1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
import os.path as op
import pytest
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
from mne import (read_surface, write_surface, decimate_surface, pick_types,
dig_mri_distances, get_montage_volume_labels)
from mne.channels import make_dig_montage
from mne.coreg import get_mni_fiducials
from mne.datasets import testing
from mne.io import read_info
from mne.io.constants import FIFF
from mne.surface import (_compute_nearest, _tessellate_sphere, fast_cross_3d,
get_head_surf, read_curvature, get_meg_helmet_surf,
_normal_orth, _read_patch, _marching_cubes,
_voxel_neighbors, warp_montage_volume,
_project_onto_surface, _get_ico_surface)
from mne.transforms import (_get_trans, compute_volume_registration,
apply_trans)
from mne.utils import (catch_logging, object_diff,
requires_freesurfer, requires_nibabel, requires_dipy,
_record_warnings)
data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname = op.join(subjects_dir, 'sample', 'bem',
'sample-1280-1280-1280-bem-sol.fif')
fname_trans = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-trans.fif')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_t1 = op.join(subjects_dir, 'fsaverage', 'mri', 'T1.mgz')
rng = np.random.RandomState(0)
def test_helmet():
"""Test loading helmet surfaces."""
base_dir = op.join(op.dirname(__file__), '..', 'io')
fname_raw = op.join(base_dir, 'tests', 'data', 'test_raw.fif')
fname_kit_raw = op.join(base_dir, 'kit', 'tests', 'data',
'test_bin_raw.fif')
fname_bti_raw = op.join(base_dir, 'bti', 'tests', 'data',
'exported4D_linux_raw.fif')
fname_ctf_raw = op.join(base_dir, 'tests', 'data', 'test_ctf_raw.fif')
fname_trans = op.join(base_dir, 'tests', 'data',
'sample-audvis-raw-trans.txt')
trans = _get_trans(fname_trans)[0]
new_info = read_info(fname_raw)
artemis_info = new_info.copy()
for pick in pick_types(new_info, meg=True):
new_info['chs'][pick]['coil_type'] = 9999
artemis_info['chs'][pick]['coil_type'] = \
FIFF.FIFFV_COIL_ARTEMIS123_GRAD
for info, n, name in [(read_info(fname_raw), 304, '306m'),
(read_info(fname_kit_raw), 150, 'KIT'), # Delaunay
(read_info(fname_bti_raw), 304, 'Magnes'),
(read_info(fname_ctf_raw), 342, 'CTF'),
(new_info, 102, 'unknown'), # Delaunay
(artemis_info, 102, 'ARTEMIS123'), # Delaunay
]:
with catch_logging() as log:
helmet = get_meg_helmet_surf(info, trans, verbose=True)
log = log.getvalue()
assert name in log
assert_equal(len(helmet['rr']), n)
assert_equal(len(helmet['rr']), len(helmet['nn']))
@testing.requires_testing_data
def test_head():
"""Test loading the head surface."""
surf_1 = get_head_surf('sample', subjects_dir=subjects_dir)
surf_2 = get_head_surf('sample', 'head', subjects_dir=subjects_dir)
assert len(surf_1['rr']) < len(surf_2['rr']) # BEM vs dense head
pytest.raises(TypeError, get_head_surf, subject=None,
subjects_dir=subjects_dir)
def test_fast_cross_3d():
"""Test cross product with lots of elements."""
x = rng.rand(100000, 3)
y = rng.rand(1, 3)
z = np.cross(x, y)
zz = fast_cross_3d(x, y)
assert_array_equal(z, zz)
# broadcasting and non-2D
zz = fast_cross_3d(x[:, np.newaxis], y[0])
assert_array_equal(z, zz[:, 0])
def test_compute_nearest():
"""Test nearest neighbor searches."""
