir)
assert (hemi == 1)
# XXX Should design a fool-proof test case, but here were the
# results:
assert_equal(vertex, 124791)
assert_equal(np.round(t, 2), 0.12)
@testing.requires_testing_data
@pytest.mark.parametrize('kind', ('surface', 'mixed'))
@pytest.mark.parametrize('vector', (False, True))
def test_extract_label_time_course(kind, vector):
"""Test extraction of label time courses from (Mixed)SourceEstimate."""
n_stcs = 3
n_times = 50
src = read_inverse_operator(fname_inv)['src']
if kind == 'mixed':
pytest.importorskip('nibabel')
label_names = ('Left-Cerebellum-Cortex',
'Right-Cerebellum-Cortex')
src += setup_volume_source_space(
'sample', pos=20., volume_label=label_names,
subjects_dir=subjects_dir, add_interpolator=False)
klass = MixedVectorSourceEstimate
else:
klass = VectorSourceEstimate
if not vector:
klass = klass._scalar_class
vertices = [s['vertno'] for s in src]
n_verts = np.array([len(v) for v in vertices])
vol_means = np.arange(-1, 1 - len(src), -1)
vol_means_t = np.repeat(vol_means[:, np.newaxis], n_times, axis=1)
# get some labels
labels_lh = read_labels_from_annot('sample', hemi='lh',
subjects_dir=subjects_dir)
labels_rh = read_labels_from_annot('sample', hemi='rh',
subjects_dir=subjects_dir)
labels = list()
labels.extend(labels_lh[:5])
labels.extend(labels_rh[:4])
n_labels = len(labels)
label_tcs = dict(
mean=np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)))
label_tcs['max'] = label_tcs['mean']
# compute the mean with sign flip
label_tcs['mean_flip'] = np.zeros_like(label_tcs['mean'])
for i, label in enumerate(labels):
label_tcs['mean_flip'][i] = i * np.mean(
label_sign_flip(label, src[:2]))
# generate some stc's with known data
stcs = list()
pad = (((0, 0), (2, 0), (0, 0)), 'constant')
for i in range(n_stcs):
data = np.zeros((n_verts.sum(), n_times))
# set the value of the stc within each label
for j, label in enumerate(labels):
if label.hemi == 'lh':
idx = np.intersect1d(vertices[0], label.vertices)
idx = np.searchsorted(vertices[0], idx)
elif label.hemi == 'rh':
idx = np.intersect1d(vertices[1], label.vertices)
idx = len(vertices[0]) + np.searchsorted(vertices[1], idx)
data[idx] = label_tcs['mean'][j]
for j in range(len(vol_means)):
offset = n_verts[:2 + j].sum()
data[offset:offset + n_verts[j]] = vol_means[j]
if vector:
# the values it on the Z axis
data = np.pad(data[:, np.newaxis], *pad)
this_stc = klass(data, vertices, 0, 1)
stcs.append(this_stc)
if vector:
for key in label_tcs:
label_tcs[key] = np.pad(label_tcs[key][:, np.newaxis], *pad)
vol_means_t = np.pad(vol_means_t[:, np.newaxis], *pad)
# test some invalid inputs
with pytest.raises(ValueError, match="Invalid value for the 'mode'"):
extract_label_time_course(stcs, labels, src, mode='notamode')
# have an empty label
empty_label = labels[0].copy()
empty_label.vertices += 1000000
with pytest.raises(ValueError, match='does not contain any vertices'):
extract_label_time_course(stcs, empty_label, src)
# but this works:
with pytest.warns(RuntimeWarning, match='does not contain any vertices'):
tc = extract_label_time_course(stcs, empty_label, src,
allow_empty=True)
end_shape = (3, n_times) if vector else (n_times,)
for arr in tc:
assert arr.shape == (1 + len(vol_means),) + end_shape
assert_array_equal(arr[:1], np.zeros((1,) + end_shape))
if len(vol_means):
assert_array_equal(arr[1:], vol_means_t)
# test the different modes
modes = ['mean', 'mean_flip', 'pca_flip', 'max', 'auto']
for mode in modes:
if vector and mode not in ('mean', 'max', 'auto'):
with pytest.raises(ValueError, match='when using a vector'):
extract_label_time_course(stcs, labels, src, mode=mode)
continue
with _record_warnings(): # SVD convergence on arm64
label_tc = extract_label_time_course(stcs, labels, src, mode=mode)
label_tc_method = [stc.extract_label_time_course(labels, src,
mode=mode)
for stc in stcs]
assert (len(label_tc) == n_stcs)
assert (len(label_tc_method) == n_stcs)
for tc1, tc2 in zip(label_tc, label_tc_method):
assert tc1.shape == (n_labels + len(vol_means),) + end_shape
assert tc2.shape == (n_labels + len(vol_means),) + end_shape
assert_allclose(tc1, tc2, rtol=1e-8, atol=1e-16)
if mode == 'auto':
use_mode = 'mean' if vector else 'mean_flip'
else:
use_mode = mode
# XXX we don't check pca_flip, probably should someday...
if use_mode in ('mean', 'max', 'mean_flip'):
assert_array_almost_equal(tc1[:n_labels], label_tcs[use_mode])
assert_array_almost_equal(tc1[n_labels:], vol_means_t)
# test label with very few vertices (check SVD conditionals)
label = Label(vertices=src[0]['vertno'][:2], hemi='lh')
x = label_sign_flip(label, src[:2])
assert (len(x) == 2)
label = Label(vertices=[], hemi='lh')
x = label_sign_flip(label, src[:2])
assert (x.size == 0)
@testing.requires_testing_data
@pytest.mark.parametrize('label_type, mri_res, vector, test_label, cf, call', [
(str, False, False, False, 'head', 'meth'), # head frame
(str, False, False, str, 'mri', 'func'), # fastest, default for testing
(str, False, True, int, 'mri', 'func'), # vector
(str, True, False, False, 'mri', 'func'), # mri_resolution
(list, True, False, False, 'mri', 'func'), # volume label as list
(dict, True, False, False, 'mri', 'func'), # volume label as dict
])
def test_extract_label_time_course_volume(
src_volume_labels, label_type, mri_res, vector, test_label, cf, call):
"""Test extraction of label time courses from Vol(Vector)SourceEstimate."""
