File: mixin.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (729 lines) | stat: -rw-r--r-- 26,098 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# -*- coding: utf-8 -*-
"""Some utility functions."""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause

from collections import OrderedDict
from copy import deepcopy
import logging
import json

import numpy as np

from .check import _check_pandas_installed, _check_preload, _validate_type
from ._logging import warn, verbose
from .numerics import object_size, object_hash, _time_mask


logger = logging.getLogger('mne')  # one selection here used across mne-python
logger.propagate = False  # don't propagate (in case of multiple imports)


class SizeMixin(object):
    """Estimate MNE object sizes."""

    def __eq__(self, other):
        """Compare self to other.

        Parameters
        ----------
        other : object
            The object to compare to.

        Returns
        -------
        eq : bool
            True if the two objects are equal.
        """
        return isinstance(other, type(self)) and hash(self) == hash(other)

    @property
    def _size(self):
        """Estimate the object size."""
        try:
            size = object_size(self.info)
        except Exception:
            warn('Could not get size for self.info')
            return -1
        if hasattr(self, 'data'):
            size += object_size(self.data)
        elif hasattr(self, '_data'):
            size += object_size(self._data)
        return size

    def __hash__(self):
        """Hash the object.

        Returns
        -------
        hash : int
            The hash
        """
        from ..evoked import Evoked
        from ..epochs import BaseEpochs
        from ..io.base import BaseRaw
        if isinstance(self, Evoked):
            return object_hash(dict(info=self.info, data=self.data))
        elif isinstance(self, (BaseEpochs, BaseRaw)):
            _check_preload(self, "Hashing ")
            return object_hash(dict(info=self.info, data=self._data))
        else:
            raise RuntimeError('Hashing unknown object type: %s' % type(self))


class GetEpochsMixin(object):
    """Class to add epoch selection and metadata to certain classes."""

    def __getitem__(self, item):
        """Return an Epochs object with a copied subset of epochs.

        Parameters
        ----------
        item : slice, array-like, str, or list
            See below for use cases.

        Returns
        -------
        epochs : instance of Epochs
            See below for use cases.

        Notes
        -----
        Epochs can be accessed as ``epochs[...]`` in several ways:

        1. **Integer or slice:** ``epochs[idx]`` will return an `~mne.Epochs`
           object with a subset of epochs chosen by index (supports single
           index and Python-style slicing).

        2. **String:** ``epochs['name']`` will return an `~mne.Epochs` object
           comprising only the epochs labeled ``'name'`` (i.e., epochs created
           around events with the label ``'name'``).

           If there are no epochs labeled ``'name'`` but there are epochs
           labeled with /-separated tags (e.g. ``'name/left'``,
           ``'name/right'``), then ``epochs['name']`` will select the epochs
           with labels that contain that tag (e.g., ``epochs['left']`` selects
           epochs labeled ``'audio/left'`` and ``'visual/left'``, but not
           ``'audio_left'``).

           If multiple tags are provided *as a single string* (e.g.,
           ``epochs['name_1/name_2']``), this selects epochs containing *all*
           provided tags. For example, ``epochs['audio/left']`` selects
           ``'audio/left'`` and ``'audio/quiet/left'``, but not
           ``'audio/right'``. Note that tag-based selection is insensitive to
           order: tags like ``'audio/left'`` and ``'left/audio'`` will be
           treated the same way when selecting via tag.

        3. **List of strings:** ``epochs[['name_1', 'name_2', ... ]]`` will
           return an `~mne.Epochs` object comprising epochs that match *any* of
           the provided names (i.e., the list of names is treated as an
           inclusive-or condition). If *none* of the provided names match any
           epoch labels, a ``KeyError`` will be raised.

           If epoch labels are /-separated tags, then providing multiple tags
           *as separate list entries* will likewise act as an inclusive-or
           filter. For example, ``epochs[['audio', 'left']]`` would select
           ``'audio/left'``, ``'audio/right'``, and ``'visual/left'``, but not
           ``'visual/right'``.

        4. **Pandas query:** ``epochs['pandas query']`` will return an
           `~mne.Epochs` object with a subset of epochs (and matching
           metadata) selected by the query called with
           ``self.metadata.eval``, e.g.::

               epochs["col_a > 2 and col_b == 'foo'"]

           would return all epochs whose associated ``col_a`` metadata was
           greater than two, and whose ``col_b`` metadata was the string 'foo'.
           Query-based indexing only works if Pandas is installed and
           ``self.metadata`` is a :class:`pandas.DataFrame`.

