File: multitaper.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (543 lines) | stat: -rw-r--r-- 19,011 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# Author : Martin Luessi mluessi@nmr.mgh.harvard.edu (2012)
# License : BSD-3-Clause

# Parts of this code were copied from NiTime http://nipy.sourceforge.net/nitime

import numpy as np

from ..parallel import parallel_func
from ..utils import warn, verbose, logger, _check_option


def dpss_windows(N, half_nbw, Kmax, *, sym=True, norm=None, low_bias=True,
                 interp_from=None, interp_kind=None):
    """Compute Discrete Prolate Spheroidal Sequences.

    Will give of orders [0,Kmax-1] for a given frequency-spacing multiple
    NW and sequence length N.

    .. note:: Copied from NiTime.

    Parameters
    ----------
    N : int
        Sequence length.
    half_nbw : float
        Standardized half bandwidth corresponding to 2 * half_bw = BW*f0
        = BW*N/dt but with dt taken as 1.
    Kmax : int
        Number of DPSS windows to return is Kmax (orders 0 through Kmax-1).
    sym : bool
        Whether to generate a symmetric window (``True``, for filter design) or
        a periodic window (``False``, for spectral analysis). Default is
        ``True``.

        .. versionadded:: 1.3
    norm : 2 | ``'approximate'`` | ``'subsample'`` | None
        Window normalization method. If ``'approximate'`` or ``'subsample'``,
        windows are normalized by the maximum, and a correction scale-factor
        for even-length windows is applied either using
        ``N**2/(N**2+half_nbw)`` ("approximate") or a FFT-based subsample shift
        ("subsample"). ``2`` uses the L2 norm. ``None`` (the default) uses
        ``"approximate"`` when ``Kmax=None`` and ``2`` otherwise.

        .. versionadded:: 1.3
    low_bias : bool
        Keep only tapers with eigenvalues > 0.9.
    interp_from : int | None
        The dpss can be calculated using interpolation from a set of dpss
        with the same NW and Kmax, but shorter N. This is the length of this
        shorter set of dpss windows.

        .. deprecated:: 1.3
           The ``interp_from`` option is deprecated and will be
           removed in version 1.4. Modern implementations can handle large
           values of ``N`` so interpolation is no longer necessary; any value
           passed here will be ignored.
    interp_kind : str | None
        This input variable is passed to scipy.interpolate.interp1d and
        specifies the kind of interpolation as a string ('linear', 'nearest',
        'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the
        order of the spline interpolator to use.

        .. deprecated:: 1.3
           The ``interp_kind`` option is deprecated and will be
           removed in version 1.4. Modern implementations can handle large
           values of ``N`` so interpolation is no longer necessary; any value
           passed here will be ignored.

    Returns
    -------
    v, e : tuple,
        The v array contains DPSS windows shaped (Kmax, N).
        e are the eigenvalues.

    Notes
    -----
    Tridiagonal form of DPSS calculation from :footcite:`Slepian1978`.

    References
    ----------
    .. footbibliography::
    """
    from scipy.signal.windows import dpss as sp_dpss

    if interp_from is not None:
        warn('The ``interp_from`` option is deprecated and will be removed in '
             'version 1.4.', FutureWarning)
    if interp_kind is not None:
        warn('The ``interp_kind`` option is deprecated and will be removed in '
             'version 1.4.', FutureWarning)

    dpss, eigvals = sp_dpss(N, half_nbw, Kmax, sym=sym, norm=norm,
                            return_ratios=True)
    if low_bias:
        idx = (eigvals > 0.9)
        if not idx.any():
            warn('Could not properly use low_bias, keeping lowest-bias taper')
            idx = [np.argmax(eigvals)]
        dpss, eigvals = dpss[idx], eigvals[idx]
    assert len(dpss) > 0  # should never happen
    assert dpss.shape[1] == N  # old nitime bug
    return dpss, eigvals


def _psd_from_mt_adaptive(x_mt, eigvals, freq_mask, max_iter=250,
                          return_weights=False):
    r"""Use iterative procedure to compute the PSD from tapered spectra.

