1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
from copy import deepcopy
from io import StringIO
import os.path as op
from datetime import datetime, timezone
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose
import pytest
from scipy import sparse
from mne import read_evokeds, read_cov, pick_types
from mne.io.pick import _picks_by_type
from mne.epochs import make_fixed_length_epochs
from mne.io import read_raw_fif
from mne.time_frequency import tfr_morlet
from mne.utils import (_get_inst_data, hashfunc,
sum_squared, compute_corr, create_slices, _time_mask,
_freq_mask, random_permutation, _reg_pinv, object_size,
object_hash, object_diff, _apply_scaling_cov,
_undo_scaling_cov, _apply_scaling_array,
_undo_scaling_array, _PCA, requires_sklearn,
_array_equal_nan, _julian_to_cal, _cal_to_julian,
_dt_to_julian, _julian_to_dt, grand_average,
_ReuseCycle, requires_version, numerics,
_custom_lru_cache)
from mne.utils.numerics import _LRU_CACHES, _LRU_CACHE_MAXSIZES
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
fname_raw = op.join(base_dir, 'test_raw.fif')
ave_fname = op.join(base_dir, 'test-ave.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
def test_get_inst_data():
"""Test _get_inst_data."""
raw = read_raw_fif(fname_raw)
raw.crop(tmax=1.)
assert_array_equal(_get_inst_data(raw), raw._data)
raw.pick_channels(raw.ch_names[:2])
epochs = make_fixed_length_epochs(raw, 0.5)
assert_array_equal(_get_inst_data(epochs), epochs._data)
evoked = epochs.average()
assert_array_equal(_get_inst_data(evoked), evoked.data)
evoked.crop(tmax=0.1)
picks = list(range(2))
freqs = [50., 55.]
n_cycles = 3
tfr = tfr_morlet(evoked, freqs, n_cycles, return_itc=False, picks=picks)
assert_array_equal(_get_inst_data(tfr), tfr.data)
pytest.raises(TypeError, _get_inst_data, 'foo')
def test_hashfunc(tmp_path):
"""Test md5/sha1 hash calculations."""
tempdir = str(tmp_path)
fname1 = op.join(tempdir, 'foo')
fname2 = op.join(tempdir, 'bar')
with open(fname1, 'wb') as fid:
fid.write(b'abcd')
with open(fname2, 'wb') as fid:
fid.write(b'efgh')
for hash_type in ('md5', 'sha1'):
hash1 = hashfunc(fname1, hash_type=hash_type)
hash1_ = hashfunc(fname1, 1, hash_type=hash_type)
hash2 = hashfunc(fname2, hash_type=hash_type)
hash2_ = hashfunc(fname2, 1024, hash_type=hash_type)
assert hash1 == hash1_
assert hash2 == hash2_
assert hash1 != hash2
def test_sum_squared():
"""Test optimized sum of squares."""
X = np.random.RandomState(0).randint(0, 50, (3, 3))
assert np.sum(X ** 2) == sum_squared(X)
def test_compute_corr():
"""Test Anscombe's Quartett."""
x = np.array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5])
y = np.array([[8.04, 6.95, 7.58, 8.81, 8.33, 9.96,
7.24, 4.26, 10.84, 4.82, 5.68],
[9.14, 8.14, 8.74, 8.77, 9.26, 8.10,
6.13, 3.10, 9.13, 7.26, 4.74],
[7.46, 6.77, 12.74, 7.11, 7.81, 8.84,
6.08, 5.39, 8.15, 6.42, 5.73],
[8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8],
[6.58, 5.76, 7.71, 8.84, 8.47, 7.04,
5.25, 12.50, 5.56, 7.91, 6.89]])
r = compute_corr(x, y.T)
r2 = np.array([np.corrcoef(x, y[i])[0, 1]
for i in range(len(y))])
assert_allclose(r, r2)
pytest.raises(ValueError, compute_corr, [1, 2], [])
def test_create_slices():
"""Test checking the create of time create_slices."""