src_labels, volume_labels, lut = src_volume_labels
n_tot = 46
assert n_tot == len(src_labels)
inv = read_inverse_operator(fname_inv_vol)
if cf == 'head':
src = inv['src']
assert src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
rr = apply_trans(invert_transform(inv['mri_head_t']), src[0]['rr'])
else:
assert cf == 'mri'
src = read_source_spaces(fname_src_vol)
assert src[0]['coord_frame'] == FIFF.FIFFV_COORD_MRI
rr = src[0]['rr']
for s in src_labels:
assert_allclose(s['rr'], rr, atol=1e-7)
assert len(src) == 1 and src.kind == 'volume'
klass = VolVectorSourceEstimate
if not vector:
klass = klass._scalar_class
vertices = [src[0]['vertno']]
n_verts = len(src[0]['vertno'])
n_times = 50
data = vertex_values = np.arange(1, n_verts + 1)
end_shape = (n_times,)
if vector:
end_shape = (3,) + end_shape
data = np.pad(data[:, np.newaxis], ((0, 0), (2, 0)), 'constant')
data = np.repeat(data[..., np.newaxis], n_times, -1)
stcs = [klass(data.astype(float), vertices, 0, 1)]
def eltc(*args, **kwargs):
if call == 'func':
return extract_label_time_course(stcs, *args, **kwargs)
else:
assert call == 'meth'
return [stcs[0].extract_label_time_course(*args, **kwargs)]
with pytest.raises(RuntimeError, match='atlas vox_mri_t does not match'):
eltc(fname_fs_t1, src, mri_resolution=mri_res)
assert len(src_labels) == 46 # includes unknown
assert_array_equal(
src[0]['vertno'], # src includes some in "unknown" space
np.sort(np.concatenate([s['vertno'] for s in src_labels])))
# spot check
assert src_labels[-1]['seg_name'] == 'CC_Anterior'
assert src[0]['nuse'] == 4157
assert len(src[0]['vertno']) == 4157
assert sum(s['nuse'] for s in src_labels) == 4157
assert_array_equal(src_labels[-1]['vertno'], [8011, 8032, 8557])
assert_array_equal(
np.where(np.in1d(src[0]['vertno'], [8011, 8032, 8557]))[0],
[2672, 2688, 2995])
# triage "labels" argument
if mri_res:
# All should be there
missing = []
else:
# Nearest misses these
missing = ['Left-vessel', 'Right-vessel', '5th-Ventricle',
'non-WM-hypointensities']
n_want = len(src_labels)
if label_type is str:
labels = fname_aseg
elif label_type is list:
labels = (fname_aseg, volume_labels)
else:
assert label_type is dict
labels = (fname_aseg, {k: lut[k] for k in volume_labels})
assert mri_res
assert len(missing) == 0
# we're going to add one that won't exist
missing = ['intentionally_bad']
labels[1][missing[0]] = 10000
n_want += 1
n_tot += 1
n_want -= len(missing)
# actually do the testing
if cf == 'head' and not mri_res: # some missing
with pytest.warns(RuntimeWarning, match='any vertices'):
eltc(labels, src, allow_empty=True, mri_resolution=mri_res)
for mode in ('mean', 'max'):
with catch_logging() as log:
label_tc = eltc(labels, src, mode=mode, allow_empty='ignore',
mri_resolution=mri_res, verbose=True)
log = log.getvalue()
assert re.search('^Reading atlas.*aseg\\.mgz\n', log) is not None
if len(missing):
# assert that the missing ones get logged
assert 'does not contain' in log
assert repr(missing) in log
else:
assert 'does not contain' not in log
assert '\n%d/%d atlas regions had at least' % (n_want, n_tot) in log
assert len(label_tc) == 1
label_tc = label_tc[0]
assert label_tc.shape == (n_tot,) + end_shape
if vector:
assert_array_equal(label_tc[:, :2], 0.)
label_tc = label_tc[:, 2]
assert label_tc.shape == (n_tot, n_times)
# let's test some actual values by trusting the masks provided by
# setup_volume_source_space. mri_resolution=True does some
# interpolation so we should not expect equivalence, False does
# nearest so we should.
if mri_res:
rtol = 0.2 if mode == 'mean' else 0.8 # max much more sensitive
else:
rtol = 0.
for si, s in enumerate(src_labels):
func = dict(mean=np.mean, max=np.max)[mode]
these = vertex_values[np.in1d(src[0]['vertno'], s['vertno'])]
assert len(these) == s['nuse']
if si == 0 and s['seg_name'] == 'Unknown':
continue # unknown is crappy
if s['nuse'] == 0:
want = 0.
if mri_res:
# this one is totally due to interpolation, so no easy
# test here
continue
else:
want = func(these)
assert_allclose(label_tc[si], want, atol=1e-6, rtol=rtol)
# compare with in_label, only on every fourth for speed
if test_label is not False and si % 4 == 0:
label = s['seg_name']
if test_label is int:
label = lut[label]
in_label = stcs[0].in_label(
label, fname_aseg, src).data
assert in_label.shape == (s['nuse'],) + end_shape
if vector:
assert_array_equal(in_label[:, :2], 0.)
in_label = in_label[:, 2]
if want == 0:
assert in_label.shape[0] == 0
else:
in_label = func(in_label)
assert_allclose(in_label, want, atol=1e-6, rtol=rtol)
if mode == 'mean' and not vector: # check the reverse
if label_type is dict:
ctx = pytest.warns(RuntimeWarning, match='does not contain')
else:
ctx = nullcontext()
with ctx:
stc_back = labels_to_stc(labels, label_tc, src=src)
assert stc_back.data.shape == stcs[0].data.shape
corr = np.corrcoef(stc_back.data.ravel(),
stcs[0].data.ravel())[0, 1]
assert 0.6 < corr < 0.63
assert_allclose(_varexp(label_tc, label_tc), 1.)
ve = _varexp(stc_back.data, stcs[0].data)
assert 0.83 < ve < 0.85
with _record_warnings(): # ignore no output
label_tc_rt = extract_label_time_course(
stc_back, labels, src=src, mri_resolution=mri_res,
allow_empty=True)
assert label_tc_rt.shape == label_tc.shape
corr = np.corrcoef(label_tc.ravel(), label_tc_rt.ravel())[0, 1]
lower, upper = (0.99, 0.999) if mri_res else (0.95, 0.97)
assert lower < corr < upper
ve = _varexp(label_tc_rt, label_tc)
lower, upper = (0.99, 0.999) if mri_res else (0.97, 0.99)
assert lower < ve < upper
def _varexp(got, want):
return max(
1 - np.linalg.norm(got.ravel() - want.ravel()) ** 2 /
np.linalg.norm(want) ** 2, 0.)