    .. note:: Modified from NiTime.

    Parameters
    ----------
    x_mt : array, shape=(n_signals, n_tapers, n_freqs)
        The DFTs of the tapered sequences (only positive frequencies)
    eigvals : array, length n_tapers
        The eigenvalues of the DPSS tapers
    freq_mask : array
        Frequency indices to keep
    max_iter : int
        Maximum number of iterations for weight computation.
    return_weights : bool
        Also return the weights

    Returns
    -------
    psd : array, shape=(n_signals, np.sum(freq_mask))
        The computed PSDs
    weights : array shape=(n_signals, n_tapers, np.sum(freq_mask))
        The weights used to combine the tapered spectra

    Notes
    -----
    The weights to use for making the multitaper estimate, such that
    :math:`S_{mt} = \sum_{k} |w_k|^2S_k^{mt} / \sum_{k} |w_k|^2`
    """
    n_signals, n_tapers, n_freqs = x_mt.shape

    if len(eigvals) != n_tapers:
        raise ValueError('Need one eigenvalue for each taper')

    if n_tapers < 3:
        raise ValueError('Not enough tapers to compute adaptive weights.')

    rt_eig = np.sqrt(eigvals)

    # estimate the variance from an estimate with fixed weights
    psd_est = _psd_from_mt(x_mt, rt_eig[np.newaxis, :, np.newaxis])
    x_var = np.trapz(psd_est, dx=np.pi / n_freqs) / (2 * np.pi)
    del psd_est

    # allocate space for output
    psd = np.empty((n_signals, np.sum(freq_mask)))

    # only keep the frequencies of interest
    x_mt = x_mt[:, :, freq_mask]

    if return_weights:
        weights = np.empty((n_signals, n_tapers, psd.shape[1]))

    for i, (xk, var) in enumerate(zip(x_mt, x_var)):
        # combine the SDFs in the traditional way in order to estimate
        # the variance of the timeseries

        # The process is to iteratively switch solving for the following
        # two expressions:
        # (1) Adaptive Multitaper SDF:
        # S^{mt}(f) = [ sum |d_k(f)|^2 S_k(f) ]/ sum |d_k(f)|^2
        #
        # (2) Weights
        # d_k(f) = [sqrt(lam_k) S^{mt}(f)] / [lam_k S^{mt}(f) + E{B_k(f)}]
        #
        # Where lam_k are the eigenvalues corresponding to the DPSS tapers,
        # and the expected value of the broadband bias function
        # E{B_k(f)} is replaced by its full-band integration
        # (1/2pi) int_{-pi}^{pi} E{B_k(f)} = sig^2(1-lam_k)

        # start with an estimate from incomplete data--the first 2 tapers
        psd_iter = _psd_from_mt(xk[:2, :], rt_eig[:2, np.newaxis])

        err = np.zeros_like(xk)
        for n in range(max_iter):
            d_k = (psd_iter / (eigvals[:, np.newaxis] * psd_iter +
                               (1 - eigvals[:, np.newaxis]) * var))
            d_k *= rt_eig[:, np.newaxis]
            # Test for convergence -- this is overly conservative, since
            # iteration only stops when all frequencies have converged.
            # A better approach is to iterate separately for each freq, but
            # that is a nonvectorized algorithm.
            # Take the RMS difference in weights from the previous iterate
            # across frequencies. If the maximum RMS error across freqs is
            # less than 1e-10, then we're converged
            err -= d_k
            if np.max(np.mean(err ** 2, axis=0)) < 1e-10:
                break

            # update the iterative estimate with this d_k
            psd_iter = _psd_from_mt(xk, d_k)
            err = d_k

        if n == max_iter - 1:
            warn('Iterative multi-taper PSD computation did not converge.')

        psd[i, :] = psd_iter

        if return_weights:
            weights[i, :, :] = d_k

    if return_weights:
        return psd, weights
    else:
        return psd


def _psd_from_mt(x_mt, weights):
    """Compute PSD from tapered spectra.

