File: spectrum.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (1197 lines) | stat: -rw-r--r-- 46,606 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
# -*- coding: utf-8 -*-
"""Container classes for spectral data."""

# Authors: Dan McCloy <dan@mccloy.info>
#
# License: BSD-3-Clause

from copy import deepcopy
from functools import partial
from inspect import signature

import numpy as np

from ..channels.channels import UpdateChannelsMixin, _get_ch_type
from ..channels.layout import _merge_ch_data
from ..defaults import (_BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT,
                        _INTERPOLATION_DEFAULT, _handle_default)
from ..io.meas_info import ContainsMixin
from ..io.pick import _pick_data_channels, _picks_to_idx, pick_info
from ..utils import (GetEpochsMixin, _build_data_frame,
                     _check_pandas_index_arguments, _check_pandas_installed,
                     _check_sphere, _time_mask, _validate_type, fill_doc,
                     legacy, logger, object_diff, repr_html, verbose, warn)
from ..utils.check import (_check_fname, _check_option, _import_h5io_funcs,
                           _is_numeric, check_fname)
from ..utils.misc import _pl
from ..viz.topo import _plot_timeseries, _plot_timeseries_unified, _plot_topo
from ..viz.topomap import (_make_head_outlines, _prepare_topomap_plot,
                           plot_psds_topomap)
from ..viz.utils import (_format_units_psd, _plot_psd, _prepare_sensor_names,
                         plt_show)
from . import psd_array_multitaper, psd_array_welch
from .psd import _check_nfft


def _identity_function(x):
    return x


class SpectrumMixin():
    """Mixin providing spectral plotting methods to sensor-space containers."""

    @legacy(alt='.compute_psd().plot()')
    @verbose
    def plot_psd(self, fmin=0, fmax=np.inf, tmin=None, tmax=None, picks=None,
                 proj=False, reject_by_annotation=True, *, method='auto',
                 average=False, dB=True, estimate='auto', xscale='linear',
                 area_mode='std', area_alpha=0.33, color='black',
                 line_alpha=None, spatial_colors=True, sphere=None,
                 exclude='bads', ax=None, show=True, n_jobs=1, verbose=None,
                 **method_kw):
        """%(plot_psd_doc)s.

        Parameters
        ----------
        %(fmin_fmax_psd)s
        %(tmin_tmax_psd)s
        %(picks_good_data_noref)s
        %(proj_psd)s
        %(reject_by_annotation_psd)s
        %(method_plot_psd_auto)s
        %(average_plot_psd)s
        %(dB_plot_psd)s
        %(estimate_plot_psd)s
        %(xscale_plot_psd)s
        %(area_mode_plot_psd)s
        %(area_alpha_plot_psd)s
        %(color_plot_psd)s
        %(line_alpha_plot_psd)s
        %(spatial_colors_psd)s
        %(sphere_topomap_auto)s

            .. versionadded:: 0.22.0
        exclude : list of str | 'bads'
            Channels names to exclude from being shown. If 'bads', the bad
            channels are excluded. Pass an empty list to plot all channels
            (including channels marked "bad", if any).

            .. versionadded:: 0.24.0
        %(ax_plot_psd)s
        %(show)s
        %(n_jobs)s
        %(verbose)s
        %(method_kw_psd)s

        Returns
        -------
        fig : instance of Figure
            Figure with frequency spectra of the data channels.

        Notes
        -----
        %(notes_plot_psd_meth)s
        """
        from ..io import BaseRaw

        method = _validate_method(method, type(self).__name__)
        self._set_legacy_nfft_default(tmin, tmax, method, method_kw)
        # triage reject_by_annotation
        rba = dict()
        if isinstance(self, BaseRaw):
            rba = dict(reject_by_annotation=reject_by_annotation)

        spectrum = self.compute_psd(
            method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
            picks=picks, proj=proj, n_jobs=n_jobs, verbose=verbose, **rba,
            **method_kw)

        # translate kwargs
        amplitude = 'auto' if estimate == 'auto' else (estimate == 'amplitude')
        ci = 'sd' if area_mode == 'std' else area_mode
        # ↓ here picks="all" because we've already restricted the `info` to
        # ↓ have only `picks` channels
        fig = spectrum.plot(
            picks='all', average=average, dB=dB, amplitude=amplitude,
            xscale=xscale, ci=ci, ci_alpha=area_alpha, color=color,
            alpha=line_alpha, spatial_colors=spatial_colors, sphere=sphere,
            exclude=exclude, axes=ax, show=show)
        return fig

    @legacy(alt='.compute_psd().plot_topo()')
    @verbose
    def plot_psd_topo(self, tmin=None, tmax=None, fmin=0, fmax=100, proj=False,
                      *, method='auto', dB=True, layout=None, color='w',
                      fig_facecolor='k', axis_facecolor='k', axes=None,
                      block=False, show=True, n_jobs=None, verbose=None,
                      **method_kw):
        """Plot power spectral density, separately for each channel.

        Parameters
        ----------
        %(tmin_tmax_psd)s
        %(fmin_fmax_psd_topo)s
        %(proj_psd)s
        %(method_plot_psd_auto)s
        %(dB_spectrum_plot_topo)s
        %(layout_spectrum_plot_topo)s
        %(color_spectrum_plot_topo)s
        %(fig_facecolor)s
        %(axis_facecolor)s
        %(axes_spectrum_plot_topo)s
        %(block)s
        %(show)s
        %(n_jobs)s
        %(verbose)s
        %(method_kw_psd)s Defaults to ``dict(n_fft=2048)``.