x = rng.randn(500, 3)
x /= np.sqrt(np.sum(x ** 2, axis=1))[:, None]
nn_true = rng.permutation(np.arange(500, dtype=np.int64))[:20]
y = x[nn_true]
nn1 = _compute_nearest(x, y, method='BallTree')
nn2 = _compute_nearest(x, y, method='cKDTree')
nn3 = _compute_nearest(x, y, method='cdist')
assert_array_equal(nn_true, nn1)
assert_array_equal(nn_true, nn2)
assert_array_equal(nn_true, nn3)
# test distance support
nnn1 = _compute_nearest(x, y, method='BallTree', return_dists=True)
nnn2 = _compute_nearest(x, y, method='cKDTree', return_dists=True)
nnn3 = _compute_nearest(x, y, method='cdist', return_dists=True)
assert_array_equal(nnn1[0], nn_true)
assert_array_equal(nnn1[1], np.zeros_like(nn1)) # all dists should be 0
assert_equal(len(nnn1), len(nnn2))
for nn1, nn2, nn3 in zip(nnn1, nnn2, nnn3):
assert_array_equal(nn1, nn2)
assert_array_equal(nn1, nn3)
@testing.requires_testing_data
def test_io_surface(tmp_path):
"""Test reading and writing of Freesurfer surface mesh files."""
tempdir = str(tmp_path)
fname_quad = op.join(data_path, 'subjects', 'bert', 'surf',
'lh.inflated.nofix')
fname_tri = op.join(data_path, 'subjects', 'sample', 'bem',
'inner_skull.surf')
for fname in (fname_quad, fname_tri):
with _record_warnings(): # no volume info
pts, tri, vol_info = read_surface(fname, read_metadata=True)
write_surface(op.join(tempdir, 'tmp'), pts, tri, volume_info=vol_info,
overwrite=True)
with _record_warnings(): # no volume info
c_pts, c_tri, c_vol_info = read_surface(op.join(tempdir, 'tmp'),
read_metadata=True)
assert_array_equal(pts, c_pts)
assert_array_equal(tri, c_tri)
assert_equal(object_diff(vol_info, c_vol_info), '')
if fname != fname_tri: # don't bother testing wavefront for the bigger
continue
# Test writing/reading a Wavefront .obj file
write_surface(op.join(tempdir, 'tmp.obj'), pts, tri, volume_info=None,
overwrite=True)
c_pts, c_tri = read_surface(op.join(tempdir, 'tmp.obj'),
read_metadata=False)
assert_array_equal(pts, c_pts)
assert_array_equal(tri, c_tri)
# reading patches (just a smoke test, let the flatmap viz tests be more
# complete)
fname_patch = op.join(
data_path, 'subjects', 'fsaverage', 'surf', 'rh.cortex.patch.flat')
_read_patch(fname_patch)
@testing.requires_testing_data
def test_read_curv():
"""Test reading curvature data."""
fname_curv = op.join(data_path, 'subjects', 'fsaverage', 'surf', 'lh.curv')
fname_surf = op.join(data_path, 'subjects', 'fsaverage', 'surf',
'lh.inflated')
bin_curv = read_curvature(fname_curv)
rr = read_surface(fname_surf)[0]
assert len(bin_curv) == len(rr)
assert np.logical_or(bin_curv == 0, bin_curv == 1).all()
def test_decimate_surface_vtk():
"""Test triangular surface decimation."""
pytest.importorskip('pyvista')
points = np.array([[-0.00686118, -0.10369860, 0.02615170],
[-0.00713948, -0.10370162, 0.02614874],
[-0.00686208, -0.10368247, 0.02588313],
[-0.00713987, -0.10368724, 0.02587745]])
tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, 0]])
for n_tri in [4, 3, 2]: # quadric decimation creates even numbered output.