    Parameters
    ----------
    x_mt : array, shape=(..., n_tapers, n_freqs)
        Tapered spectra
    weights : array, shape=(n_tapers,)
        Weights used to combine the tapered spectra

    Returns
    -------
    psd : array, shape=(..., n_freqs)
        The computed PSD
    """
    psd = weights * x_mt
    psd *= psd.conj()
    psd = psd.real.sum(axis=-2)
    psd *= 2 / (weights * weights.conj()).real.sum(axis=-2)
    return psd


def _csd_from_mt(x_mt, y_mt, weights_x, weights_y):
    """Compute CSD from tapered spectra.

    Parameters
    ----------
    x_mt : array, shape=(..., n_tapers, n_freqs)
        Tapered spectra for x
    y_mt : array, shape=(..., n_tapers, n_freqs)
        Tapered spectra for y
    weights_x : array, shape=(n_tapers,)
        Weights used to combine the tapered spectra of x_mt
    weights_y : array, shape=(n_tapers,)
        Weights used to combine the tapered spectra of y_mt

    Returns
    -------
    csd: array
        The computed CSD
    """
    csd = np.sum(weights_x * x_mt * (weights_y * y_mt).conj(), axis=-2)
    denom = (np.sqrt((weights_x * weights_x.conj()).real.sum(axis=-2)) *
             np.sqrt((weights_y * weights_y.conj()).real.sum(axis=-2)))
    csd *= 2 / denom
    return csd


def _mt_spectra(x, dpss, sfreq, n_fft=None):
    """Compute tapered spectra.

    Parameters
    ----------
    x : array, shape=(..., n_times)
        Input signal
    dpss : array, shape=(n_tapers, n_times)
        The tapers
    sfreq : float
        The sampling frequency
    n_fft : int | None
        Length of the FFT. If None, the number of samples in the input signal
        will be used.

    Returns
    -------
    x_mt : array, shape=(..., n_tapers, n_freqs)
        The tapered spectra
    freqs : array, shape=(n_freqs,)
        The frequency points in Hz of the spectra
    """
    from scipy.fft import rfft, rfftfreq
    if n_fft is None:
        n_fft = x.shape[-1]

    # remove mean (do not use in-place subtraction as it may modify input x)
    x = x - np.mean(x, axis=-1, keepdims=True)

    # only keep positive frequencies
    freqs = rfftfreq(n_fft, 1. / sfreq)

    # The following is equivalent to this, but uses less memory:
    # x_mt = fftpack.fft(x[:, np.newaxis, :] * dpss, n=n_fft)
    n_tapers = dpss.shape[0] if dpss.ndim > 1 else 1
    x_mt = np.zeros(x.shape[:-1] + (n_tapers, len(freqs)),
                    dtype=np.complex128)
    for idx, sig in enumerate(x):
        x_mt[idx] = rfft(sig[..., np.newaxis, :] * dpss, n=n_fft)
    # Adjust DC and maybe Nyquist, depending on one-sided transform
    x_mt[..., 0] /= np.sqrt(2.)
    if n_fft % 2 == 0:
        x_mt[..., -1] /= np.sqrt(2.)
    return x_mt, freqs


@verbose
def _compute_mt_params(n_times, sfreq, bandwidth, low_bias, adaptive,
                       verbose=None):
    """Triage windowing and multitaper parameters."""
    # Compute standardized half-bandwidth
    from scipy.signal import get_window
    if isinstance(bandwidth, str):
        logger.info('    Using standard spectrum estimation with "%s" window'
                    % (bandwidth,))
        window_fun = get_window(bandwidth, n_times)[np.newaxis]
        return window_fun, np.ones(1), False

    if bandwidth is not None:
        half_nbw = float(bandwidth) * n_times / (2. * sfreq)
    else:
        half_nbw = 4.
    if half_nbw < 0.5:
        raise ValueError(
            'bandwidth value %s yields a normalized bandwidth of %s < 0.5, '
            'use a value of at least %s'
            % (bandwidth, half_nbw, sfreq / n_times))