        Returns
        -------
        fig : instance of matplotlib.figure.Figure
            Figure distributing one image per channel across sensor topography.
        """
        method = _validate_method(method, type(self).__name__)
        self._set_legacy_nfft_default(tmin, tmax, method, method_kw)

        spectrum = self.compute_psd(
            method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
            proj=proj, n_jobs=n_jobs, verbose=verbose, **method_kw)

        return spectrum.plot_topo(
            dB=dB, layout=layout, color=color, fig_facecolor=fig_facecolor,
            axis_facecolor=axis_facecolor, axes=axes, block=block, show=show)

    @legacy(alt='.compute_psd().plot_topomap()')
    @verbose
    def plot_psd_topomap(self, bands=None, tmin=None, tmax=None, ch_type=None,
                         *, proj=False, method='auto', normalize=False,
                         agg_fun=None, dB=False, sensors=True,
                         show_names=False, mask=None, mask_params=None,
                         contours=0, outlines='head', sphere=None,
                         image_interp=_INTERPOLATION_DEFAULT,
                         extrapolate=_EXTRAPOLATE_DEFAULT,
                         border=_BORDER_DEFAULT, res=64, size=1, cmap=None,
                         vlim=(None, None), cnorm=None, colorbar=True,
                         cbar_fmt='auto', units=None, axes=None, show=True,
                         n_jobs=None, verbose=None, **method_kw):
        """Plot scalp topography of PSD for chosen frequency bands.

        Parameters
        ----------
        %(bands_psd_topo)s
        %(tmin_tmax_psd)s
        %(ch_type_topomap_psd)s
        %(proj_psd)s
        %(method_plot_psd_auto)s
        %(normalize_psd_topo)s
        %(agg_fun_psd_topo)s
        %(dB_plot_topomap)s
        %(sensors_topomap)s
        %(show_names_topomap)s
        %(mask_evoked_topomap)s
        %(mask_params_topomap)s
        %(contours_topomap)s
        %(outlines_topomap)s
        %(sphere_topomap_auto)s
        %(image_interp_topomap)s
        %(extrapolate_topomap)s
        %(border_topomap)s
        %(res_topomap)s
        %(size_topomap)s
        %(cmap_topomap)s
        %(vlim_plot_topomap_psd)s
        %(cnorm)s

            .. versionadded:: 1.2
        %(colorbar_topomap)s
        %(cbar_fmt_topomap_psd)s
        %(units_topomap)s
        %(axes_spectrum_plot_topomap)s
        %(show)s
        %(n_jobs)s
        %(verbose)s
        %(method_kw_psd)s

        Returns
        -------
        fig : instance of Figure
            Figure showing one scalp topography per frequency band.
        """
        spectrum = self.compute_psd(
            method=method, tmin=tmin, tmax=tmax, proj=proj,
            n_jobs=n_jobs, verbose=verbose, **method_kw)

        fig = spectrum.plot_topomap(
            bands=bands, ch_type=ch_type, normalize=normalize, agg_fun=agg_fun,
            dB=dB, sensors=sensors, show_names=show_names, mask=mask,
            mask_params=mask_params, contours=contours, outlines=outlines,
            sphere=sphere, image_interp=image_interp, extrapolate=extrapolate,
            border=border, res=res, size=size, cmap=cmap, vlim=vlim,
            cnorm=cnorm, colorbar=colorbar, cbar_fmt=cbar_fmt, units=units,
            axes=axes, show=show)
        return fig

    def _set_legacy_nfft_default(self, tmin, tmax, method, method_kw):
        """Update method_kw with legacy n_fft default for plot_psd[_topo]().

        This method returns ``None`` and has a side effect of (maybe) updating
        the ``method_kw`` dict.
        """
        if method == 'welch' and method_kw.get('n_fft', None) is None:
            tm = _time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq'])
            method_kw['n_fft'] = min(np.sum(tm), 2048)


class BaseSpectrum(ContainsMixin, UpdateChannelsMixin):
    """Base class for Spectrum and EpochsSpectrum."""

    def __init__(self, inst, method, fmin, fmax, tmin, tmax, picks,
                 proj, *, n_jobs, verbose=None, **method_kw):
        # arg checking
        self._sfreq = inst.info['sfreq']
        if np.isfinite(fmax) and (fmax > self.sfreq / 2):
            raise ValueError(
                f'Requested fmax ({fmax} Hz) must not exceed ½ the sampling '
                f'frequency of the data ({0.5 * inst.info["sfreq"]} Hz).')
        # method
        self._inst_type = type(inst)
        method = _validate_method(method, self._get_instance_type_string())

        # triage method and kwargs. partial() doesn't check validity of kwargs,
        # so we do it manually to save compute time if any are invalid.
        psd_funcs = dict(welch=psd_array_welch,
                         multitaper=psd_array_multitaper)
        invalid_ix = np.in1d(list(method_kw),
                             list(signature(psd_funcs[method]).parameters),
                             invert=True)
        if invalid_ix.any():
            invalid_kw = np.array(list(method_kw))[invalid_ix].tolist()
            s = _pl(invalid_kw)
            raise TypeError(
                f'Got unexpected keyword argument{s} {", ".join(invalid_kw)} '
                f'for PSD method "{method}".')
        self._psd_func = partial(psd_funcs[method], **method_kw)

        # apply proj if desired
        if proj:
            inst = inst.copy().apply_proj()
        self.inst = inst

        # prep times and picks
        self._time_mask = _time_mask(inst.times, tmin, tmax, sfreq=self.sfreq)
        self._picks = _picks_to_idx(inst.info, picks, 'data',
                                    with_ref_meg=False)