           .. versionadded:: 0.16
        """
        return self._getitem(item)

    def _item_to_select(self, item):
        if isinstance(item, str):
            item = [item]

        # Convert string to indices
        if isinstance(item, (list, tuple)) and len(item) > 0 and \
                isinstance(item[0], str):
            select = self._keys_to_idx(item)
        elif isinstance(item, slice):
            select = item
        else:
            select = np.atleast_1d(item)
            if len(select) == 0:
                select = np.array([], int)
        return select

    def _getitem(self, item, reason='IGNORED', copy=True, drop_event_id=True,
                 select_data=True, return_indices=False):
        """
        Select epochs from current object.

        Parameters
        ----------
        item: slice, array-like, str, or list
            see `__getitem__` for details.
        reason: str
            entry in `drop_log` for unselected epochs
        copy: bool
            return a copy of the current object
        drop_event_id: bool
            remove non-existing event-ids after selection
        select_data: bool
            apply selection to data
            (use `select_data=False` if subclasses do not have a
             valid `_data` field, or data has already been subselected)
        return_indices: bool
            return the indices of selected epochs from the original object
            in addition to the new `Epochs` objects
        Returns
        -------
        `Epochs` or tuple(Epochs, np.ndarray) if `return_indices` is True
            subset of epochs (and optionally array with kept epoch indices)
        """
        data = self._data
        self._data = None
        inst = self.copy() if copy else self
        self._data = inst._data = data
        del self

        select = inst._item_to_select(item)
        has_selection = hasattr(inst, 'selection')
        if has_selection:
            key_selection = inst.selection[select]
            drop_log = list(inst.drop_log)
            if reason is not None:
                for k in np.setdiff1d(inst.selection, key_selection):
                    drop_log[k] = (reason,)
            inst.drop_log = tuple(drop_log)
            inst.selection = key_selection
            del drop_log

        inst.events = np.atleast_2d(inst.events[select])
        if inst.metadata is not None:
            pd = _check_pandas_installed(strict=False)
            if pd:
                metadata = inst.metadata.iloc[select]
                if has_selection:
                    metadata.index = inst.selection
            else:
                metadata = np.array(inst.metadata, 'object')[select].tolist()

            # will reset the index for us
            GetEpochsMixin.metadata.fset(inst, metadata, verbose=False)
        if inst.preload and select_data:
            # ensure that each Epochs instance owns its own data so we can
            # resize later if necessary
            inst._data = np.require(inst._data[select], requirements=['O'])
        if drop_event_id:
            # update event id to reflect new content of inst
            inst.event_id = {k: v for k, v in inst.event_id.items()
                             if v in inst.events[:, 2]}

        if return_indices:
            return inst, select
        else:
            return inst

    def _keys_to_idx(self, keys):
        """Find entries in event dict."""
        from ..event import match_event_names  # avoid circular import

        keys = keys if isinstance(keys, (list, tuple)) else [keys]
        try:
            # Assume it's a condition name
            return np.where(np.any(
                np.array([self.events[:, 2] == self.event_id[k]
                          for k in match_event_names(self.event_id, keys)]),
                axis=0))[0]
        except KeyError as err:
            # Could we in principle use metadata with these Epochs and keys?
            if (len(keys) != 1 or self.metadata is None):
                # If not, raise original error
                raise
            msg = str(err.args[0])  # message for KeyError
            pd = _check_pandas_installed(strict=False)
            # See if the query can be done
            if pd:
                md = self.metadata if hasattr(self, '_metadata') else None
                self._check_metadata(metadata=md)
                try:
                    # Try metadata
                    vals = self.metadata.reset_index().query(
                        keys[0],
                        engine='python'
                    ).index.values
                except Exception as exp:
                    msg += (' The epochs.metadata Pandas query did not '
                            'yield any results: %s' % (exp.args[0],))
                else:
                    return vals
            else:
                # If not, warn this might be a problem
                msg += (' The epochs.metadata Pandas query could not '
                        'be performed, consider installing Pandas.')
            raise KeyError(msg)

    def __len__(self):
        """Return the number of epochs.

        Returns
        -------
        n_epochs : int
            The number of remaining epochs.

        Notes
        -----
        This function only works if bad epochs have been dropped.

