File: test_spectrum.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (221 lines) | stat: -rw-r--r-- 8,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from functools import partial

import numpy as np
import pytest
from numpy.testing import assert_array_equal

from mne.time_frequency import read_spectrum
from mne.time_frequency.multitaper import _psd_from_mt
from mne.utils import requires_h5py, requires_pandas


def test_spectrum_errors(raw):
    """Test for expected errors in the .compute_psd() method."""
    with pytest.raises(ValueError, match='must not exceed ½ the sampling'):
        raw.compute_psd(fmax=raw.info['sfreq'] * 0.51)
    with pytest.raises(TypeError, match='unexpected keyword argument foo for'):
        raw.compute_psd(foo=None)
    with pytest.raises(TypeError, match='keyword arguments foo, bar for'):
        raw.compute_psd(foo=None, bar=None)


@pytest.mark.parametrize('method', ('welch', 'multitaper'))
@pytest.mark.parametrize(
    ('fmin, fmax, tmin, tmax, picks, proj, n_fft, n_overlap, n_per_seg, '
     'average, window, bandwidth, adaptive, low_bias, normalization'),
    [[0, np.inf, None, None, None, False, 256, 0, None,
      'mean', 'hamming', None, False, True, 'length'],  # defaults
     [5, 50, 1, 6, 'grad', True, 128, 8, 32,
      'median', 'triang', 10, True, False, 'full']  # non-defaults
     ]
)
def test_spectrum_params(method, fmin, fmax, tmin, tmax, picks, proj, n_fft,
                         n_overlap, n_per_seg, average, window, bandwidth,
                         adaptive, low_bias, normalization, raw):
    """Test valid parameter combinations in the .compute_psd() method."""
    kwargs = dict(method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
                  picks=picks, proj=proj)
    if method == 'welch':
        kwargs.update(n_fft=n_fft, n_overlap=n_overlap, n_per_seg=n_per_seg,
                      average=average, window=window)
    else:
        kwargs.update(bandwidth=bandwidth, adaptive=adaptive,
                      low_bias=low_bias, normalization=normalization)
    raw.compute_psd(**kwargs)


def test_n_welch_windows(raw):
    """Test computation of welch windows https://mne.discourse.group/t/5734."""
    with raw.info._unlock():
        raw.info['sfreq'] = 999.412109375
    raw.compute_psd(
        method='welch', n_fft=999, n_per_seg=999, n_overlap=250, average=None)


def _get_inst(inst, request, evoked):
    # ↓ XXX workaround:
    # ↓ parametrized fixtures are not accessible via request.getfixturevalue
    # ↓ https://github.com/pytest-dev/pytest/issues/4666#issuecomment-456593913
    return evoked if inst == 'evoked' else request.getfixturevalue(inst)


@requires_h5py
@pytest.mark.parametrize('inst', ('raw', 'epochs', 'evoked'))
def test_spectrum_io(inst, tmp_path, request, evoked):
    """Test save/load of spectrum objects."""
    fname = tmp_path / f'{inst}-spectrum.h5'
    inst = _get_inst(inst, request, evoked)
    orig = inst.compute_psd()
    orig.save(fname)
    loaded = read_spectrum(fname)
    assert orig == loaded


def test_spectrum_copy(raw):
    """Test copying Spectrum objects."""
    spect = raw.compute_psd()
    spect_copy = spect.copy()
    assert spect == spect_copy
    assert id(spect) != id(spect_copy)
    spect_copy._freqs = None
    assert spect.freqs is not None


def test_spectrum_getitem_raw(raw):
    """Test Spectrum.__getitem__ for Raw-derived spectra."""
    spect = raw.compute_psd()
    want = spect.get_data(slice(1, 3), fmax=7)
    freq_idx = np.searchsorted(spect.freqs, 7)
    got = spect[1:3, :freq_idx]
    assert_array_equal(want, got)


def test_spectrum_getitem_epochs(epochs):
    """Test Spectrum.__getitem__ for Epochs-derived spectra."""
    spect = epochs.compute_psd()
    # testing data has just one epoch, its event_id label is "1"
    want = spect.get_data()
    got = spect['1'].get_data()
    assert_array_equal(want, got)


@pytest.mark.parametrize('method', ('mean', partial(np.std, axis=0)))
def test_epochs_spectrum_average(epochs, method):
    """Test EpochsSpectrum.average()."""
    spect = epochs.compute_psd()
    avg_spect = spect.average(method=method)
    assert avg_spect.shape == spect.shape[1:]
    assert avg_spect._dims == ('channel', 'freq')  # no 'epoch'


def _agg_helper(df, weights, group_cols):
    """Aggregate complex multitaper spectrum after conversion to DataFrame."""
    from pandas import Series

    unagged_columns = df[group_cols].iloc[0].values.tolist()
    x_mt = df.drop(columns=group_cols).values[np.newaxis].T
    psd = _psd_from_mt(x_mt, weights)
    psd = np.atleast_1d(np.squeeze(psd)).tolist()
    _df = dict(zip(df.columns, unagged_columns + psd))
    return Series(_df)