# Test that create_slices default provide an empty list
assert (create_slices(0, 0) == [])
# Test that create_slice return correct number of slices
assert (len(create_slices(0, 100)) == 100)
# Test with non-zero start parameters
assert (len(create_slices(50, 100)) == 50)
# Test slices' length with non-zero start and window_width=2
assert (len(create_slices(0, 100, length=2)) == 50)
# Test slices' length with manual slice separation
assert (len(create_slices(0, 100, step=10)) == 10)
# Test slices' within length for non-consecutive samples
assert (len(create_slices(0, 500, length=50, step=10)) == 46)
# Test that slices elements start, stop and step correctly
slices = create_slices(0, 10)
assert (slices[0].start == 0)
assert (slices[0].step == 1)
assert (slices[0].stop == 1)
assert (slices[-1].stop == 10)
# Same with larger window width
slices = create_slices(0, 9, length=3)
assert (slices[0].start == 0)
assert (slices[0].step == 1)
assert (slices[0].stop == 3)
assert (slices[-1].stop == 9)
# Same with manual slices' separation
slices = create_slices(0, 9, length=3, step=1)
assert (len(slices) == 7)
assert (slices[0].step == 1)
assert (slices[0].stop == 3)
assert (slices[-1].start == 6)
assert (slices[-1].stop == 9)
def test_time_mask():
"""Test safe time masking."""
N = 10
x = np.arange(N).astype(float)
assert _time_mask(x, 0, N - 1).sum() == N
assert _time_mask(x - 1e-10, 0, N - 1, sfreq=1000.).sum() == N
assert _time_mask(x - 1e-10, None, N - 1, sfreq=1000.).sum() == N
assert _time_mask(x - 1e-10, None, None, sfreq=1000.).sum() == N
assert _time_mask(x - 1e-10, -np.inf, None, sfreq=1000.).sum() == N
assert _time_mask(x - 1e-10, None, np.inf, sfreq=1000.).sum() == N
# non-uniformly spaced inputs
x = np.array([4, 10])
assert _time_mask(x[:1], tmin=10, sfreq=1, raise_error=False).sum() == 0
assert _time_mask(x[:1], tmin=11, tmax=12, sfreq=1,
raise_error=False).sum() == 0
assert _time_mask(x, tmin=10, sfreq=1).sum() == 1
assert _time_mask(x, tmin=6, sfreq=1).sum() == 1
assert _time_mask(x, tmin=5, sfreq=1).sum() == 1
assert _time_mask(x, tmin=4.5001, sfreq=1).sum() == 1
assert _time_mask(x, tmin=4.4999, sfreq=1).sum() == 2
assert _time_mask(x, tmin=4, sfreq=1).sum() == 2
# degenerate cases
with pytest.raises(ValueError, match='No samples remain'):
_time_mask(x[:1], tmin=11, tmax=12)
with pytest.raises(ValueError, match='must be less than or equal to tmax'):
_time_mask(x[:1], tmin=10, sfreq=1)
def test_freq_mask():
"""Test safe frequency masking."""
N = 10
x = np.arange(N).astype(float)
assert _freq_mask(x, 1000., fmin=0, fmax=N - 1).sum() == N
assert _freq_mask(x - 1e-10, 1000., fmin=0, fmax=N - 1).sum() == N
assert _freq_mask(x - 1e-10, 1000., fmin=None, fmax=N - 1).sum() == N
assert _freq_mask(x - 1e-10, 1000., fmin=None, fmax=None).sum() == N
assert _freq_mask(x - 1e-10, 1000., fmin=-np.inf, fmax=None).sum() == N
assert _freq_mask(x - 1e-10, 1000., fmin=None, fmax=np.inf).sum() == N
# non-uniformly spaced inputs
x = np.array([4, 10])
assert _freq_mask(x[:1], 1, fmin=10, raise_error=False).sum() == 0
assert _freq_mask(x[:1], 1, fmin=11, fmax=12,
raise_error=False).sum() == 0
assert _freq_mask(x, sfreq=1, fmin=10).sum() == 1
assert _freq_mask(x, sfreq=1, fmin=6).sum() == 1
assert _freq_mask(x, sfreq=1, fmin=5).sum() == 1
assert _freq_mask(x, sfreq=1, fmin=4.5001).sum() == 1
assert _freq_mask(x, sfreq=1, fmin=4.4999).sum() == 2
assert _freq_mask(x, sfreq=1, fmin=4).sum() == 2
# degenerate cases
with pytest.raises(ValueError, match='sfreq can not be None'):
_freq_mask(x[:1], sfreq=None, fmin=3, fmax=5)
with pytest.raises(ValueError, match='No frequencies remain'):
_freq_mask(x[:1], sfreq=1, fmin=11, fmax=12)
with pytest.raises(ValueError, match='must be less than or equal to fmax'):
_freq_mask(x[:1], sfreq=1, fmin=10)
def test_random_permutation():
"""Test random permutation function."""