        Examples
        --------
        This can be used as::

            >>> epochs.drop_bad()  # doctest: +SKIP
            >>> len(epochs)  # doctest: +SKIP
            43
            >>> len(epochs.events)  # doctest: +SKIP
            43
        """
        from ..epochs import BaseEpochs
        if isinstance(self, BaseEpochs) and not self._bad_dropped:
            raise RuntimeError('Since bad epochs have not been dropped, the '
                               'length of the Epochs is not known. Load the '
                               'Epochs with preload=True, or call '
                               'Epochs.drop_bad(). To find the number '
                               'of events in the Epochs, use '
                               'len(Epochs.events).')
        return len(self.events)

    def __iter__(self):
        """Facilitate iteration over epochs.

        This method resets the object iteration state to the first epoch.

        Notes
        -----
        This enables the use of this Python pattern::

            >>> for epoch in epochs:  # doctest: +SKIP
            >>>     print(epoch)  # doctest: +SKIP

        Where ``epoch`` is given by successive outputs of
        :meth:`mne.Epochs.next`.
        """
        self._current = 0
        self._current_detrend_picks = self._detrend_picks
        return self

    def __next__(self, return_event_id=False):
        """Iterate over epoch data.

        Parameters
        ----------
        return_event_id : bool
            If True, return both the epoch data and an event_id.

        Returns
        -------
        epoch : array of shape (n_channels, n_times)
            The epoch data.
        event_id : int
            The event id. Only returned if ``return_event_id`` is ``True``.
        """
        if not hasattr(self, '_current_detrend_picks'):
            self.__iter__()  # ensure we're ready to iterate
        if self.preload:
            if self._current >= len(self._data):
                self._stop_iter()
            epoch = self._data[self._current]
            self._current += 1
        else:
            is_good = False
            while not is_good:
                if self._current >= len(self.events):
                    self._stop_iter()
                epoch_noproj = self._get_epoch_from_raw(self._current)
                epoch_noproj = self._detrend_offset_decim(
                    epoch_noproj, self._current_detrend_picks)
                epoch = self._project_epoch(epoch_noproj)
                self._current += 1
                is_good, _ = self._is_good_epoch(epoch)
            # If delayed-ssp mode, pass 'virgin' data after rejection decision.
            if self._do_delayed_proj:
                epoch = epoch_noproj

        if not return_event_id:
            return epoch
        else:
            return epoch, self.events[self._current - 1][-1]

    def _stop_iter(self):
        del self._current
        del self._current_detrend_picks
        raise StopIteration  # signal the end

    next = __next__  # originally for Python2, now b/c public

    def _check_metadata(self, metadata=None, reset_index=False):
        """Check metadata consistency."""
        # reset_index=False will not copy!
        if metadata is None:
            return
        else:
            pd = _check_pandas_installed(strict=False)
            if pd:
                _validate_type(metadata, types=pd.DataFrame,
                               item_name='metadata')
                if len(metadata) != len(self.events):
                    raise ValueError('metadata must have the same number of '
                                     'rows (%d) as events (%d)'
                                     % (len(metadata), len(self.events)))
                if reset_index:
                    if hasattr(self, 'selection'):
                        # makes a copy
                        metadata = metadata.reset_index(drop=True)
                        metadata.index = self.selection
                    else:
                        metadata = deepcopy(metadata)
            else:
                _validate_type(metadata, types=list,
                               item_name='metadata')
                if reset_index:
                    metadata = deepcopy(metadata)
        return metadata

    @property
    def metadata(self):
        """Get the metadata."""
        return self._metadata

    @metadata.setter
    @verbose
    def metadata(self, metadata, verbose=None):
        metadata = self._check_metadata(metadata, reset_index=True)
        if metadata is not None:
            if _check_pandas_installed(strict=False):
                n_col = metadata.shape[1]
            else:
                n_col = len(metadata[0])
            n_col = ' with %d columns' % n_col
        else:
            n_col = ''
        if hasattr(self, '_metadata') and self._metadata is not None:
            action = 'Removing' if metadata is None else 'Replacing'
            action += ' existing'
        else:
            action = 'Not setting' if metadata is None else 'Adding'
        logger.info('%s metadata%s' % (action, n_col))
        self._metadata = metadata