@testing.requires_testing_data
def test_extract_label_time_course_equiv():
"""Test extraction of label time courses from stc equivalences."""
label = read_labels_from_annot('sample', 'aparc', 'lh', regexp='transv',
subjects_dir=subjects_dir)
assert len(label) == 1
label = label[0]
inv = read_inverse_operator(fname_inv)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
stc = apply_inverse(evoked, inv, pick_ori='normal', label=label)
stc_full = apply_inverse(evoked, inv, pick_ori='normal')
stc_in_label = stc_full.in_label(label)
mean = stc.extract_label_time_course(label, inv['src'])
mean_2 = stc_in_label.extract_label_time_course(label, inv['src'])
assert_allclose(mean, mean_2)
inv['src'][0]['vertno'] = np.array([], int)
assert len(stc_in_label.vertices[0]) == 22
with pytest.raises(ValueError, match='22/22 left hemisphere.*missing'):
stc_in_label.extract_label_time_course(label, inv['src'])
def _my_trans(data):
"""FFT that adds an additional dimension by repeating result."""
data_t = fft(data)
data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2)
return data_t, None
def test_transform_data():
"""Test applying linear (time) transform to data."""
# make up some data
n_sensors, n_vertices, n_times = 10, 20, 4
kernel = rng.randn(n_vertices, n_sensors)
sens_data = rng.randn(n_sensors, n_times)
vertices = [np.arange(n_vertices)]
data = np.dot(kernel, sens_data)
for idx, tmin_idx, tmax_idx in\
zip([None, np.arange(n_vertices // 2, n_vertices)],
[None, 1], [None, 3]):
if idx is None:
idx_use = slice(None, None)
else:
idx_use = idx
data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx])
for stc_data in (data, (kernel, sens_data)):
stc = VolSourceEstimate(stc_data, vertices=vertices,
tmin=0., tstep=1.)
stc_data_t = stc.transform_data(_my_trans, idx=idx,
tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
assert_allclose(data_f, stc_data_t)
# bad sens_data
sens_data = sens_data[..., np.newaxis]
with pytest.raises(ValueError, match='sensor data must have 2'):
VolSourceEstimate((kernel, sens_data), vertices, 0, 1)
def test_transform():
"""Test applying linear (time) transform to data."""
# make up some data
n_verts_lh, n_verts_rh, n_times = 10, 10, 10
vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)]
data = rng.randn(n_verts_lh + n_verts_rh, n_times)
stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1)
# data_t.ndim > 2 & copy is True
stcs_t = stc.transform(_my_trans, copy=True)
assert (isinstance(stcs_t, list))
assert_array_equal(stc.times, stcs_t[0].times)
assert_equal(stc.vertices, stcs_t[0].vertices)
data = np.concatenate((stcs_t[0].data[:, :, None],
stcs_t[1].data[:, :, None]), axis=2)
data_t = stc.transform_data(_my_trans)
assert_array_equal(data, data_t) # check against stc.transform_data()
# data_t.ndim > 2 & copy is False
pytest.raises(ValueError, stc.transform, _my_trans, copy=False)
# data_t.ndim = 2 & copy is True
tmp = deepcopy(stc)
stc_t = stc.transform(np.abs, copy=True)
assert (isinstance(stc_t, SourceEstimate))
assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original?
# data_t.ndim = 2 & copy is False
times = np.round(1000 * stc.times)
verts = np.arange(len(stc.lh_vertno),
len(stc.lh_vertno) + len(stc.rh_vertno), 1)
verts_rh = stc.rh_vertno
tmin_idx = np.searchsorted(times, 0)
tmax_idx = np.searchsorted(times, 501) # Include 500ms in the range
data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False)
assert (isinstance(stc, SourceEstimate))
assert_equal(stc.tmin, 0.)
assert_equal(stc.times[-1], 0.5)
assert_equal(len(stc.vertices[0]), 0)
assert_equal(stc.vertices[1], verts_rh)
assert_array_equal(stc.data, data_t)
times = np.round(1000 * stc.times)
tmin_idx, tmax_idx = np.searchsorted(times, 0), np.searchsorted(times, 250)
data_t = stc.transform_data(np.abs, tmin_idx=tmin_idx, tmax_idx=tmax_idx)
stc.transform(np.abs, tmin=0, tmax=250, copy=False)
assert_equal(stc.tmin, 0.)
assert_equal(stc.times[-1], 0.2)
assert_array_equal(stc.data, data_t)
@requires_sklearn
def test_spatio_temporal_tris_adjacency():
"""Test spatio-temporal adjacency from triangles."""
tris = np.array([[0, 1, 2], [3, 4, 5]])
adjacency = spatio_temporal_tris_adjacency(tris, 2)
x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
components = stats.cluster_level._get_components(np.array(x), adjacency)
# _get_components works differently now...
old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1]
new_fmt = np.array(old_fmt)
new_fmt = [np.nonzero(new_fmt == v)[0]
for v in np.unique(new_fmt[new_fmt >= 0])]
assert len(new_fmt) == len(components)
for c, n in zip(components, new_fmt):
assert_array_equal(c, n)
@testing.requires_testing_data
def test_spatio_temporal_src_adjacency():
"""Test spatio-temporal adjacency from source spaces."""
tris = np.array([[0, 1, 2], [3, 4, 5]])
src = [dict(), dict()]
adjacency = spatio_temporal_tris_adjacency(tris, 2).todense()
assert_allclose(np.diag(adjacency), 1.)
src[0]['use_tris'] = np.array([[0, 1, 2]])
src[1]['use_tris'] = np.array([[0, 1, 2]])
src[0]['vertno'] = np.array([0, 1, 2])
src[1]['vertno'] = np.array([0, 1, 2])
src[0]['type'] = 'surf'
src[1]['type'] = 'surf'
adjacency2 = spatio_temporal_src_adjacency(src, 2)
assert_array_equal(adjacency2.todense(), adjacency)
# add test for dist adjacency
src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
src[0]['vertno'] = [0, 1, 2]
src[1]['vertno'] = [0, 1, 2]
src[0]['type'] = 'surf'
src[1]['type'] = 'surf'
adjacency3 = spatio_temporal_src_adjacency(src, 2, dist=2)
assert_array_equal(adjacency3.todense(), adjacency)
# add test for source space adjacency with omitted vertices
inverse_operator = read_inverse_operator(fname_inv)
src_ = inverse_operator['src']
with pytest.warns(RuntimeWarning, match='will have holes'):
adjacency = spatio_temporal_src_adjacency(src_, n_times=2)
a = adjacency.shape[0] / 2
b = sum([s['nuse'] for s in inverse_operator['src']])
assert (a == b)
assert_equal(grade_to_tris(5).shape, [40960, 3])
@requires_pandas
def test_to_data_frame():
"""Test stc Pandas exporter."""