_, this_tris = decimate_surface(points, tris, n_tri)
assert len(this_tris) == n_tri if not n_tri % 2 else 2
with pytest.raises(ValueError, match='exceeds number of original'):
decimate_surface(points, tris, len(tris) + 1)
nirvana = 5
tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, nirvana]])
pytest.raises(ValueError, decimate_surface, points, tris, n_tri)
@requires_freesurfer('mris_sphere')
def test_decimate_surface_sphere():
"""Test sphere mode of decimation."""
rr, tris = _tessellate_sphere(3)
assert len(rr) == 66
assert len(tris) == 128
for kind, n_tri in [('ico', 20), ('oct', 32)]:
with catch_logging() as log:
_, tris_new = decimate_surface(
rr, tris, n_tri, method='sphere', verbose=True)
log = log.getvalue()
assert 'Freesurfer' in log
assert kind in log
assert len(tris_new) == n_tri
@pytest.mark.parametrize('dig_kinds, exclude, count, bounds, outliers', [
('auto', False, 72, (0.001, 0.002), 0),
(('eeg', 'extra', 'cardinal', 'hpi'), False, 146, (0.002, 0.003), 1),
(('eeg', 'extra', 'cardinal', 'hpi'), True, 139, (0.001, 0.002), 0),
])
@testing.requires_testing_data
def test_dig_mri_distances(dig_kinds, exclude, count, bounds, outliers):
"""Test the trans obtained by coregistration."""
info = read_info(fname_raw)
dists = dig_mri_distances(info, fname_trans, 'sample', subjects_dir,
dig_kinds=dig_kinds, exclude_frontal=exclude)
assert dists.shape == (count,)
assert bounds[0] < np.mean(dists) < bounds[1]
assert np.sum(dists > 0.03) == outliers
def test_normal_orth():
"""Test _normal_orth."""
nns = np.eye(3)
for nn in nns:
ori = _normal_orth(nn)
assert_allclose(ori[2], nn, atol=1e-12)
# 0.06 sec locally even with all these params
@pytest.mark.parametrize('dtype', (np.float64, np.uint16, '>i4'))
@pytest.mark.parametrize('value', (1, 12))
@pytest.mark.parametrize('smooth', (0, 0.9))
def test_marching_cubes(dtype, value, smooth):
"""Test creating surfaces via marching cubes."""
pytest.importorskip('pyvista')
data = np.zeros((50, 50, 50), dtype=dtype)
data[20:30, 20:30, 20:30] = value
level = [value]
out = _marching_cubes(data, level, smooth=smooth)
assert len(out) == 1
verts, triangles = out[0]
# verts and faces are rather large so use checksum
rtol = 1e-2 if smooth else 1e-9
assert_allclose(verts.sum(axis=0), [14700, 14700, 14700], rtol=rtol)
assert_allclose(triangles.sum(axis=0), [363402, 360865, 350588])
# test fill holes
data[24:27, 24:27, 24:27] = 0
verts, triangles = _marching_cubes(data, level, smooth=smooth,
fill_hole_size=2)[0]
# check that no surfaces in the middle
assert np.linalg.norm(verts - np.array([25, 25, 25]), axis=1).min() > 4
# problematic values
with pytest.raises(TypeError, match='1D array-like'):
_marching_cubes(data, ['foo'])
with pytest.raises(TypeError, match='1D array-like'):
_marching_cubes(data, [[1]])
with pytest.raises(TypeError, match='1D array-like'):
_marching_cubes(data, [1.])
with pytest.raises(ValueError, match='must be between 0'):
_marching_cubes(data, [1], smooth=1.)
with pytest.raises(ValueError, match='3D data'):
_marching_cubes(data[0], [1])
@requires_nibabel()
@testing.requires_testing_data
def test_get_montage_volume_labels():
"""Test finding ROI labels near montage channel locations."""