        # add the info object. bads and non-data channels were dropped by
        # _picks_to_idx() so we update the info accordingly:
        self.info = pick_info(inst.info, sel=self._picks, copy=True)

        # assign some attributes
        self.preload = True  # needed for __getitem__, doesn't mean anything
        self._method = method
        # self._dims may also get updated by child classes
        self._dims = ('channel', 'freq',)
        if method_kw.get('average', '') in (None, False):
            self._dims += ('segment',)
        if method_kw.get('output', '') == 'complex':
            self._dims = self._dims[:-1] + ('taper',) + self._dims[-1:]
        # record data type (for repr and html_repr)
        self._data_type = ('Fourier Coefficients' if 'taper' in self._dims
                           else 'Power Spectrum')

    def __eq__(self, other):
        """Test equivalence of two Spectrum instances."""
        return object_diff(vars(self), vars(other)) == ''

    def __getstate__(self):
        """Prepare object for serialization."""
        inst_type_str = self._get_instance_type_string()
        out = dict(method=self.method,
                   data=self._data,
                   sfreq=self.sfreq,
                   dims=self._dims,
                   freqs=self.freqs,
                   inst_type_str=inst_type_str,
                   data_type=self._data_type,
                   info=self.info)
        return out

    def __setstate__(self, state):
        """Unpack from serialized format."""
        from .. import Epochs, Evoked, Info
        from ..io import Raw

        self._method = state['method']
        self._data = state['data']
        self._freqs = state['freqs']
        self._dims = state['dims']
        self._sfreq = state['sfreq']
        self.info = Info(**state['info'])
        self._data_type = state['data_type']
        self.preload = True
        # instance type
        inst_types = dict(Raw=Raw, Epochs=Epochs, Evoked=Evoked)
        self._inst_type = inst_types[state['inst_type_str']]

    def __repr__(self):
        """Build string representation of the Spectrum object."""
        inst_type_str = self._get_instance_type_string()
        # shape & dimension names
        dims = ' × '.join(
            [f'{dim[0]} {dim[1]}s' for dim in zip(self.shape, self._dims)])
        freq_range = f'{self.freqs[0]:0.1f}-{self.freqs[-1]:0.1f} Hz'
        return (f'<{self._data_type} (from {inst_type_str}, '
                f'{self.method} method) | {dims}, {freq_range}>')

    @repr_html
    def _repr_html_(self, caption=None):
        """Build HTML representation of the Spectrum object."""
        from ..html_templates import repr_templates_env

        inst_type_str = self._get_instance_type_string()
        units = [f'{ch_type}: {unit}'
                 for ch_type, unit in self.units().items()]
        t = repr_templates_env.get_template('spectrum.html.jinja')
        t = t.render(spectrum=self, inst_type=inst_type_str, units=units)
        return t

    def _check_values(self):
        """Check PSD results for correct shape and bad values."""
        assert len(self._dims) == self._data.ndim
        assert self._data.shape == self._shape
        # negative values OK if the spectrum is really fourier coefficients
        if 'taper' in self._dims:
            return
        # TODO: should this be more fine-grained (report "chan X in epoch Y")?
        ch_dim = self._dims.index('channel')
        dims = np.arange(self._data.ndim).tolist()
        dims.pop(ch_dim)
        # take min() across all but the channel axis
        bad_value = self._data.min(axis=tuple(dims)) <= 0
        if bad_value.any():
            chs = np.array(self.ch_names)[bad_value].tolist()
            s = _pl(bad_value.sum())
            warn(f'Zero value in spectrum for channel{s} {", ".join(chs)}',
                 UserWarning)

    def _compute_spectra(self, data, fmin, fmax, n_jobs, method_kw, verbose):
        # make the spectra
        result = self._psd_func(
            data, self.sfreq, fmin=fmin, fmax=fmax, n_jobs=n_jobs,
            verbose=verbose)
        # assign ._data (handling unaggregated multitaper output)
        if method_kw.get('output', '') == 'complex':
            fourier_coefs, freqs, weights = result
            self._data = fourier_coefs
            self._mt_weights = weights
        else:
            psds, freqs = result
            self._data = psds
        # assign properties (._data already assigned above)
        self._freqs = freqs
        # this is *expected* shape, it gets asserted later in _check_values()
        # (and then deleted afterwards)
        self._shape = (len(self.ch_names), len(self.freqs))
        # append n_welch_segments
        if method_kw.get('average', '') in (None, False):
            n_welch_segments = _compute_n_welch_segments(data.shape[-1],
                                                         method_kw)
            self._shape += (n_welch_segments,)
        # insert n_tapers
        if method_kw.get('output', '') == 'complex':
            self._shape = (
                self._shape[:-1] + (self._mt_weights.size,) + self._shape[-1:])
        # we don't need these anymore, and they make save/load harder
        del self._picks
        del self._psd_func
        del self._time_mask

    def _get_instance_type_string(self):
        """Get string representation of the originating instance type."""
        from .. import BaseEpochs, Evoked, EvokedArray
        from ..io import BaseRaw

        parent_classes = self._inst_type.__bases__
        if BaseRaw in parent_classes:
            inst_type_str = 'Raw'
        elif BaseEpochs in parent_classes:
            inst_type_str = 'Epochs'
        elif self._inst_type in (Evoked, EvokedArray):
            inst_type_str = 'Evoked'
        else:
            raise RuntimeError(
                f'Unknown instance type {self._inst_type} in Spectrum')
        return inst_type_str

    @property
    def _detrend_picks(self):
        """Provide compatibility with __iter__."""
        return list()

    @property
    def ch_names(self):
        return self.info['ch_names']

    @property
    def freqs(self):
        return self._freqs

    @property
    def method(self):
        return self._method

    @property
    def sfreq(self):
        return self._sfreq

    @property
    def shape(self):
        return self._data.shape

    def copy(self):
        """Return copy of the Spectrum instance.