n_vert, n_times = 10, 5
vertices = [np.arange(n_vert, dtype=np.int64), np.empty(0, dtype=np.int64)]
data = rng.randn(n_vert, n_times)
stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
subject='sample')
stc_vol = VolSourceEstimate(data, vertices=vertices[:1], tmin=0, tstep=1,
subject='sample')
for stc in [stc_surf, stc_vol]:
df = stc.to_data_frame()
# test data preservation (first 2 dataframe elements are subj & time)
assert_array_equal(df.values.T[2:], stc.data)
# test long format
df_long = stc.to_data_frame(long_format=True)
assert len(df_long) == stc.data.size
expected = ('subject', 'time', 'source', 'value')
assert set(expected) == set(df_long.columns)
@requires_pandas
@pytest.mark.parametrize('index', ('time', ['time', 'subject'], None))
def test_to_data_frame_index(index):
"""Test index creation in stc Pandas exporter."""
n_vert, n_times = 10, 5
vertices = [np.arange(n_vert, dtype=np.int64), np.empty(0, dtype=np.int64)]
data = rng.randn(n_vert, n_times)
stc = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
subject='sample')
df = stc.to_data_frame(index=index)
# test index setting
if not isinstance(index, list):
index = [index]
assert (df.index.names == index)
# test that non-indexed data were present as columns
non_index = list(set(['time', 'subject']) - set(index))
if len(non_index):
assert all(np.in1d(non_index, df.columns))
@pytest.mark.parametrize('kind', ('surface', 'mixed', 'volume'))
@pytest.mark.parametrize('vector', (False, True))
@pytest.mark.parametrize('n_times', (5, 1))
def test_get_peak(kind, vector, n_times):
"""Test peak getter."""
n_vert = 10
vertices = [np.arange(n_vert)]
if kind == 'surface':
klass = VectorSourceEstimate
vertices += [np.empty(0, int)]
elif kind == 'mixed':
klass = MixedVectorSourceEstimate
vertices += [np.empty(0, int), np.empty(0, int)]
else:
assert kind == 'volume'
klass = VolVectorSourceEstimate
data = np.zeros((n_vert, n_times))
data[1, -1] = 1
if vector:
data = np.repeat(data[:, np.newaxis], 3, 1)
else:
klass = klass._scalar_class
stc = klass(data, vertices, 0, 1)
with pytest.raises(ValueError, match='out of bounds'):
stc.get_peak(tmin=-100)
with pytest.raises(ValueError, match='out of bounds'):
stc.get_peak(tmax=90)
with pytest.raises(ValueError,
match='must be <=' if n_times > 1 else 'out of'):
stc.get_peak(tmin=0.002, tmax=0.001)
vert_idx, time_idx = stc.get_peak()
vertno = np.concatenate(stc.vertices)
assert vert_idx in vertno
assert time_idx in stc.times
data_idx, time_idx = stc.get_peak(vert_as_index=True, time_as_index=True)
if vector:
use_data = stc.magnitude().data
else:
use_data = stc.data
assert data_idx == 1
assert time_idx == n_times - 1
assert data_idx == np.argmax(np.abs(use_data[:, time_idx]))
assert time_idx == np.argmax(np.abs(use_data[data_idx, :]))
if kind == 'surface':
data_idx_2, time_idx_2 = stc.get_peak(
vert_as_index=True, time_as_index=True, hemi='lh')
assert data_idx_2 == data_idx
assert time_idx_2 == time_idx
with pytest.raises(RuntimeError, match='no vertices'):
stc.get_peak(hemi='rh')
@requires_version('h5io')
@testing.requires_testing_data
def test_mixed_stc(tmp_path):
"""Test source estimate from mixed source space."""
N = 90 # number of sources
T = 2 # number of time points
S = 3 # number of source spaces
data = rng.randn(N, T)
vertno = S * [np.arange(N // S)]
# make sure error is raised if vertices are not a list of length >= 2
pytest.raises(ValueError, MixedSourceEstimate, data=data,
vertices=[np.arange(N)])
stc = MixedSourceEstimate(data, vertno, 0, 1)
# make sure error is raised for plotting surface with volume source
fname = tmp_path / 'mixed-stc.h5'
stc.save(fname)
stc_out = read_source_estimate(fname)
assert_array_equal(stc_out.vertices, vertno)
assert_array_equal(stc_out.data, data)
assert stc_out.tmin == 0
assert stc_out.tstep == 1
assert isinstance(stc_out, MixedSourceEstimate)
@requires_version('h5io')
@pytest.mark.parametrize('klass, kind', [
(VectorSourceEstimate, 'surf'),
(VolVectorSourceEstimate, 'vol'),
(VolVectorSourceEstimate, 'discrete'),
(MixedVectorSourceEstimate, 'mixed'),
])
@pytest.mark.parametrize('dtype', [
np.float32, np.float64, np.complex64, np.complex128])
def test_vec_stc_basic(tmp_path, klass, kind, dtype):
"""Test (vol)vector source estimate."""
nn = np.array([
[1, 0, 0],
[0, 1, 0],
[np.sqrt(1. / 2.), 0, np.sqrt(1. / 2.)],
[np.sqrt(1 / 3.)] * 3
], np.float32)
data = np.array([
[1, 0, 0],
[0, 2, 0],
[-3, 0, 0],
[1, 1, 1],
], dtype)[:, :, np.newaxis]
amplitudes = np.array([1, 2, 3, np.sqrt(3)], dtype)
magnitudes = amplitudes.copy()
normals = np.array([1, 2, -3. / np.sqrt(2), np.sqrt(3)], dtype)
if dtype in (np.complex64, np.complex128):
data *= 1j
amplitudes *= 1j
normals *= 1j
directions = np.array(
[[1, 0, 0], [0, 1, 0], [-1, 0, 0], [1. / np.sqrt(3)] * 3])
vol_kind = kind if kind in ('discrete', 'vol') else 'vol'
vol_src = SourceSpaces([dict(nn=nn, type=vol_kind)])
assert vol_src.kind == dict(vol='volume').get(vol_kind, vol_kind)
vol_verts = [np.arange(4)]
surf_src = SourceSpaces([dict(nn=nn[:2], type='surf'),
dict(nn=nn[2:], type='surf')])
assert surf_src.kind == 'surface'
surf_verts = [np.array([0, 1]), np.array([0, 1])]
if klass is VolVectorSourceEstimate:
src = vol_src
verts = vol_verts
elif klass is VectorSourceEstimate:
src = surf_src
verts = surf_verts
if klass is MixedVectorSourceEstimate:
src = surf_src + vol_src
verts = surf_verts + vol_verts
assert src.kind == 'mixed'
data = np.tile(data, (2, 1, 1))
amplitudes = np.tile(amplitudes, 2)
magnitudes = np.tile(magnitudes, 2)
normals = np.tile(normals, 2)
directions = np.tile(directions, (2, 1))
stc = klass(data, verts, 0, 1, 'foo')
amplitudes = amplitudes[:, np.newaxis]
magnitudes = magnitudes[:, np.newaxis]
# Magnitude of the vectors
assert_array_equal(stc.magnitude().data, magnitudes)
# Vector components projected onto the vertex normals
if kind in ('vol', 'mixed'):
with pytest.raises(RuntimeError, match='surface or discrete'):
stc.project('normal', src)[0]
else:
normal = stc.project('normal', src)[0]
assert_allclose(normal.data[:, 0], normals)
# Maximal-variance component, either to keep amps pos or to align to src-nn
projected, got_directions = stc.project('pca')
assert_allclose(got_directions, directions)
assert_allclose(projected.data, amplitudes)
projected, got_directions = stc.project('pca', src)
flips = np.array([[1], [1], [-1.], [1]])
if klass is MixedVectorSourceEstimate:
flips = np.tile(flips, (2, 1))
assert_allclose(got_directions, directions * flips)
assert_allclose(projected.data, amplitudes * flips)
out_name = tmp_path / 'temp.h5'
stc.save(out_name)
stc_read = read_source_estimate(out_name)
assert_allclose(stc.data, stc_read.data)
assert len(stc.vertices) == len(stc_read.vertices)
for v1, v2 in zip(stc.vertices, stc_read.vertices):
assert_array_equal(v1, v2)
stc = klass(data[:, :, 0], verts, 0, 1) # upbroadcast
assert stc.data.shape == (len(data), 3, 1)
# Bad data
with pytest.raises(ValueError, match='must have shape.*3'):
klass(data[:, :2], verts, 0, 1)
data = data[:, :, np.newaxis]
with pytest.raises(ValueError, match='3 dimensions for .*VectorSource'):
klass(data, verts, 0, 1)
@pytest.mark.parametrize('real', (True, False))
def test_source_estime_project(real):
"""Test projecting a source estimate onto direction of max power."""