n_samples = 10
random_state = 42
python_randperm = random_permutation(n_samples, random_state)
# matlab output when we execute rng(42), randperm(10)
matlab_randperm = np.array([7, 6, 5, 1, 4, 9, 10, 3, 8, 2])
assert_array_equal(python_randperm, matlab_randperm - 1)
def test_cov_scaling():
"""Test rescaling covs."""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
proj=True)
cov = read_cov(cov_fname)['data']
cov2 = read_cov(cov_fname)['data']
assert_array_equal(cov, cov2)
evoked.pick_channels([evoked.ch_names[k] for k in pick_types(
evoked.info, meg=True, eeg=True
)])
picks_list = _picks_by_type(evoked.info)
scalings = dict(mag=1e15, grad=1e13, eeg=1e6)
_apply_scaling_cov(cov2, picks_list, scalings=scalings)
_apply_scaling_cov(cov, picks_list, scalings=scalings)
assert_array_equal(cov, cov2)
assert cov.max() > 1
_undo_scaling_cov(cov2, picks_list, scalings=scalings)
_undo_scaling_cov(cov, picks_list, scalings=scalings)
assert_array_equal(cov, cov2)
assert cov.max() < 1
data = evoked.data.copy()
_apply_scaling_array(data, picks_list, scalings=scalings)
_undo_scaling_array(data, picks_list, scalings=scalings)
assert_allclose(data, evoked.data, atol=1e-20)
@requires_version('numpy', '1.17') # hermitian kwarg
@pytest.mark.parametrize('ndim', (2, 3))
def test_reg_pinv(ndim):
"""Test regularization and inversion of covariance matrix."""
# create rank-deficient array
a = np.array([[1., 0., 1.], [0., 1., 0.], [1., 0., 1.]])
for _ in range(ndim - 2):
a = a[np.newaxis]
# Test if rank-deficient matrix without regularization throws
# specific warning
with pytest.warns(RuntimeWarning, match='deficient'):
_reg_pinv(a, reg=0.)
# Test inversion with explicit rank
a_inv_np = np.linalg.pinv(a, hermitian=True)
a_inv_mne, loading_factor, rank = _reg_pinv(a, rank=2)
assert loading_factor == 0
assert rank == 2
assert_allclose(a_inv_np, a_inv_mne, atol=1e-14)
# Test inversion with automatic rank detection
a_inv_mne, _, estimated_rank = _reg_pinv(a, rank=None)
assert_allclose(a_inv_np, a_inv_mne, atol=1e-14)
assert estimated_rank == 2
# Test adding regularization
a_inv_mne, loading_factor, estimated_rank = _reg_pinv(a, reg=2)
# Since A has a diagonal of all ones, loading_factor should equal the
# regularization parameter
assert loading_factor == 2
# The estimated rank should be that of the non-regularized matrix
assert estimated_rank == 2
# Test result against the NumPy version
a_inv_np = np.linalg.pinv(a + loading_factor * np.eye(3), hermitian=True)
assert_allclose(a_inv_np, a_inv_mne, atol=1e-14)
# Test setting rcond
a_inv_np = np.linalg.pinv(a, rcond=0.5)
a_inv_mne, _, estimated_rank = _reg_pinv(a, rcond=0.5)
assert_allclose(a_inv_np, a_inv_mne, atol=1e-14)
assert estimated_rank == 1
# Test inverting an all zero cov
a_inv, loading_factor, estimated_rank = _reg_pinv(np.zeros((3, 3)), reg=2)
assert_array_equal(a_inv, 0)
assert loading_factor == 0
assert estimated_rank == 0
def test_object_size():
"""Test object size estimation."""