@requires_pandas
@pytest.mark.parametrize('long_format', (False, True))
@pytest.mark.parametrize('method', ('welch', 'multitaper'))
def test_unaggregated_spectrum_to_data_frame(raw, long_format, method):
    """Test converting complex multitaper spectra to data frame."""
    from pandas.testing import assert_frame_equal

    from mne.utils.dataframe import _inplace

    # aggregated spectrum → dataframe
    orig_df = (raw.compute_psd(method=method)
                  .to_data_frame(long_format=long_format))
    # unaggregated welch or complex multitaper →
    #   aggregate w/ pandas (to make sure we did reshaping right)
    kwargs = {'average': False} if method == 'welch' else {'output': 'complex'}
    spectrum = raw.compute_psd(method=method, **kwargs)
    df = spectrum.to_data_frame(long_format=long_format)
    grouping_cols = ['freq']
    drop_cols = ['segment'] if method == 'welch' else ['taper']
    if long_format:
        grouping_cols.append('channel')
        drop_cols.append('ch_type')
        orig_df.drop(columns='ch_type', inplace=True)
    # only do a couple freq bins, otherwise test takes forever for multitaper
    subset = partial(np.isin, test_elements=spectrum.freqs[:2])
    df = df.loc[subset(df['freq'])]
    orig_df = orig_df.loc[subset(orig_df['freq'])]
    # sort orig_df, because at present we can't actually prevent pandas from
    # sorting at the agg step *sigh*
    _inplace(orig_df, 'sort_values', by=grouping_cols, ignore_index=True)
    # aggregate
    gb = df.drop(columns=drop_cols).groupby(grouping_cols, as_index=False)
    if method == 'welch':
        agg_df = gb.aggregate(np.nanmean)
    else:
        agg_df = gb.apply(_agg_helper, spectrum._mt_weights, grouping_cols)
    # even with check_categorical=False, we know that the *data* matches;
    # what may differ is the order of the "levels" in the *metadata* for the
    # channel name column
    assert_frame_equal(agg_df, orig_df, check_categorical=False)


@requires_pandas
@pytest.mark.parametrize('inst', ('raw', 'epochs', 'evoked'))
def test_spectrum_to_data_frame(inst, request, evoked):
    """Test the to_data_frame method for Spectrum."""
    from pandas.testing import assert_frame_equal

    # setup
    is_epochs = inst == 'epochs'
    inst = _get_inst(inst, request, evoked)
    extra_dim = () if is_epochs else (1,)
    extra_cols = ['freq', 'condition', 'epoch'] if is_epochs else ['freq']
    # compute PSD
    spectrum = inst.compute_psd()
    n_epo, n_chan, n_freq = extra_dim + spectrum.get_data().shape
    # test wide format
    df_wide = spectrum.to_data_frame()
    n_row, n_col = df_wide.shape
    assert n_row == n_freq
    assert n_col == n_chan + len(extra_cols)
    assert set(spectrum.ch_names + extra_cols) == set(df_wide.columns)
    # test long format
    df_long = spectrum.to_data_frame(long_format=True)
    n_row, n_col = df_long.shape
    assert n_row == n_epo * n_freq * n_chan
    base_cols = ['channel', 'ch_type', 'value']
    assert n_col == len(base_cols + extra_cols)
    assert set(base_cols + extra_cols) == set(df_long.columns)
    # test index
    index = extra_cols[-2:]  # ['freq'] or ['condition', 'epoch']
    df = spectrum.to_data_frame(index=index)
    if is_epochs:
        index_tuple = (list(spectrum.event_id)[0],  # condition
                       spectrum.selection[0])       # epoch number
        subset = df.loc[index_tuple]
        assert subset.shape == (n_freq, n_chan + 1)  # + 1 is the freq column
    with pytest.raises(ValueError, match='"time" is not a valid option'):
        spectrum.to_data_frame(index='time')
    # test picks
    picks = [0, 1]
    _pick_first = spectrum.pick(picks).to_data_frame()
    _pick_last = spectrum.to_data_frame(picks=picks)
    assert_frame_equal(_pick_first, _pick_last)


# not testing with Evoked because it already has projs applied
@pytest.mark.parametrize('inst', ('raw', 'epochs'))
def test_spectrum_proj(inst, request):
    """Test that proj is applied correctly (gh 11177)."""
    inst = request.getfixturevalue(inst)
    has_proj = inst.compute_psd(proj=True)
    no_proj = inst.compute_psd(proj=False)
    assert not np.array_equal(has_proj.get_data(), no_proj.get_data())
    # make sure only the data (and the projs) were different
    has_proj._data = no_proj._data
    with has_proj.info._unlock():
        has_proj.info['projs'] = no_proj.info['projs']
    assert has_proj == no_proj