    # Compute DPSS windows
    n_tapers_max = int(2 * half_nbw)
    window_fun, eigvals = dpss_windows(n_times, half_nbw, n_tapers_max,
                                       sym=False, low_bias=low_bias)
    logger.info('    Using multitaper spectrum estimation with %d DPSS '
                'windows' % len(eigvals))

    if adaptive and len(eigvals) < 3:
        warn('Not adaptively combining the spectral estimators due to a '
             'low number of tapers (%s < 3).' % (len(eigvals),))
        adaptive = False

    return window_fun, eigvals, adaptive


@verbose
def psd_array_multitaper(x, sfreq, fmin=0.0, fmax=np.inf, bandwidth=None,
                         adaptive=False, low_bias=True, normalization='length',
                         output='power', n_jobs=None, *, max_iter=150,
                         verbose=None):
    r"""Compute power spectral density (PSD) using a multi-taper method.

    The power spectral density is computed with DPSS
    tapers\ :footcite:p:`Slepian1978`.

    Parameters
    ----------
    x : array, shape=(..., n_times)
        The data to compute PSD from.
    sfreq : float
        The sampling frequency.
    %(fmin_fmax_psd)s
    bandwidth : float
        Half-bandwidth of the multi-taper window function in Hz. For a given
        frequency, frequencies at ± half-bandwidth are smoothed together.
        The default value is a half-bandwidth of 4.
    adaptive : bool
        Use adaptive weights to combine the tapered spectra into PSD
        (slow, use n_jobs >> 1 to speed up computation).
    low_bias : bool
        Only use tapers with more than 90%% spectral concentration within
        bandwidth.
    %(normalization)s
    output : str
        The format of the returned ``psds`` array, ``'complex'`` or
        ``'power'``:

        * ``'power'`` : the power spectral density is returned.
        * ``'complex'`` : the complex fourier coefficients are returned per
          taper.
    %(n_jobs)s
    %(max_iter_multitaper)s
    %(verbose)s

    Returns
    -------
    psds : ndarray, shape (..., n_freqs) or (..., n_tapers, n_freqs)
        The power spectral densities. All dimensions up to the last (or the
        last two if ``output='complex'``) will be the same as input.
    freqs : array
        The frequency points in Hz of the PSD.
    weights : ndarray
        The weights used for averaging across tapers. Only returned if
        ``output='complex'``.

    See Also
    --------
    csd_multitaper
    mne.io.Raw.compute_psd
    mne.Epochs.compute_psd
    mne.Evoked.compute_psd

    Notes
    -----
    .. versionadded:: 0.14.0

    References
    ----------
    .. footbibliography::
    """
    from scipy.fft import rfftfreq
    _check_option('normalization', normalization, ['length', 'full'])

    # Reshape data so its 2-D for parallelization
    ndim_in = x.ndim
    x = np.atleast_2d(x)
    n_times = x.shape[-1]
    dshape = x.shape[:-1]
    x = x.reshape(-1, n_times)

    dpss, eigvals, adaptive = _compute_mt_params(
        n_times, sfreq, bandwidth, low_bias, adaptive)
    n_tapers = len(dpss)
    weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis]

    # decide which frequencies to keep
    freqs = rfftfreq(n_times, 1. / sfreq)
    freq_mask = (freqs >= fmin) & (freqs <= fmax)
    freqs = freqs[freq_mask]
    n_freqs = len(freqs)

    if output == 'complex':
        psd = np.zeros((x.shape[0], n_tapers, n_freqs), dtype='complex')
    else:
        psd = np.zeros((x.shape[0], n_freqs))