assert (object_size(np.ones(10, np.float32)) <
object_size(np.ones(10, np.float64)))
for lower, upper, obj in ((0, 60, ''),
(0, 30, 1),
(0, 30, 1.),
(0, 70, 'foo'),
(0, 150, np.ones(0)),
(0, 150, np.int32(1)),
(150, 500, np.ones(20)),
(30, 400, dict()),
(400, 1000, dict(a=np.ones(50))),
(200, 900, sparse.eye(20, format='csc')),
(200, 900, sparse.eye(20, format='csr'))):
size = object_size(obj)
assert lower < size < upper, \
'%s < %s < %s:\n%s' % (lower, size, upper, obj)
# views work properly
x = dict(a=1)
assert object_size(x) < 1000
x['a'] = np.ones(100000, float)
nb = x['a'].nbytes
sz = object_size(x)
assert nb < sz < nb * 1.01
x['b'] = x['a']
sz = object_size(x)
assert nb < sz < nb * 1.01
x['b'] = x['a'].view()
x['b'].flags.writeable = False
assert x['a'].flags.writeable
sz = object_size(x)
assert nb < sz < nb * 1.01
def test_object_diff_with_nan():
"""Test object diff can handle NaNs."""
d0 = np.array([1, np.nan, 0])
d1 = np.array([1, np.nan, 0])
d2 = np.array([np.nan, 1, 0])
assert object_diff(d0, d1) == ''
assert object_diff(d0, d2) != ''
assert object_diff(np.nan, np.nan) == ''
assert object_diff(np.nan, 3.5) == ' value mismatch (nan, 3.5)\n'
def test_hash():
"""Test dictionary hashing and comparison functions."""
# does hashing all of these types work:
# {dict, list, tuple, ndarray, str, float, int, None}
d0 = dict(a=dict(a=0.1, b='fo', c=1), b=[1, 'b'], c=(), d=np.ones(3),
e=None)
d0[1] = None
d0[2.] = b'123'
d1 = deepcopy(d0)
assert len(object_diff(d0, d1)) == 0
assert len(object_diff(d1, d0)) == 0
assert object_hash(d0) == object_hash(d1)
# change values slightly
d1['data'] = np.ones(3, int)
d1['d'][0] = 0
assert object_hash(d0) != object_hash(d1)
d1 = deepcopy(d0)
assert object_hash(d0) == object_hash(d1)
d1['a']['a'] = 0.11
assert (len(object_diff(d0, d1)) > 0)
assert (len(object_diff(d1, d0)) > 0)
assert object_hash(d0) != object_hash(d1)
d1 = deepcopy(d0)
assert object_hash(d0) == object_hash(d1)
d1['a']['d'] = 0 # non-existent key
assert (len(object_diff(d0, d1)) > 0)
assert (len(object_diff(d1, d0)) > 0)
assert object_hash(d0) != object_hash(d1)
d1 = deepcopy(d0)
assert object_hash(d0) == object_hash(d1)
d1['b'].append(0) # different-length lists
assert (len(object_diff(d0, d1)) > 0)
assert (len(object_diff(d1, d0)) > 0)
assert object_hash(d0) != object_hash(d1)
d1 = deepcopy(d0)
assert object_hash(d0) == object_hash(d1)
d1['e'] = 'foo' # non-None
assert (len(object_diff(d0, d1)) > 0)
assert (len(object_diff(d1, d0)) > 0)
assert object_hash(d0) != object_hash(d1)
d1 = deepcopy(d0)
d2 = deepcopy(d0)
d1['e'] = StringIO()
d2['e'] = StringIO()
d2['e'].write('foo')
assert (len(object_diff(d0, d1)) > 0)
assert (len(object_diff(d1, d0)) > 0)
d1 = deepcopy(d0)
d1[1] = 2
