1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
# -*- coding: utf-8 -*-
"""Utility functions to speed up linear algebraic operations.
In general, things like np.dot and linalg.svd should be used directly
because they are smart about checking for bad values. However, in cases where
things are done repeatedly (e.g., thousands of times on tiny matrices), the
overhead can become problematic from a performance standpoint. Examples:
- Optimization routines:
- Dipole fitting
- Sparse solving
- cHPI fitting
- Inverse computation
- Beamformers (LCMV/DICS)
- eLORETA minimum norm
Significant performance gains can be achieved by ensuring that inputs
are Fortran contiguous because that's what LAPACK requires. Without this,
inputs will be memcopied.
"""
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
import functools
import numpy as np
# For efficiency, names should be str or tuple of str, dtype a builtin
# NumPy dtype
@functools.lru_cache(None)
def _get_blas_funcs(dtype, names):
from scipy import linalg
return linalg.get_blas_funcs(names, (np.empty(0, dtype),))
@functools.lru_cache(None)
def _get_lapack_funcs(dtype, names):
from scipy import linalg
assert dtype in (np.float64, np.complex128)
x = np.empty(0, dtype)
return linalg.get_lapack_funcs(names, (x,))
###############################################################################
# linalg.svd and linalg.pinv2
def _svd_lwork(shape, dtype=np.float64):
"""Set up SVD calculations on identical-shape float64/complex128 arrays."""
from scipy import linalg
try:
ds = linalg._decomp_svd
except AttributeError: # < 1.8.0
ds = linalg.decomp_svd
gesdd_lwork, gesvd_lwork = _get_lapack_funcs(
dtype, ('gesdd_lwork', 'gesvd_lwork'))
sdd_lwork = ds._compute_lwork(
gesdd_lwork, *shape, compute_uv=True, full_matrices=False)
svd_lwork = ds._compute_lwork(
gesvd_lwork, *shape, compute_uv=True, full_matrices=False)
return sdd_lwork, svd_lwork
def _repeated_svd(x, lwork, overwrite_a=False):
"""Mimic scipy.linalg.svd, avoid lwork and get_lapack_funcs overhead."""
gesdd, gesvd = _get_lapack_funcs(
x.dtype, ('gesdd', 'gesvd'))
# this has to use overwrite_a=False in case we need to fall back to gesvd
u, s, v, info = gesdd(x, compute_uv=True, lwork=lwork[0],
full_matrices=False, overwrite_a=False)
if info > 0:
# Fall back to slower gesvd, sometimes gesdd fails
u, s, v, info = gesvd(x, compute_uv=True, lwork=lwork[1],
full_matrices=False, overwrite_a=overwrite_a)
if info > 0:
raise np.linalg.LinAlgError("SVD did not converge")
if info < 0:
raise ValueError('illegal value in %d-th argument of internal gesdd'
% -info)
return u, s, v
###############################################################################
# linalg.eigh
@functools.lru_cache(None)
def _get_evd(dtype):
from scipy import linalg
x = np.empty(0, dtype)
if dtype == np.float64:
driver = 'syevd'
else:
assert dtype == np.complex128
driver = 'heevd'
evr, = linalg.get_lapack_funcs((driver,), (x,))
return evr, driver
def eigh(a, overwrite_a=False, check_finite=True):
"""Efficient wrapper for eigh.
Parameters
----------
a : ndarray, shape (n_components, n_components)
The symmetric array operate on.
overwrite_a : bool
If True, the contents of a can be overwritten for efficiency.
check_finite : bool
If True, check that all elements are finite.
Returns
-------
w : ndarray, shape (n_components,)
The N eigenvalues, in ascending order, each repeated according to
its multiplicity.
v : ndarray, shape (n_components, n_components)
The normalized eigenvector corresponding to the eigenvalue ``w[i]``
is the column ``v[:, i]``.
"""
from scipy.linalg import LinAlgError
from scipy._lib._util import _asarray_validated
# We use SYEVD, see https://github.com/scipy/scipy/issues/9212
if check_finite:
a = _asarray_validated(a, check_finite=check_finite)
evd, driver = _get_evd(a.dtype)
w, v, info = evd(a, lower=1, overwrite_a=overwrite_a)
if info == 0:
return w, v
if info < 0:
raise ValueError('illegal value in argument %d of internal %s'
% (-info, driver))
else:
raise LinAlgError("internal fortran routine failed to converge: "
"%i off-diagonal elements of an "
"intermediate tridiagonal form did not converge"
" to zero." % info)
def sqrtm_sym(A, rcond=1e-7, inv=False):
"""Compute the sqrt of a positive, semi-definite matrix (or its inverse).
Parameters
----------
A : ndarray, shape (..., n, n)
The array to take the square root of.
rcond : float
The relative condition number used during reconstruction.
inv : bool
If True, compute the inverse of the square root rather than the
square root itself.
Returns
-------
A_sqrt : ndarray, shape (..., n, n)
The (possibly inverted) square root of A.
s : ndarray, shape (..., n)
The original square root singular values (not inverted).
"""
# Same as linalg.sqrtm(C) but faster, also yields the eigenvalues
return _sym_mat_pow(A, -0.5 if inv else 0.5, rcond, return_s=True)
def _sym_mat_pow(A, power, rcond=1e-7, reduce_rank=False, return_s=False):
"""Exponentiate Hermitian matrices with optional rank reduction."""
assert power in (-1, 0.5, -0.5) # only used internally
s, u = np.linalg.eigh(A) # eigenvalues in ascending order
# Is it positive semi-defidite? If so, keep real
limit = s[..., -1:] * rcond
if not (s >= -limit).all(): # allow some tiny small negative ones
raise ValueError('Matrix is not positive semi-definite')
s[s <= limit] = np.inf if power < 0 else 0
if reduce_rank:
# These are ordered smallest to largest, so we set the first one
# to inf -- then the 1. / s below will turn this to zero, as needed.
s[..., 0] = np.inf
if power in (-0.5, 0.5):
np.sqrt(s, out=s)
use_s = 1. / s if power < 0 else s
out = np.matmul(u * use_s[..., np.newaxis, :], u.swapaxes(-2, -1).conj())
if return_s:
out = (out, s)
return out
|