def _check_decim(info, decim, offset, check_filter=True):
    """Check decimation parameters."""
    if decim < 1 or decim != int(decim):
        raise ValueError('decim must be an integer > 0')
    decim = int(decim)
    new_sfreq = info['sfreq'] / float(decim)
    offset = int(offset)
    if not 0 <= offset < decim:
        raise ValueError(f'decim must be at least 0 and less than {decim}, '
                         f'got {offset}')
    if check_filter:
        lowpass = info['lowpass']
        if decim > 1 and lowpass is None:
            warn('The measurement information indicates data is not low-pass '
                 f'filtered. The decim={decim} parameter will result in a '
                 f'sampling frequency of {new_sfreq} Hz, which can cause '
                 'aliasing artifacts.')
        elif decim > 1 and new_sfreq < 3 * lowpass:
            warn('The measurement information indicates a low-pass frequency '
                 f'of {lowpass} Hz. The decim={decim} parameter will result '
                 f'in a sampling frequency of {new_sfreq} Hz, which can '
                 'cause aliasing artifacts.')  # > 50% nyquist lim
    return decim, offset, new_sfreq


class TimeMixin(object):
    """Class to handle operations on time for MNE objects."""

    @property
    def times(self):
        """Time vector in seconds."""
        return self._times_readonly

    def _set_times(self, times):
        """Set self._times_readonly (and make it read only)."""
        # naming used to indicate that it shouldn't be
        # changed directly, but rather via this method
        self._times_readonly = times.copy()
        self._times_readonly.flags['WRITEABLE'] = False

    @property
    def tmin(self):
        """First time point."""
        return self.times[0]

    @property
    def tmax(self):
        """Last time point."""
        return self.times[-1]

    @verbose
    def crop(self, tmin=None, tmax=None, include_tmax=True, verbose=None):
        """Crop data to a given time interval.

        Parameters
        ----------
        tmin : float | None
            Start time of selection in seconds.
        tmax : float | None
            End time of selection in seconds.
        %(include_tmax)s
        %(verbose)s

        Returns
        -------
        inst : instance of Raw, Epochs, Evoked, AverageTFR, or SourceEstimate
            The cropped time-series object, modified in-place.

        Notes
        -----
        %(notes_tmax_included_by_default)s
        """
        t_vars = dict(tmin=tmin, tmax=tmax)
        for name, t_var in t_vars.items():
            _validate_type(
                t_var,
                types=("numeric", None),
                item_name=name,
            )

        if tmin is None:
            tmin = self.tmin
        elif tmin < self.tmin:
            warn(f'tmin is not in time interval. tmin is set to '
                 f'{type(self)}.tmin ({self.tmin:g} sec)')
            tmin = self.tmin

        if tmax is None:
            tmax = self.tmax
        elif tmax > self.tmax:
            warn(f'tmax is not in time interval. tmax is set to '
                 f'{type(self)}.tmax ({self.tmax:g} sec)')
            tmax = self.tmax
            include_tmax = True

        mask = _time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq'],
                          include_tmax=include_tmax)
        self._set_times(self.times[mask])
        self._raw_times = self._raw_times[mask]
        self._update_first_last()
        self._data = self._data[..., mask]

        return self

    @verbose
    def decimate(self, decim, offset=0, verbose=None):
        """Decimate the time-series data.

        Parameters
        ----------
        %(decim)s
        %(offset_decim)s
        %(verbose)s

        Returns
        -------
        inst : MNE-object
            The decimated object.

        See Also
        --------
        mne.Epochs.resample
        mne.io.Raw.resample

        Notes
        -----
        %(decim_notes)s

        If ``decim`` is 1, this method does not copy the underlying data.

        .. versionadded:: 0.10.0

        References
        ----------
        .. footbibliography::
        """
        # if epochs have frequencies, they are not in time (EpochsTFR)
        # and so do not need to be checked whether they have been
        # appropriately filtered to avoid aliasing
        decim, offset, new_sfreq = _check_decim(
            self.info, decim, offset, check_filter=not hasattr(self, 'freqs'))
        start_idx = int(round(-self._raw_times[0] * (self.info['sfreq'] *
                                                     self._decim)))
        self._decim *= decim
        i_start = start_idx % self._decim + offset
        decim_slice = slice(i_start, None, self._decim)
        with self.info._unlock():
            self.info['sfreq'] = new_sfreq

        if self.preload:
            if decim != 1:
                self._data = self._data[..., decim_slice].copy()
                self._raw_times = self._raw_times[decim_slice].copy()
            else:
                self._data = np.ascontiguousarray(self._data)
            self._decim_slice = slice(None)
            self._decim = 1
        else:
            self._decim_slice = decim_slice
        self._set_times(self._raw_times[self._decim_slice])
        self._update_first_last()
        return self

    def time_as_index(self, times, use_rounding=False):
        """Convert time to indices.