ch_coords = np.array([[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887]])
ch_pos = dict(zip(['1', '2', '3'], ch_coords / 1000)) # mm -> m
montage = make_dig_montage(ch_pos, coord_frame='mri')
labels, colors = get_montage_volume_labels(
montage, 'sample', subjects_dir, aseg='aseg', dist=1)
assert labels == {'1': ['Unknown'], '2': ['Left-Cerebral-Cortex'],
'3': ['Left-Cerebral-Cortex']}
assert 'Unknown' in colors
assert 'Left-Cerebral-Cortex' in colors
np.testing.assert_almost_equal(
colors['Left-Cerebral-Cortex'],
(0.803921568627451, 0.24313725490196078, 0.3058823529411765, 1.0))
np.testing.assert_almost_equal(
colors['Unknown'], (0.0, 0.0, 0.0, 1.0))
# test inputs
with pytest.raises(RuntimeError,
match='`aseg` file path must end with "aseg"'):
get_montage_volume_labels(montage, 'sample', subjects_dir, aseg='foo')
fail_montage = make_dig_montage(ch_pos, coord_frame='head')
with pytest.raises(RuntimeError,
match='Coordinate frame not supported'):
get_montage_volume_labels(
fail_montage, 'sample', subjects_dir, aseg='aseg')
with pytest.raises(ValueError, match='between 0 and 10'):
get_montage_volume_labels(montage, 'sample', subjects_dir, dist=11)
def test_voxel_neighbors():
"""Test finding points above a threshold near a seed location."""
locs = np.array(np.meshgrid(*[np.linspace(-1, 1, 101)] * 3))
image = 1 - np.linalg.norm(locs, axis=0)
true_volume = set([tuple(coord) for coord in
np.array(np.where(image > 0.95)).T])
volume = _voxel_neighbors(
np.array([-0.3, 0.6, 0.5]) + (np.array(image.shape[0]) - 1) / 2,
image, thresh=0.95, use_relative=False)
assert volume.difference(true_volume) == set()
assert true_volume.difference(volume) == set()
@requires_nibabel()
@requires_dipy()
@pytest.mark.slowtest
@testing.requires_testing_data
def test_warp_montage_volume():
"""Test warping an montage based on intracranial electrode positions."""
import nibabel as nib
subject_brain = nib.load(
op.join(subjects_dir, 'sample', 'mri', 'brain.mgz'))
template_brain = nib.load(
op.join(subjects_dir, 'fsaverage', 'mri', 'brain.mgz'))
zooms = dict(translation=10, rigid=10, sdr=10)
reg_affine, sdr_morph = compute_volume_registration(
subject_brain, template_brain, zooms=zooms,
niter=[3, 3, 3],
pipeline=('translation', 'rigid', 'sdr'))
# make an info object with three channels with positions
ch_coords = np.array([[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887]])
ch_pos = dict(zip(['1', '2', '3'], ch_coords / 1000)) # mm -> m
lpa, nasion, rpa = get_mni_fiducials('sample', subjects_dir)
montage = make_dig_montage(ch_pos, lpa=lpa['r'], nasion=nasion['r'],
rpa=rpa['r'], coord_frame='mri')
# make fake image based on the info
CT_data = np.zeros(subject_brain.shape)
# convert to voxels
ch_coords_vox = apply_trans(
np.linalg.inv(subject_brain.header.get_vox2ras_tkr()), ch_coords)
for (x, y, z) in ch_coords_vox.round().astype(int):
# make electrode contact hyperintensities
# first, make the surrounding voxels high intensity
CT_data[x - 1:x + 2, y - 1:y + 2, z - 1:z + 2] = 500
# then, make the center even higher intensity
CT_data[x, y, z] = 1000
CT = nib.Nifti1Image(CT_data, subject_brain.affine)
ch_coords = np.array([[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887]])
ch_pos = dict(zip(['1', '2', '3'], ch_coords / 1000)) # mm -> m
lpa, nasion, rpa = get_mni_fiducials('sample', subjects_dir)
montage = make_dig_montage(ch_pos, lpa=lpa['r'], nasion=nasion['r'],
rpa=rpa['r'], coord_frame='mri')
montage_warped, image_from, image_to = warp_montage_volume(
montage, CT, reg_affine, sdr_morph, 'sample',
subjects_dir_from=subjects_dir, thresh=0.99)
# checked with nilearn plot from `tut-ieeg-localize`
# check montage in surface RAS
ground_truth_warped = np.array([[-0.009, -0.00133333, -0.033],
[-0.01445455, 0.00127273, -0.03163636],
[-0.022, 0.00285714, -0.031]])
for i, d in enumerate(montage_warped.dig):
assert np.linalg.norm( # off by less than 1.5 cm
d['r'] - ground_truth_warped[i]) < 0.015
# check image_from
for idx, contact in enumerate(range(1, len(ch_pos) + 1)):
voxels = np.array(np.where(np.array(image_from.dataobj) == contact)).T
assert ch_coords_vox.round()[idx] in voxels
assert ch_coords_vox.round()[idx] + 5 not in voxels
# check image_to, too many, just check center
ground_truth_warped_voxels = np.array(
[[135.5959596, 161.97979798, 123.83838384],
[143.11111111, 159.71428571, 125.61904762],
[150.53982301, 158.38053097, 127.31858407]])
for i in range(len(montage.ch_names)):
assert np.linalg.norm(
np.array(np.where(np.array(image_to.dataobj) == i + 1)
).mean(axis=1) - ground_truth_warped_voxels[i]) < 8
# test inputs
with pytest.raises(ValueError, match='`thresh` must be between 0 and 1'):
warp_montage_volume(
montage, CT, reg_affine, sdr_morph, 'sample', thresh=11.)