        Returns
        -------
        spectrum : instance of Spectrum
            A copy of the object.
        """
        return deepcopy(self)

    @fill_doc
    def get_data(self, picks=None, exclude='bads', fmin=0, fmax=np.inf,
                 return_freqs=False):
        """Get spectrum data in NumPy array format.

        Parameters
        ----------
        %(picks_good_data_noref)s
        %(exclude_spectrum_get_data)s
        %(fmin_fmax_psd)s
        return_freqs : bool
            Whether to return the frequency bin values for the requested
            frequency range. Default is ``False``.

        Returns
        -------
        data : array
            The requested data in a NumPy array.
        freqs : array
            The frequency values for the requested range. Only returned if
            ``return_freqs`` is ``True``.
        """
        picks = _picks_to_idx(self.info, picks, 'data_or_ica', exclude=exclude,
                              with_ref_meg=False)
        fmin_idx = np.searchsorted(self.freqs, fmin)
        fmax_idx = np.searchsorted(self.freqs, fmax, side='right')
        freq_picks = np.arange(fmin_idx, fmax_idx)
        freq_axis = self._dims.index('freq')
        chan_axis = self._dims.index('channel')
        # normally there's a risk of np.take reducing array dimension if there
        # were only one channel or frequency selected, but `_picks_to_idx`
        # always returns an array of picks, and np.arange always returns an
        # array of freq bin indices, so we're safe; the result will always be
        # 2D.
        data = self._data.take(picks, chan_axis).take(freq_picks, freq_axis)
        if return_freqs:
            freqs = self._freqs[fmin_idx:fmax_idx]
            return (data, freqs)
        return data

    @fill_doc
    def plot(self, *, picks=None, average=False, dB=True, amplitude='auto',
             xscale='linear', ci='sd', ci_alpha=0.3, color='black', alpha=None,
             spatial_colors=True, sphere=None, exclude='bads', axes=None,
             show=True):
        """%(plot_psd_doc)s.

        Parameters
        ----------
        %(picks_good_data_noref)s
        average : bool
            Whether to average across channels before plotting. If ``True``,
            interactive plotting of scalp topography is disabled, and
            parameters ``ci`` and ``ci_alpha`` control the style of the
            confidence band around the mean. Default is ``False``.
        %(dB_spectrum_plot)s
        amplitude : bool | 'auto'
            Whether to plot an amplitude spectrum (``True``) or power spectrum
            (``False``). If ``'auto'``, will plot a power spectrum when
            ``dB=True`` and an amplitude spectrum otherwise. Default is
            ``'auto'``.
        %(xscale_plot_psd)s
        ci : float | 'sd' | 'range' | None
            Type of confidence band drawn around the mean when
            ``average=True``. If ``'sd'`` the band spans ±1 standard deviation
            across channels. If ``'range'`` the band spans the range across
            channels at each frequency. If a :class:`float`, it indicates the
            (bootstrapped) confidence interval to display, and must satisfy
            ``0 < ci <= 100``. If ``None``, no band is drawn. Default is
            ``sd``.
        ci_alpha : float
            Opacity of the confidence band. Must satisfy
            ``0 <= ci_alpha <= 1``. Default is 0.3.
        %(color_plot_psd)s
        alpha : float | None
            Opacity of the spectrum line(s). If :class:`float`, must satisfy
            ``0 <= alpha <= 1``. If ``None``, opacity will be ``1`` when
            ``average=True`` and ``0.1`` when ``average=False``. Default is
            ``None``.
        %(spatial_colors_psd)s
        %(sphere_topomap_auto)s
        %(exclude_spectrum_plot)s
        %(axes_spectrum_plot_topomap)s
        %(show)s

        Returns
        -------
        fig : instance of matplotlib.figure.Figure
            Figure with spectra plotted in separate subplots for each channel
            type.
        """
        from ..viz._mpl_figure import _line_figure, _split_picks_by_type
        from .multitaper import _psd_from_mt

        # arg checking
        ci = _check_ci(ci)
        _check_option('xscale', xscale, ('log', 'linear'))
        sphere = _check_sphere(sphere, self.info)
        # defaults
        scalings = _handle_default('scalings', None)
        titles = _handle_default('titles', None)
        units = _handle_default('units', None)
        if amplitude == 'auto':
            estimate = 'power' if dB else 'amplitude'
        else:  # amplitude is boolean
            estimate = 'amplitude' if amplitude else 'power'
        # split picks by channel type
        picks = _picks_to_idx(self.info, picks, 'data', with_ref_meg=False)
        (picks_list, units_list, scalings_list, titles_list
         ) = _split_picks_by_type(self, picks, units, scalings, titles)
        # handle unaggregated multitaper
        if hasattr(self, '_mt_weights'):
            logger.info('Aggregating multitaper estimates before plotting...')
            _f = partial(_psd_from_mt, weights=self._mt_weights)
        # handle unaggregated Welch
        elif 'segment' in self._dims:
            logger.info(
                'Aggregating Welch estimates (median) before plotting...')
            seg_axis = self._dims.index('segment')
            _f = partial(np.nanmedian, axis=seg_axis)
        else:  # "normal" cases
            _f = _identity_function
        ch_axis = self._dims.index('channel')
        psd_list = [_f(self._data.take(_p, axis=ch_axis)) for _p in picks_list]
        # handle epochs
        if 'epoch' in self._dims:
            # XXX TODO FIXME decide how to properly aggregate across repeated
            # measures (epochs) and non-repeated but correlated measures
            # (channels) when calculating stddev or a CI. For across-channel
            # aggregation, doi:10.1007/s10162-012-0321-8 used hotellings T**2
            # with a correction factor that estimated data rank using monte
            # carlo simulations; seems like we could use our own data rank
            # estimation methods to similar effect. Their exact approach used
            # complex spectra though, here we've already converted to power;
            # not sure if that makes an important difference? Anyway that
            # aggregation would need to happen in the _plot_psd function
            # though, not here... for now we just average like we always did.