n_src, n_times = 4, 100
rng = np.random.RandomState(0)
data = rng.randn(n_src, 3, n_times)
if not real:
data = data + 1j * rng.randn(n_src, 3, n_times)
assert data.dtype == np.complex128
else:
assert data.dtype == np.float64
# Make sure that the normal we get maximizes the power
# (i.e., minimizes the negative power)
want_nn = np.empty((n_src, 3))
for ii in range(n_src):
x0 = np.ones(3)
def objective(x):
x = x / np.linalg.norm(x)
return -np.linalg.norm(np.dot(x, data[ii]))
want_nn[ii] = fmin_cobyla(objective, x0, (), rhobeg=0.1, rhoend=1e-6)
want_nn /= np.linalg.norm(want_nn, axis=1, keepdims=True)
stc = VolVectorSourceEstimate(data, [np.arange(n_src)], 0, 1)
stc_max, directions = stc.project('pca')
flips = np.sign(np.sum(directions * want_nn, axis=1, keepdims=True))
directions *= flips
assert_allclose(directions, want_nn, atol=2e-6)
@testing.requires_testing_data
def test_source_estime_project_label():
"""Test projecting a source estimate onto direction of max power."""
fwd = read_forward_solution(fname_fwd)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0]
noise_cov = read_cov(fname_cov)
free = make_inverse_operator(
evoked.info, fwd, noise_cov, loose=1.)
stc_free = apply_inverse(evoked, free, pick_ori='vector')
stc_pca = stc_free.project('pca', fwd['src'])[0]
labels_lh = read_labels_from_annot('sample', 'aparc', 'lh',
subjects_dir=subjects_dir)
new_label = labels_lh[0] + labels_lh[1]
stc_in_label = stc_free.in_label(new_label)
stc_pca_in_label = stc_pca.in_label(new_label)
stc_in_label_pca = stc_in_label.project('pca', fwd['src'])[0]
assert_array_equal(stc_pca_in_label.data, stc_in_label_pca.data)
@pytest.fixture(scope='module', params=[testing._pytest_param()])
def invs():
"""Inverses of various amounts of loose."""
fwd = read_forward_solution(fname_fwd)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
fwd_surf = convert_forward_solution(fwd, surf_ori=True)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0]
noise_cov = read_cov(fname_cov)
free = make_inverse_operator(
evoked.info, fwd, noise_cov, loose=1.)
free_surf = make_inverse_operator(
evoked.info, fwd_surf, noise_cov, loose=1.)
freeish = make_inverse_operator(
evoked.info, fwd, noise_cov, loose=0.9999)
fixed = make_inverse_operator(
evoked.info, fwd, noise_cov, loose=0.)
fixedish = make_inverse_operator(
evoked.info, fwd, noise_cov, loose=0.0001)
assert_allclose(free['source_nn'],
np.kron(np.ones(fwd['nsource']), np.eye(3)).T,
atol=1e-7)
# This is the one exception:
assert not np.allclose(free['source_nn'], free_surf['source_nn'])
assert_allclose(free['source_nn'],
np.tile(np.eye(3), (free['nsource'], 1)), atol=1e-7)
# All others are similar:
for other in (freeish, fixedish):
assert_allclose(free_surf['source_nn'], other['source_nn'], atol=1e-7)
assert_allclose(
free_surf['source_nn'][2::3], fixed['source_nn'], atol=1e-7)
expected_nn = np.concatenate([_get_src_nn(s) for s in fwd['src']])
assert_allclose(fixed['source_nn'], expected_nn, atol=1e-7)
return evoked, free, free_surf, freeish, fixed, fixedish
bad_normal = pytest.param(
'normal', marks=pytest.mark.xfail(raises=AssertionError))
@pytest.mark.parametrize('pick_ori', [None, 'normal', 'vector'])
def test_vec_stc_inv_free(invs, pick_ori):
"""Test vector STC behavior with two free-orientation inverses."""
evoked, free, free_surf, _, _, _ = invs
stc_free = apply_inverse(evoked, free, pick_ori=pick_ori)
stc_free_surf = apply_inverse(evoked, free_surf, pick_ori=pick_ori)
assert_allclose(stc_free.data, stc_free_surf.data, atol=1e-5)
@pytest.mark.parametrize('pick_ori', [None, 'normal', 'vector'])
def test_vec_stc_inv_free_surf(invs, pick_ori):
"""Test vector STC behavior with free and free-ish orientation invs."""
evoked, _, free_surf, freeish, _, _ = invs
stc_free = apply_inverse(evoked, free_surf, pick_ori=pick_ori)
stc_freeish = apply_inverse(evoked, freeish, pick_ori=pick_ori)
assert_allclose(stc_free.data, stc_freeish.data, atol=1e-3)
@pytest.mark.parametrize('pick_ori', (None, 'normal', 'vector'))
def test_vec_stc_inv_fixed(invs, pick_ori):
"""Test vector STC behavior with fixed-orientation inverses."""