with pytest.raises(ValueError, match='subject folder is incorrect'):
warp_montage_volume(
montage, CT, reg_affine, sdr_morph, subject_from='foo',
subjects_dir_from=subjects_dir)
CT_unaligned = nib.Nifti1Image(CT_data, template_brain.affine)
with pytest.raises(RuntimeError, match='not aligned to Freesurfer'):
warp_montage_volume(montage, CT_unaligned, reg_affine,
sdr_morph, 'sample',
subjects_dir_from=subjects_dir)
bad_montage = montage.copy()
for d in bad_montage.dig:
d['coord_frame'] = 99
with pytest.raises(RuntimeError, match='Coordinate frame not supported'):
warp_montage_volume(bad_montage, CT, reg_affine,
sdr_morph, 'sample',
subjects_dir_from=subjects_dir)
# check channel not warped
ch_pos_doubled = ch_pos.copy()
ch_pos_doubled.update(zip(['4', '5', '6'], ch_coords / 1000))
doubled_montage = make_dig_montage(
ch_pos_doubled, lpa=lpa['r'], nasion=nasion['r'],
rpa=rpa['r'], coord_frame='mri')
with pytest.warns(RuntimeWarning, match='not assigned'):
warp_montage_volume(doubled_montage, CT, reg_affine,
None, 'sample', subjects_dir_from=subjects_dir)
@testing.requires_testing_data
@pytest.mark.parametrize('ret_nn', (False, True))
@pytest.mark.parametrize('method', ('accurate', 'nearest'))
def test_project_onto_surface(method, ret_nn):
"""Test _project_onto_surface (gh-10930)."""
locs = np.random.default_rng(0).normal(size=(10, 3))
locs *= 2 / np.linalg.norm(locs, axis=1)[:, None] # lie on a sphere rad=2
surf = _get_ico_surface(3)
assert len(surf['rr']) == 642
assert_allclose(np.linalg.norm(surf['rr'], axis=1), 1., rtol=1e-3) # unit
# project
weights, tri_idx, *out = _project_onto_surface(
locs, surf, project_rrs=True, return_nn=ret_nn, method=method)
locs /= 2. # back to unit
assert_allclose(np.linalg.norm(locs, axis=1), 1., rtol=1e-5)
assert len(out) == 2 if ret_nn else 1
# for a sphere, both the rr (out[0]) and nn (out[1], if exists) should
# both be very similar to each other and to our unit-length `locs`
for kind, comp in zip(('rr', 'nn'), out):
assert_allclose(
np.linalg.norm(comp, axis=1), 1., atol=0.05,
err_msg=f'{kind} not unit vectors for {method}')
cos = np.sum(locs * comp, axis=1)
assert_allclose(
cos, 1., atol=0.05, # ico > 3 would be even better tol
err_msg=f'{kind} not in same direction as locs for {method}')
|