            # only log message if averaging will actually have an effect
            if self._data.shape[0] > 1:
                logger.info('Averaging across epochs...')
            # epoch axis should always be the first axis
            psd_list = [_p.mean(axis=0) for _p in psd_list]
        # initialize figure
        fig, axes = _line_figure(self, axes, picks=picks)
        # don't add ylabels & titles if figure has unexpected number of axes
        make_label = len(axes) == len(fig.axes)
        # Plot Frequency [Hz] xlabel only on the last axis
        xlabels_list = [False] * (len(axes) - 1) + [True]
        # plot
        _plot_psd(self, fig, self.freqs, psd_list, picks_list, titles_list,
                  units_list, scalings_list, axes, make_label, color,
                  area_mode=ci, area_alpha=ci_alpha, dB=dB, estimate=estimate,
                  average=average, spatial_colors=spatial_colors,
                  xscale=xscale, line_alpha=alpha,
                  sphere=sphere, xlabels_list=xlabels_list)
        fig.subplots_adjust(hspace=0.3)
        plt_show(show, fig)
        return fig

    @fill_doc
    def plot_topo(self, *, dB=True, layout=None, color='w',
                  fig_facecolor='k', axis_facecolor='k', axes=None,
                  block=False, show=True):
        """Plot power spectral density, separately for each channel.

        Parameters
        ----------
        %(dB_spectrum_plot_topo)s
        %(layout_spectrum_plot_topo)s
        %(color_spectrum_plot_topo)s
        %(fig_facecolor)s
        %(axis_facecolor)s
        %(axes_spectrum_plot_topo)s
        %(block)s
        %(show)s

        Returns
        -------
        fig : instance of matplotlib.figure.Figure
            Figure distributing one image per channel across sensor topography.
        """
        if layout is None:
            from ..channels.layout import find_layout
            layout = find_layout(self.info)

        psds, freqs = self.get_data(return_freqs=True)
        if dB:
            psds = 10 * np.log10(psds)
            y_label = 'dB'
        else:
            y_label = 'Power'
        show_func = partial(
            _plot_timeseries_unified, data=[psds], color=color, times=[freqs])
        click_func = partial(
            _plot_timeseries, data=[psds], color=color, times=[freqs])
        picks = _pick_data_channels(self.info)
        info = pick_info(self.info, picks)
        fig = _plot_topo(
            info, times=freqs, show_func=show_func, click_func=click_func,
            layout=layout, axis_facecolor=axis_facecolor,
            fig_facecolor=fig_facecolor, x_label='Frequency (Hz)',
            unified=True, y_label=y_label, axes=axes)
        plt_show(show, block=block)
        return fig

    @fill_doc
    def plot_topomap(self, bands=None, ch_type=None, *, normalize=False,
                     agg_fun=None, dB=False, sensors=True, show_names=False,
                     mask=None, mask_params=None, contours=6, outlines='head',
                     sphere=None, image_interp=_INTERPOLATION_DEFAULT,
                     extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT,
                     res=64, size=1, cmap=None, vlim=(None, None), cnorm=None,
                     colorbar=True, cbar_fmt='auto', units=None, axes=None,
                     show=True):
        """Plot scalp topography of PSD for chosen frequency bands.

        Parameters
        ----------
        %(bands_psd_topo)s
        %(ch_type_topomap_psd)s
        %(normalize_psd_topo)s
        %(agg_fun_psd_topo)s
        %(dB_plot_topomap)s
        %(sensors_topomap)s
        %(show_names_topomap)s
        %(mask_evoked_topomap)s
        %(mask_params_topomap)s
        %(contours_topomap)s
        %(outlines_topomap)s
        %(sphere_topomap_auto)s
        %(image_interp_topomap)s
        %(extrapolate_topomap)s
        %(border_topomap)s
        %(res_topomap)s
        %(size_topomap)s
        %(cmap_topomap)s
        %(vlim_plot_topomap_psd)s
        %(cnorm)s
        %(colorbar_topomap)s
        %(cbar_fmt_topomap_psd)s
        %(units_topomap)s
        %(axes_spectrum_plot_topomap)s
        %(show)s