evoked, _, _, _, fixed, fixedish = invs
stc_fixed = apply_inverse(evoked, fixed)
stc_fixed_vector = apply_inverse(evoked, fixed, pick_ori='vector')
assert_allclose(stc_fixed.data,
stc_fixed_vector.project('normal', fixed['src'])[0].data)
stc_fixedish = apply_inverse(evoked, fixedish, pick_ori=pick_ori)
if pick_ori == 'vector':
assert_allclose(stc_fixed_vector.data, stc_fixedish.data, atol=1e-2)
# two ways here: with magnitude...
assert_allclose(
abs(stc_fixed).data, stc_fixedish.magnitude().data, atol=1e-2)
# ... and when picking the normal (signed)
stc_fixedish = stc_fixedish.project('normal', fixedish['src'])[0]
elif pick_ori is None:
stc_fixed = abs(stc_fixed)
else:
assert pick_ori == 'normal' # no need to modify
assert_allclose(stc_fixed.data, stc_fixedish.data, atol=1e-2)
@testing.requires_testing_data
def test_epochs_vector_inverse():
"""Test vector inverse consistency between evoked and epochs."""
raw = read_raw_fif(fname_raw)
events = find_events(raw, stim_channel='STI 014')[:2]
reject = dict(grad=2000e-13, mag=4e-12, eog=150e-6)
epochs = Epochs(raw, events, None, 0, 0.01, baseline=None,
reject=reject, preload=True)
assert_equal(len(epochs), 2)
evoked = epochs.average(picks=range(len(epochs.ch_names)))
inv = read_inverse_operator(fname_inv)
method = "MNE"
snr = 3.
lambda2 = 1. / snr ** 2
stcs_epo = apply_inverse_epochs(epochs, inv, lambda2, method=method,
pick_ori='vector', return_generator=False)
stc_epo = np.mean(stcs_epo)
stc_evo = apply_inverse(evoked, inv, lambda2, method=method,
pick_ori='vector')
assert_allclose(stc_epo.data, stc_evo.data, rtol=1e-9, atol=0)
@requires_sklearn
@testing.requires_testing_data
def test_vol_adjacency():
"""Test volume adjacency."""
vol = read_source_spaces(fname_vsrc)
pytest.raises(ValueError, spatial_src_adjacency, vol, dist=1.)
adjacency = spatial_src_adjacency(vol)
n_vertices = vol[0]['inuse'].sum()
assert_equal(adjacency.shape, (n_vertices, n_vertices))
assert (np.all(adjacency.data == 1))
assert (isinstance(adjacency, sparse.coo_matrix))
adjacency2 = spatio_temporal_src_adjacency(vol, n_times=2)
assert_equal(adjacency2.shape, (2 * n_vertices, 2 * n_vertices))
assert (np.all(adjacency2.data == 1))
@testing.requires_testing_data
def test_spatial_src_adjacency():
"""Test spatial adjacency functionality."""
# oct
src = read_source_spaces(fname_src)
assert src[0]['dist'] is not None # distance info
with pytest.warns(RuntimeWarning, match='will have holes'):
con = spatial_src_adjacency(src).toarray()
con_dist = spatial_src_adjacency(src, dist=0.01).toarray()
assert (con == con_dist).mean() > 0.75
# ico
src = read_source_spaces(fname_src_fs)
con = spatial_src_adjacency(src).tocsr()
con_tris = spatial_tris_adjacency(grade_to_tris(5)).tocsr()
assert con.shape == con_tris.shape
assert_array_equal(con.data, con_tris.data)
assert_array_equal(con.indptr, con_tris.indptr)
assert_array_equal(con.indices, con_tris.indices)
# one hemi
con_lh = spatial_src_adjacency(src[:1]).tocsr()
con_lh_tris = spatial_tris_adjacency(grade_to_tris(5)).tocsr()
con_lh_tris = con_lh_tris[:10242, :10242].tocsr()
assert_array_equal(con_lh.data, con_lh_tris.data)
assert_array_equal(con_lh.indptr, con_lh_tris.indptr)
assert_array_equal(con_lh.indices, con_lh_tris.indices)
@requires_sklearn
@requires_nibabel()
@testing.requires_testing_data
def test_vol_mask():
"""Test extraction of volume mask."""
src = read_source_spaces(fname_vsrc)
mask = _get_vol_mask(src)
# Let's use an alternative way that should be equivalent
vertices = [src[0]['vertno']]
n_vertices = len(vertices[0])
data = (1 + np.arange(n_vertices))[:, np.newaxis]
stc_tmp = VolSourceEstimate(data, vertices, tmin=0., tstep=1.)
img = stc_tmp.as_volume(src, mri_resolution=False)
img_data = _get_img_fdata(img)[:, :, :, 0].T
mask_nib = (img_data != 0)
assert_array_equal(img_data[mask_nib], data[:, 0])
assert_array_equal(np.where(mask_nib.ravel())[0], src[0]['vertno'])
assert_array_equal(mask, mask_nib)
assert_array_equal(img_data.shape, mask.shape)
@testing.requires_testing_data
def test_stc_near_sensors(tmp_path):
"""Test stc_near_sensors."""