    # Let's go in up to 50 MB chunks of signals to save memory
    n_chunk = max(50000000 // (len(freq_mask) * len(eigvals) * 16), 1)
    offsets = np.concatenate((np.arange(0, x.shape[0], n_chunk), [x.shape[0]]))
    for start, stop in zip(offsets[:-1], offsets[1:]):
        x_mt = _mt_spectra(x[start:stop], dpss, sfreq)[0]
        if output == 'power':
            if not adaptive:
                psd[start:stop] = _psd_from_mt(x_mt[:, :, freq_mask], weights)
            else:
                parallel, my_psd_from_mt_adaptive, n_jobs = \
                    parallel_func(_psd_from_mt_adaptive, n_jobs)
                n_splits = min(stop - start, n_jobs)
                out = parallel(
                    my_psd_from_mt_adaptive(x, eigvals, freq_mask, max_iter)
                    for x in np.array_split(x_mt, n_splits)
                )
                psd[start:stop] = np.concatenate(out)
        else:
            psd[start:stop] = x_mt[:, :, freq_mask]

    if normalization == 'full':
        psd /= sfreq

    # Combining/reshaping to original data shape
    last_dims = (n_freqs,) if output == 'power' else (n_tapers, n_freqs)
    psd.shape = dshape + last_dims
    if ndim_in == 1:
        psd = psd[0]

    if output == 'complex':
        return psd, freqs, weights
    else:
        return psd, freqs


@verbose
def tfr_array_multitaper(epoch_data, sfreq, freqs, n_cycles=7.0,
                         zero_mean=True, time_bandwidth=4.0, use_fft=True,
                         decim=1, output='complex', n_jobs=None, *,
                         verbose=None):
    """Compute Time-Frequency Representation (TFR) using DPSS tapers.

    Same computation as `~mne.time_frequency.tfr_multitaper`, but operates on
    :class:`NumPy arrays <numpy.ndarray>` instead of `~mne.Epochs` or
    `~mne.Evoked` objects.

    Parameters
    ----------
    epoch_data : array of shape (n_epochs, n_channels, n_times)
        The epochs.
    sfreq : float
        Sampling frequency of the data in Hz.
    %(freqs_tfr)s
    %(n_cycles_tfr)s
    zero_mean : bool
        If True, make sure the wavelets have a mean of zero. Defaults to True.
    %(time_bandwidth_tfr)s
    use_fft : bool
        Use the FFT for convolutions or not. Defaults to True.
    %(decim_tfr)s
    output : str, default 'complex'

        * ``'complex'`` : single trial per taper complex values.
        * ``'power'`` : single trial power.
        * ``'phase'`` : single trial per taper phase.
        * ``'avg_power'`` : average of single trial power.
        * ``'itc'`` : inter-trial coherence.
        * ``'avg_power_itc'`` : average of single trial power and inter-trial
          coherence across trials.
    %(n_jobs)s
    %(verbose)s

    Returns
    -------
    out : array
        Time frequency transform of ``epoch_data``.

        - if ``output in ('complex',' 'phase')``, array of shape
          ``(n_epochs, n_chans, n_tapers, n_freqs, n_times)``
        - if ``output`` is ``'power'``, array of shape ``(n_epochs, n_chans,
          n_freqs, n_times)``
        - else, array of shape ``(n_chans, n_freqs, n_times)``

        If ``output`` is ``'avg_power_itc'``, the real values in ``out``
        contain the average power and the imaginary values contain the
        inter-trial coherence: :math:`out = power_{avg} + i * ITC`.

    See Also
    --------
    mne.time_frequency.tfr_multitaper
    mne.time_frequency.tfr_morlet
    mne.time_frequency.tfr_array_morlet
    mne.time_frequency.tfr_stockwell
    mne.time_frequency.tfr_array_stockwell

    Notes
    -----
    %(temporal-window_tfr_notes)s
    %(time_bandwidth_tfr_notes)s

    .. versionadded:: 0.14.0
    """
    from .tfr import _compute_tfr
    return _compute_tfr(epoch_data, freqs, sfreq=sfreq,
                        method='multitaper', n_cycles=n_cycles,
                        zero_mean=zero_mean, time_bandwidth=time_bandwidth,
                        use_fft=use_fft, decim=decim, output=output,
                        n_jobs=n_jobs, verbose=verbose)