        Returns
        -------
        fig : instance of Figure
            Figure showing one scalp topography per frequency band.
        """
        ch_type = _get_ch_type(self, ch_type)
        if units is None:
            units = _handle_default('units', None)
        unit = units[ch_type] if hasattr(units, 'keys') else units
        scalings = _handle_default('scalings', None)
        scaling = scalings[ch_type]

        picks, pos, merge_channels, names, ch_type, sphere, clip_origin = \
            _prepare_topomap_plot(self, ch_type, sphere=sphere)
        outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)

        psds, freqs = self.get_data(picks=picks, return_freqs=True)
        if 'epoch' in self._dims:
            psds = np.mean(psds, axis=self._dims.index('epoch'))
        psds *= scaling**2

        if merge_channels:
            psds, names = _merge_ch_data(psds, ch_type, names, method='mean')

        names = _prepare_sensor_names(names, show_names)
        return plot_psds_topomap(
            psds=psds, freqs=freqs, pos=pos, bands=bands, ch_type=ch_type,
            normalize=normalize, agg_fun=agg_fun, dB=dB, sensors=sensors,
            names=names, mask=mask, mask_params=mask_params,
            contours=contours, outlines=outlines, sphere=sphere,
            image_interp=image_interp, extrapolate=extrapolate, border=border,
            res=res, size=size, cmap=cmap, vlim=vlim, cnorm=cnorm,
            colorbar=colorbar, cbar_fmt=cbar_fmt, unit=unit, axes=axes,
            show=show)

    @verbose
    def save(self, fname, *, overwrite=False, verbose=None):
        """Save spectrum data to disk (in HDF5 format).

        Parameters
        ----------
        fname : path-like
            Path of file to save to.
        %(overwrite)s
        %(verbose)s

        See Also
        --------
        mne.time_frequency.read_spectrum
        """
        _, write_hdf5 = _import_h5io_funcs()
        check_fname(fname, 'spectrum', ('.h5', '.hdf5'))
        fname = _check_fname(fname, overwrite=overwrite, verbose=verbose)
        out = self.__getstate__()
        write_hdf5(fname, out, overwrite=overwrite, title='mnepython')

    @verbose
    def to_data_frame(self, picks=None, index=None, copy=True,
                      long_format=False, *, verbose=None):
        """Export data in tabular structure as a pandas DataFrame.

        Channels are converted to columns in the DataFrame. By default,
        an additional column "frequency" is added, unless ``index='freq'``
        (in which case frequency values form the DataFrame's index).

        Parameters
        ----------
        %(picks_all)s
        index : str | list of str | None
            Kind of index to use for the DataFrame. If ``None``, a sequential
            integer index (:class:`pandas.RangeIndex`) will be used. If a
            :class:`str`, a :class:`pandas.Index`, :class:`pandas.Int64Index`,
            or :class:`pandas.Float64Index` will be used (see Notes). If a list
            of two or more string values, a :class:`pandas.MultiIndex` will be
            used. Defaults to ``None``.
        %(copy_df)s
        %(long_format_df_spe)s
        %(verbose)s

        Returns
        -------
        %(df_return)s

        Notes
        -----
        Valid values for ``index`` depend on whether the Spectrum was created
        from continuous data (:class:`~mne.io.Raw`, :class:`~mne.Evoked`) or
        discontinuous data (:class:`~mne.Epochs`). For continuous data, only
        ``None`` or ``'freq'`` is supported. For discontinuous data, additional
        valid values are ``'epoch'`` and ``'condition'``, or a :class:`list`
        comprising some of the valid string values (e.g.,
        ``['freq', 'epoch']``).
        """
        # check pandas once here, instead of in each private utils function
        pd = _check_pandas_installed()  # noqa
        # triage for Epoch-derived or unaggregated spectra
        from_epo = self._get_instance_type_string() == 'Epochs'
        unagg_welch = 'segment' in self._dims
        unagg_mt = 'taper' in self._dims
        # arg checking
        valid_index_args = ['freq']
        if from_epo:
            valid_index_args += ['epoch', 'condition']
        index = _check_pandas_index_arguments(index, valid_index_args)
        # get data
        picks = _picks_to_idx(self.info, picks, 'all', exclude=())
        data = self.get_data(picks)
        if copy:
            data = data.copy()
        # reshape
        if unagg_mt:
            data = np.moveaxis(data, self._dims.index('freq'), -2)
        if from_epo:
            n_epochs, n_picks, n_freqs = data.shape[:3]
        else:
            n_epochs, n_picks, n_freqs = (1,) + data.shape[:2]
        n_segs = data.shape[-1] if unagg_mt or unagg_welch else 1
        data = np.moveaxis(data, self._dims.index('channel'), -1)
        # at this point, should be ([epoch], freq, [segment/taper], channel)
        data = data.reshape(n_epochs * n_freqs * n_segs, n_picks)
        # prepare extra columns / multiindex
        mindex = list()
        default_index = list()
        if from_epo:
            rev_event_id = {v: k for k, v in self.event_id.items()}
            _conds = [rev_event_id[k] for k in self.events[:, 2]]
            conditions = np.repeat(_conds, n_freqs * n_segs)
            epoch_nums = np.repeat(self.selection, n_freqs * n_segs)
            mindex.extend([('condition', conditions), ('epoch', epoch_nums)])
            default_index.extend(['condition', 'epoch'])
        freqs = np.tile(np.repeat(self.freqs, n_segs), n_epochs)
        mindex.append(('freq', freqs))
        default_index.append('freq')
        if unagg_mt or unagg_welch:
            name = 'taper' if unagg_mt else 'segment'
            seg_nums = np.tile(np.arange(n_segs), n_epochs * n_freqs)
            mindex.append((name, seg_nums))
            default_index.append(name)
        # build DataFrame
        df = _build_data_frame(self, data, picks, long_format, mindex, index,
                               default_index=default_index)
        return df

    def units(self, latex=False):
        """Get the spectrum units for each channel type.

        Parameters
        ----------
        latex : bool
            Whether to format the unit strings as LaTeX. Default is ``False``.