info = read_info(fname_evoked)
# pick the left EEG sensors
picks = pick_types(info, meg=False, eeg=True, exclude=())
picks = [pick for pick in picks if info['chs'][pick]['loc'][0] < 0]
pick_info(info, picks, copy=False)
with info._unlock():
info['projs'] = []
info['bads'] = []
assert info['nchan'] == 33
evoked = EvokedArray(np.eye(info['nchan']), info)
trans = read_trans(fname_fwd)
assert trans['to'] == FIFF.FIFFV_COORD_HEAD
this_dir = str(tmp_path)
# testing does not have pial, so fake it
os.makedirs(op.join(this_dir, 'sample', 'surf'))
for hemi in ('lh', 'rh'):
copyfile(op.join(subjects_dir, 'sample', 'surf', f'{hemi}.white'),
op.join(this_dir, 'sample', 'surf', f'{hemi}.pial'))
# here we use a distance is smaller than the inter-sensor distance
kwargs = dict(subject='sample', trans=trans, subjects_dir=this_dir,
verbose=True, distance=0.005)
with pytest.raises(ValueError, match='No appropriate channels'):
stc_near_sensors(evoked, **kwargs)
evoked.set_channel_types({ch_name: 'ecog' for ch_name in evoked.ch_names})
with catch_logging() as log:
stc = stc_near_sensors(evoked, **kwargs)
log = log.getvalue()
assert 'Minimum projected intra-sensor distance: 7.' in log # 7.4
# this should be left-hemisphere dominant
assert 5000 > len(stc.vertices[0]) > 4000
assert 200 > len(stc.vertices[1]) > 100
# and at least one vertex should have the channel values
dists = cdist(stc.data, evoked.data)
assert np.isclose(dists, 0., atol=1e-6).any(0).all()
src = read_source_spaces(fname_src) # uses "white" but should be okay
for s in src:
transform_surface_to(s, 'head', trans, copy=False)
assert src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
stc_src = stc_near_sensors(evoked, src=src, **kwargs)
assert len(stc_src.data) == 7928
with pytest.warns(RuntimeWarning, match='not included'): # some removed
stc_src_full = compute_source_morph(
stc_src, 'sample', 'sample', smooth=5, spacing=None,
subjects_dir=subjects_dir).apply(stc_src)
lh_idx = np.searchsorted(stc_src_full.vertices[0], stc.vertices[0])
rh_idx = np.searchsorted(stc_src_full.vertices[1], stc.vertices[1])
rh_idx += len(stc_src_full.vertices[0])
sub_data = stc_src_full.data[np.concatenate([lh_idx, rh_idx])]
assert sub_data.shape == stc.data.shape
corr = np.corrcoef(stc.data.ravel(), sub_data.ravel())[0, 1]
assert 0.6 < corr < 0.7
# now single-weighting mode
stc_w = stc_near_sensors(evoked, mode='single', **kwargs)
assert_array_less(stc_w.data, stc.data + 1e-3) # some tol
assert len(stc_w.data) == len(stc.data)
# at least one for each sensor should have projected right on it
dists = cdist(stc_w.data, evoked.data)
assert np.isclose(dists, 0., atol=1e-6).any(0).all()
# finally, nearest mode: all should match
stc_n = stc_near_sensors(evoked, mode='nearest', **kwargs)
assert len(stc_n.data) == len(stc.data)
# at least one for each sensor should have projected right on it
dists = cdist(stc_n.data, evoked.data)
assert np.isclose(dists, 0., atol=1e-6).any(1).all() # all vert eq some ch
# these are EEG electrodes, so the distance 0.01 is too small for the
# scalp+skull. Even at a distance of 33 mm EEG 060 is too far:
with pytest.warns(RuntimeWarning, match='Channel missing in STC: EEG 060'):
stc = stc_near_sensors(evoked, trans, 'sample', subjects_dir=this_dir,
project=False, distance=0.033)
assert stc.data.any(0).sum() == len(evoked.ch_names) - 1
# and now with volumetric projection
src = read_source_spaces(fname_vsrc)
with catch_logging() as log:
stc_vol = stc_near_sensors(
evoked, trans, 'sample', src=src, surface=None,
subjects_dir=subjects_dir, distance=0.033, verbose=True)
assert isinstance(stc_vol, VolSourceEstimate)
log = log.getvalue()
assert '4157 volume vertices' in log
@requires_version('pymatreader')
@testing.requires_testing_data
def test_stc_near_sensors_picks():
"""Test using picks with stc_near_sensors."""
info = mne.io.read_raw_nirx(fname_nirx).info
evoked = mne.EvokedArray(np.ones((len(info['ch_names']), 1)), info)
src = mne.read_source_spaces(fname_src_fs)
kwargs = dict(
evoked=evoked, subject='fsaverage', trans='fsaverage',
subjects_dir=subjects_dir, src=src, surface=None, project=True)
with pytest.raises(ValueError, match='No appropriate channels'):
stc_near_sensors(**kwargs)
picks = np.arange(len(info['ch_names']))
data = stc_near_sensors(picks=picks, **kwargs).data
assert len(data) == 20484
assert (data >= 0).all()
data = data[data > 0]
n_pts = len(data)
assert 500 < n_pts < 600
lo, hi = np.percentile(data, (5, 95))
assert 0.01 < lo < 0.1
assert 1.3 < hi < 1.7 # > 1
data = stc_near_sensors(picks=picks, mode='weighted', **kwargs).data
assert (data >= 0).all()
data = data[data > 0]
assert len(data) == n_pts
assert_array_equal(data, 1.) # values preserved
def _make_morph_map_hemi_same(subject_from, subject_to, subjects_dir,
reg_from, reg_to):
return _make_morph_map_hemi(subject_from, subject_from, subjects_dir,
reg_from, reg_from)
@requires_nibabel()
@testing.requires_testing_data
@pytest.mark.parametrize('kind', (
pytest.param('volume', marks=[requires_version('dipy'),
pytest.mark.slowtest]),
'surface',
))
@pytest.mark.parametrize('scale', ((1.0, 0.8, 1.2), 1., 0.9))
def test_scale_morph_labels(kind, scale, monkeypatch, tmp_path):
"""Test label extraction, morphing, and MRI scaling relationships."""
tempdir = str(tmp_path)
subject_from = 'sample'
subject_to = 'small'
testing_dir = op.join(subjects_dir, subject_from)
from_dir = op.join(tempdir, subject_from)
for root in ('mri', 'surf', 'label', 'bem'):
os.makedirs(op.join(from_dir, root), exist_ok=True)
for hemi in ('lh', 'rh'):
for root, fname in (('surf', 'sphere'), ('surf', 'white'),
('surf', 'sphere.reg'),
('label', 'aparc.annot')):
use_fname = op.join(root, f'{hemi}.{fname}')
copyfile(op.join(testing_dir, use_fname),
op.join(from_dir, use_fname))
for root, fname in (('mri', 'aseg.mgz'), ('mri', 'brain.mgz')):
use_fname = op.join(root, fname)
copyfile(op.join(testing_dir, use_fname),
op.join(from_dir, use_fname))
del testing_dir
if kind == 'surface':
src_from = read_source_spaces(fname_src_3)
assert src_from[0]['dist'] is None
assert src_from[0]['nearest'] is not None
# avoid patch calc
src_from[0]['nearest'] = src_from[1]['nearest'] = None
assert len(src_from) == 2
assert src_from[0]['nuse'] == src_from[1]['nuse'] == 258
klass = SourceEstimate
labels_from = read_labels_from_annot(