        Parameters
        ----------
        times : list-like | float | int
            List of numbers or a number representing points in time.
        use_rounding : bool
            If True, use rounding (instead of truncation) when converting
            times to indices. This can help avoid non-unique indices.

        Returns
        -------
        index : ndarray
            Indices corresponding to the times supplied.
        """
        from ..source_estimate import _BaseSourceEstimate
        if isinstance(self, _BaseSourceEstimate):
            sfreq = 1. / self.tstep
        else:
            sfreq = self.info['sfreq']
        index = (np.atleast_1d(times) - self.times[0]) * sfreq
        if use_rounding:
            index = np.round(index)
        return index.astype(int)

    def _handle_tmin_tmax(self, tmin, tmax):
        """Convert seconds to index into data.

        Parameters
        ----------
        tmin : int | float | None
            Start time of data to get in seconds.
        tmax : int | float | None
            End time of data to get in seconds.

        Returns
        -------
        start : int
            Integer index into data corresponding to tmin.
        stop : int
            Integer index into data corresponding to tmax.

        """
        _validate_type(tmin, types=('numeric', None), item_name='tmin',
                       type_name="int, float, None")
        _validate_type(tmax, types=('numeric', None), item_name='tmax',
                       type_name='int, float, None')

        # handle tmin/tmax as start and stop indices into data array
        n_times = self.times.size
        start = 0 if tmin is None else self.time_as_index(tmin)[0]
        stop = n_times if tmax is None else self.time_as_index(tmax)[0]

        # truncate start/stop to the open interval [0, n_times]
        start = min(max(0, start), n_times)
        stop = min(max(0, stop), n_times)

        return start, stop

    def shift_time(self, tshift, relative=True):
        """Shift time scale in epoched or evoked data.

        Parameters
        ----------
        tshift : float
            The (absolute or relative) time shift in seconds. If ``relative``
            is True, positive tshift increases the time value associated with
            each sample, while negative tshift decreases it.
        relative : bool
            If True, increase or decrease time values by ``tshift`` seconds.
            Otherwise, shift the time values such that the time of the first
            sample equals ``tshift``.

        Returns
        -------
        epochs : MNE-object
            The modified instance.

        Notes
        -----
        This method allows you to shift the *time* values associated with each
        data sample by an arbitrary amount. It does *not* resample the signal
        or change the *data* values in any way.
        """
        _check_preload(self, 'shift_time')
        start = tshift + (self.times[0] if relative else 0.)
        new_times = start + np.arange(len(self.times)) / self.info['sfreq']
        self._set_times(new_times)
        self._update_first_last()
        return self

    def _update_first_last(self):
        """Update self.first and self.last (sample indices)."""
        self.first = int(round(self.times[0] * self.info['sfreq']))
        self.last = len(self.times) + self.first - 1


def _prepare_write_metadata(metadata):
    """Convert metadata to JSON for saving."""
    if metadata is not None:
        if not isinstance(metadata, list):
            metadata = metadata.to_json(orient='records')
        else:  # Pandas DataFrame
            metadata = json.dumps(metadata)
        assert isinstance(metadata, str)
    return metadata


def _prepare_read_metadata(metadata):
    """Convert saved metadata back from JSON."""
    if metadata is not None:
        pd = _check_pandas_installed(strict=False)
        # use json.loads because this preserves ordering
        # (which is necessary for round-trip equivalence)
        metadata = json.loads(metadata, object_pairs_hook=OrderedDict)
        assert isinstance(metadata, list)
        if pd:
            metadata = pd.DataFrame.from_records(metadata)
            assert isinstance(metadata, pd.DataFrame)
    return metadata


class _FakeNoPandas(object):  # noqa: D101
    def __enter__(self):  # noqa: D105

        def _check(strict=True):
            if strict:
                raise RuntimeError('Pandas not installed')
            else:
                return False

        import mne
        self._old_check = _check_pandas_installed
        mne.epochs._check_pandas_installed = _check
        mne.utils.mixin._check_pandas_installed = _check

    def __exit__(self, *args):  # noqa: D105
        import mne
        mne.epochs._check_pandas_installed = self._old_check
        mne.utils.mixin._check_pandas_installed = self._old_check