        Returns
        -------
        units : dict
            Mapping from channel type to a string representation of the units
            for that channel type.
        """
        units = _handle_default('si_units', None)
        power = not hasattr(self, '_mt_weights')
        return {ch_type: _format_units_psd(units[ch_type], power=power,
                                           latex=latex)
                for ch_type in sorted(self.get_channel_types(unique=True))}


@fill_doc
class Spectrum(BaseSpectrum):
    """Data object for spectral representations of continuous data.

    .. warning:: The preferred means of creating Spectrum objects from
                 continuous or averaged data is via the instance methods
                 :meth:`mne.io.Raw.compute_psd` or
                 :meth:`mne.Evoked.compute_psd`. Direct class instantiation
                 is not supported.

    Parameters
    ----------
    inst : instance of Raw or Evoked
        The data from which to compute the frequency spectrum.
    %(method_psd_auto)s
        ``'auto'`` (default) uses Welch's method for continuous data
        and multitaper for :class:`~mne.Evoked` data.
    %(fmin_fmax_psd)s
    %(tmin_tmax_psd)s
    %(picks_good_data_noref)s
    %(proj_psd)s
    %(reject_by_annotation_psd)s
    %(n_jobs)s
    %(verbose)s
    %(method_kw_psd)s

    Attributes
    ----------
    ch_names : list
        The channel names.
    freqs : array
        Frequencies at which the amplitude, power, or fourier coefficients
        have been computed.
    %(info_not_none)s
    method : str
        The method used to compute the spectrum (``'welch'`` or
        ``'multitaper'``).

    See Also
    --------
    EpochsSpectrum
    mne.io.Raw.compute_psd
    mne.Epochs.compute_psd
    mne.Evoked.compute_psd

    References
    ----------
    .. footbibliography::
    """

    def __init__(self, inst, method, fmin, fmax, tmin, tmax, picks,
                 proj, reject_by_annotation, *, n_jobs, verbose=None,
                 **method_kw):
        from ..io import BaseRaw

        # triage reading from file
        if isinstance(inst, dict):
            self.__setstate__(inst)
            return
        # do the basic setup
        super().__init__(inst, method, fmin, fmax, tmin, tmax, picks, proj,
                         n_jobs=n_jobs, verbose=verbose, **method_kw)
        # get just the data we want
        if isinstance(self.inst, BaseRaw):
            start, stop = np.where(self._time_mask)[0][[0, -1]]
            rba = 'NaN' if reject_by_annotation else None
            data = self.inst.get_data(self._picks, start, stop + 1,
                                      reject_by_annotation=rba)
        else:  # Evoked
            data = self.inst.data[self._picks][:, self._time_mask]
        # compute the spectra
        self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
        # check for correct shape and bad values
        self._check_values()
        del self._shape
        # save memory
        del self.inst

    def __getitem__(self, item):
        """Get Spectrum data.

        Parameters
        ----------
        item : int | slice | array-like
            Indexing is similar to a :class:`NumPy array<numpy.ndarray>`; see
            Notes.

        Returns
        -------
        %(getitem_spectrum_return)s

        Notes
        -----
        Integer-, list-, and slice-based indexing is possible:

        - ``spectrum[0]`` gives all frequency bins in the first channel
        - ``spectrum[:3]`` gives all frequency bins in the first 3 channels
        - ``spectrum[[0, 2], 5]`` gives the value in the sixth frequency bin of
          the first and third channels
        - ``spectrum[(4, 7)]`` is the same as ``spectrum[4, 7]``.

        .. note::

           Unlike :class:`~mne.io.Raw` objects (which returns a tuple of the
           requested data values and the corresponding times), accessing
           :class:`~mne.time_frequency.Spectrum` values via subscript does
           **not** return the corresponding frequency bin values. If you need
           them, use ``spectrum.freqs[freq_indices]``.
        """
        from ..io import BaseRaw
        self._parse_get_set_params = partial(
            BaseRaw._parse_get_set_params, self)
        return BaseRaw._getitem(self, item, return_times=False)


@fill_doc
class EpochsSpectrum(BaseSpectrum, GetEpochsMixin):
    """Data object for spectral representations of epoched data.

    .. warning:: The preferred means of creating Spectrum objects from Epochs
                 is via the instance method :meth:`mne.Epochs.compute_psd`.
                 Direct class instantiation is not supported.

    Parameters
    ----------
    inst : instance of Epochs
        The data from which to compute the frequency spectrum.
    %(method_psd)s
    %(fmin_fmax_psd)s
    %(tmin_tmax_psd)s
    %(picks_good_data_noref)s
    %(proj_psd)s
    %(n_jobs)s
    %(verbose)s
    %(method_kw_psd)s

    Attributes
    ----------
    ch_names : list
        The channel names.
    freqs : array
        Frequencies at which the amplitude, power, or fourier coefficients
        have been computed.
    %(info_not_none)s
    method : str
        The method used to compute the spectrum ('welch' or 'multitaper').