subject_from, subjects_dir=tempdir)
n_labels = len(labels_from)
write_source_spaces(op.join(tempdir, subject_from, 'bem',
f'{subject_from}-oct-4-src.fif'), src_from)
else:
assert kind == 'volume'
pytest.importorskip('dipy')
src_from = read_source_spaces(fname_src_vol)
src_from[0]['subject_his_id'] = subject_from
labels_from = op.join(
tempdir, subject_from, 'mri', 'aseg.mgz')
n_labels = 46
assert op.isfile(labels_from)
klass = VolSourceEstimate
assert len(src_from) == 1
assert src_from[0]['nuse'] == 4157
write_source_spaces(
op.join(from_dir, 'bem', 'sample-vol20-src.fif'), src_from)
scale_mri(subject_from, subject_to, scale, subjects_dir=tempdir,
annot=True, skip_fiducials=True, verbose=True,
overwrite=True)
if kind == 'surface':
src_to = read_source_spaces(
op.join(tempdir, subject_to, 'bem',
f'{subject_to}-oct-4-src.fif'))
labels_to = read_labels_from_annot(
subject_to, subjects_dir=tempdir)
# Save time since we know these subjects are identical
monkeypatch.setattr(mne.morph_map, '_make_morph_map_hemi',
_make_morph_map_hemi_same)
else:
src_to = read_source_spaces(
op.join(tempdir, subject_to, 'bem',
f'{subject_to}-vol20-src.fif'))
labels_to = op.join(
tempdir, subject_to, 'mri', 'aseg.mgz')
# 1. Label->STC->Label for the given subject should be identity
# (for surfaces at least; for volumes it's not as clean as this
# due to interpolation)
n_times = 50
rng = np.random.RandomState(0)
label_tc = rng.randn(n_labels, n_times)
# check that a random permutation of our labels yields a terrible
# correlation
corr = np.corrcoef(label_tc.ravel(),
rng.permutation(label_tc).ravel())[0, 1]
assert -0.06 < corr < 0.06
# project label activations to full source space
with pytest.raises(ValueError, match='subject'):
labels_to_stc(labels_from, label_tc, src=src_from, subject='foo')
stc = labels_to_stc(labels_from, label_tc, src=src_from)
assert stc.subject == 'sample'
assert isinstance(stc, klass)
label_tc_from = extract_label_time_course(
stc, labels_from, src_from, mode='mean')
if kind == 'surface':
assert_allclose(label_tc, label_tc_from, rtol=1e-12, atol=1e-12)
else:
corr = np.corrcoef(label_tc.ravel(), label_tc_from.ravel())[0, 1]
assert 0.93 < corr < 0.95
#
# 2. Changing STC subject to the surrogate and then extracting
#
stc.subject = subject_to
label_tc_to = extract_label_time_course(
stc, labels_to, src_to, mode='mean')
assert_allclose(label_tc_from, label_tc_to, rtol=1e-12, atol=1e-12)
stc.subject = subject_from
#
# 3. Morphing STC to new subject then extracting
#
if isinstance(scale, tuple) and kind == 'volume':
ctx = nullcontext()
test_morph = True
elif kind == 'surface':
ctx = pytest.warns(RuntimeWarning, match='not included')
test_morph = True
else:
ctx = nullcontext()
test_morph = True
with ctx: # vertices not included
morph = compute_source_morph(
src_from, subject_to=subject_to, src_to=src_to,
subjects_dir=tempdir, niter_sdr=(), smooth=1,
zooms=14., verbose=True) # speed up with higher zooms
if kind == 'volume':
got_affine = morph.pre_affine.affine
want_affine = np.eye(4)
want_affine.ravel()[::5][:3] = 1. / np.array(scale, float)
# just a scaling (to within 1% if zooms=None, 20% with zooms=10)
assert_allclose(want_affine[:, :3], got_affine[:, :3], atol=0.4)
assert got_affine[3, 3] == 1.
# little translation (to within `limit` mm)
move = np.linalg.norm(got_affine[:3, 3])
limit = 2. if scale == 1. else 12
assert move < limit, scale
if test_morph:
stc_to = morph.apply(stc)
label_tc_to_morph = extract_label_time_course(
stc_to, labels_to, src_to, mode='mean')
if kind == 'volume':
corr = np.corrcoef(
label_tc.ravel(), label_tc_to_morph.ravel())[0, 1]
if isinstance(scale, tuple):
# some other fixed constant
# min_, max_ = 0.84, 0.855 # zooms='auto' values
min_, max_ = 0.57, 0.67
elif scale == 1:
# min_, max_ = 0.85, 0.875 # zooms='auto' values
min_, max_ = 0.72, 0.76
else:
# min_, max_ = 0.84, 0.855 # zooms='auto' values
min_, max_ = 0.46, 0.63
assert min_ < corr <= max_, scale
else:
assert_allclose(
label_tc, label_tc_to_morph, atol=1e-12, rtol=1e-12)
#
# 4. The same round trip from (1) but in the warped space
#
stc = labels_to_stc(labels_to, label_tc, src=src_to)
assert isinstance(stc, klass)
label_tc_to = extract_label_time_course(
stc, labels_to, src_to, mode='mean')
if kind == 'surface':
assert_allclose(label_tc, label_tc_to, rtol=1e-12, atol=1e-12)
else:
corr = np.corrcoef(label_tc.ravel(), label_tc_to.ravel())[0, 1]
assert 0.93 < corr < 0.96, scale
@testing.requires_testing_data
@pytest.mark.parametrize('kind', [
'surface',
pytest.param('volume', marks=[pytest.mark.slowtest,
requires_version('nibabel')]),
])
def test_label_extraction_subject(kind):
"""Test that label extraction subject is treated properly."""
if kind == 'surface':
inv = read_inverse_operator(fname_inv)
labels = read_labels_from_annot(
'sample', subjects_dir=subjects_dir)
labels_fs = read_labels_from_annot(
'fsaverage', subjects_dir=subjects_dir)
labels_fs = [label for label in labels_fs
if not label.name.startswith('unknown')]
assert all(label.subject == 'sample' for label in labels)
assert all(label.subject == 'fsaverage' for label in labels_fs)
assert len(labels) == len(labels_fs) == 68
n_labels = 68
else:
assert kind == 'volume'
inv = read_inverse_operator(fname_inv_vol)
inv['src'][0]['subject_his_id'] = 'sample' # modernize
labels = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
labels_fs = op.join(subjects_dir, 'fsaverage', 'mri', 'aseg.mgz')
n_labels = 46
src = inv['src']
assert src.kind == kind
assert src._subject == 'sample'
ave = read_evokeds(fname_evoked)[0].apply_baseline((None, 0)).crop(0, 0.01)
assert len(ave.times) == 4
stc = apply_inverse(ave, inv)
assert stc.subject == 'sample'
ltc = extract_label_time_course(stc, labels, src)
stc.subject = 'fsaverage'
with pytest.raises(ValueError, match=r'source spac.*not match.* stc\.sub'):
extract_label_time_course(stc, labels, src)
stc.subject = 'sample'
assert ltc.shape == (n_labels, 4)
if kind == 'volume':
with pytest.raises(RuntimeError, match='atlas.*not match.*source spa'):
extract_label_time_course(stc, labels_fs, src)
else:
with pytest.raises(ValueError, match=r'label\.sub.*not match.* stc\.'):
extract_label_time_course(stc, labels_fs, src)
stc.subject = None
with pytest.raises(ValueError, match=r'label\.sub.*not match.* sourc'):
extract_label_time_course(stc, labels_fs, src)
|