    See Also
    --------
    Spectrum
    mne.io.Raw.compute_psd
    mne.Epochs.compute_psd
    mne.Evoked.compute_psd

    References
    ----------
    .. footbibliography::
    """

    def __init__(self, inst, method, fmin, fmax, tmin, tmax, picks, proj, *,
                 n_jobs, verbose=None, **method_kw):
        # triage reading from file
        if isinstance(inst, dict):
            self.__setstate__(inst)
            return
        # do the basic setup
        super().__init__(inst, method, fmin, fmax, tmin, tmax, picks, proj,
                         n_jobs=n_jobs, verbose=verbose, **method_kw)
        # get just the data we want
        data = self.inst.get_data(picks=self._picks)[:, :, self._time_mask]
        # compute the spectra
        self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
        self._dims = ('epoch',) + self._dims
        self._shape = (len(self.inst),) + self._shape
        # check for correct shape and bad values
        self._check_values()
        del self._shape
        # we need these for to_data_frame()
        self.event_id = self.inst.event_id.copy()
        self.events = self.inst.events.copy()
        self.selection = self.inst.selection.copy()
        # we need these for __getitem__()
        self.drop_log = deepcopy(self.inst.drop_log)
        self._metadata = self.inst.metadata
        # save memory
        del self.inst

    def __getitem__(self, item):
        """Subselect epochs from an EpochsSpectrum.

        Parameters
        ----------
        item : int | slice | array-like | str
            Access options are the same as for :class:`~mne.Epochs` objects,
            see the docstring of :meth:`mne.Epochs.__getitem__` for
            explanation.

        Returns
        -------
        %(getitem_epochspectrum_return)s
        """
        return super().__getitem__(item)

    def __getstate__(self):
        """Prepare object for serialization."""
        out = super().__getstate__()
        out.update(metadata=self._metadata,
                   drop_log=self.drop_log,
                   event_id=self.event_id,
                   events=self.events,
                   selection=self.selection)
        return out

    def __setstate__(self, state):
        """Unpack from serialized format."""
        super().__setstate__(state)
        self._metadata = state['metadata']
        self.drop_log = state['drop_log']
        self.event_id = state['event_id']
        self.events = state['events']
        self.selection = state['selection']

    def average(self, method='mean'):
        """Average the spectra across epochs.

        Parameters
        ----------
        method : 'mean' | 'median' | callable
            How to aggregate spectra across epochs. If callable, must take a
            :class:`NumPy array<numpy.ndarray>` of shape
            ``(n_epochs, n_channels, n_freqs)`` and return an array of shape
            ``(n_channels, n_freqs)``. Default is ``'mean'``.

        Returns
        -------
        spectrum : instance of Spectrum
            The aggregated spectrum object.
        """
        if isinstance(method, str):
            method = getattr(np, method)  # mean, median, std, etc
            method = partial(method, axis=0)
        if not callable(method):
            raise ValueError('"method" must be a valid string or callable, '
                             f'got a {type(method).__name__} ({method}).')
        # averaging unaggregated spectral estimates are not supported
        if hasattr(self, '_mt_weights'):
            raise NotImplementedError(
                'Averaging complex spectra is not supported. Consider '
                'averaging the signals before computing the complex spectrum.')
        elif 'segment' in self._dims:
            raise NotImplementedError(
                'Averaging individual Welch segments across epochs is not '
                'supported. Consider averaging the signals before computing '
                'the Welch spectrum estimates.')
        # serialize the object and update data, dims, and data type
        state = super().__getstate__()
        state['data'] = method(state['data'])
        state['dims'] = state['dims'][1:]
        state['data_type'] = f'Averaged {state["data_type"]}'
        defaults = dict(
            method=None, fmin=None, fmax=None, tmin=None, tmax=None,
            picks=None, proj=None, reject_by_annotation=None, n_jobs=None,
            verbose=None)
        return Spectrum(state, **defaults)


def read_spectrum(fname):
    """Load a :class:`mne.time_frequency.Spectrum` object from disk.

    Parameters
    ----------
    fname : path-like
        Path to a spectrum file in HDF5 format.

    Returns
    -------
    spectrum : instance of Spectrum
        The loaded Spectrum object.

    See Also
    --------
    mne.time_frequency.Spectrum.save
    """
    read_hdf5, _ = _import_h5io_funcs()
    _validate_type(fname, 'path-like', 'fname')
    fname = _check_fname(fname=fname, overwrite='read', must_exist=False)
    # read it in
    hdf5_dict = read_hdf5(fname, title='mnepython')
    defaults = dict(method=None, fmin=None, fmax=None, tmin=None, tmax=None,
                    picks=None, proj=None, reject_by_annotation=None,
                    n_jobs=None, verbose=None)
    Klass = (EpochsSpectrum if hdf5_dict['inst_type_str'] == 'Epochs'
             else Spectrum)
    return Klass(hdf5_dict, **defaults)


def _check_ci(ci):
    ci = 'sd' if ci == 'std' else ci  # be forgiving
    if _is_numeric(ci):
        if not (0 < ci <= 100):
            raise ValueError(f'ci must satisfy 0 < ci <= 100, got {ci}')
        ci /= 100.
    else:
        _check_option('ci', ci, [None, 'sd', 'range'])
    return ci


def _compute_n_welch_segments(n_times, method_kw):
    # get default values from psd_array_welch
    _defaults = dict()
    for param in ('n_fft', 'n_per_seg', 'n_overlap'):
        _defaults[param] = signature(psd_array_welch).parameters[param].default
    # override defaults with user-specified values
    for key, val in _defaults.items():
        _defaults.update({key: method_kw.get(key, val)})
    # sanity check values / replace `None`s with real numbers
    n_fft, n_per_seg, n_overlap = _check_nfft(n_times, **_defaults)
    # compute expected number of segments
    step = n_per_seg - n_overlap
    return (n_times - n_overlap) // step


def _validate_method(method, instance_type):
    """Convert 'auto' to a real method name, and validate."""
    if method == 'auto':
        method = 'welch' if instance_type.startswith('Raw') else 'multitaper'
    _check_option('method', method, ('welch', 'multitaper'))
    return method