assert (len(object_diff(d0, d1)) > 0)
assert (len(object_diff(d1, d0)) > 0)
assert object_hash(d0) != object_hash(d1)
# generators (and other types) not supported
d1 = deepcopy(d0)
d2 = deepcopy(d0)
d1[1] = (x for x in d0)
d2[1] = (x for x in d0)
pytest.raises(RuntimeError, object_diff, d1, d2)
pytest.raises(RuntimeError, object_hash, d1)
x = sparse.eye(2, 2, format='csc')
y = sparse.eye(2, 2, format='csr')
assert ('type mismatch' in object_diff(x, y))
y = sparse.eye(2, 2, format='csc')
assert len(object_diff(x, y)) == 0
y[1, 1] = 2
assert ('elements' in object_diff(x, y))
y = sparse.eye(3, 3, format='csc')
assert ('shape' in object_diff(x, y))
y = 0
assert ('type mismatch' in object_diff(x, y))
# smoke test for gh-4796
assert object_hash(np.int64(1)) != 0
assert object_hash(np.bool_(True)) != 0
@requires_sklearn
@pytest.mark.parametrize('n_components', (None, 0.9999, 8, 'mle'))
@pytest.mark.parametrize('whiten', (True, False))
def test_pca(n_components, whiten):
"""Test PCA equivalence."""
from sklearn.decomposition import PCA
n_samples, n_dim = 1000, 10
X = np.random.RandomState(0).randn(n_samples, n_dim)
X[:, -1] = np.mean(X[:, :-1], axis=-1) # true X dim is ndim - 1
X_orig = X.copy()
pca_skl = PCA(n_components, whiten=whiten, svd_solver='full')
pca_mne = _PCA(n_components, whiten=whiten)
X_skl = pca_skl.fit_transform(X)
assert_array_equal(X, X_orig)
X_mne = pca_mne.fit_transform(X)
assert_array_equal(X, X_orig)
assert_allclose(X_skl, X_mne)
assert pca_mne.n_components_ == pca_skl.n_components_
for key in ('mean_', 'components_',
'explained_variance_', 'explained_variance_ratio_'):
val_skl, val_mne = getattr(pca_skl, key), getattr(pca_mne, key)
assert_allclose(val_skl, val_mne)
if isinstance(n_components, float):
assert pca_mne.n_components_ == n_dim - 1
elif isinstance(n_components, int):
assert pca_mne.n_components_ == n_components
elif n_components == 'mle':
assert pca_mne.n_components_ == n_dim - 1
else:
assert n_components is None
assert pca_mne.n_components_ == n_dim
def test_array_equal_nan():
"""Test comparing arrays with NaNs."""
a = b = [1, np.nan, 0]
assert not np.array_equal(a, b) # this is the annoying behavior we avoid
assert _array_equal_nan(a, b)
b = [np.nan, 1, 0]
assert not _array_equal_nan(a, b)
a = b = [np.nan] * 2
assert _array_equal_nan(a, b)
def test_julian_conversions():
"""Test julian calendar conversions."""
# https://aa.usno.navy.mil/data/docs/JulianDate.php
# A.D. 1922 Jun 13 12:00:00.0 2423219.000000
# A.D. 2018 Oct 3 12:00:00.0 2458395.000000
jds = [2423219, 2458395, 2445701]
dds = [datetime(1922, 6, 13, 12, 0, 0, tzinfo=timezone.utc),
datetime(2018, 10, 3, 12, 0, 0, tzinfo=timezone.utc),
datetime(1984, 1, 1, 12, 0, 0, tzinfo=timezone.utc)]
cals = [(1922, 6, 13), (2018, 10, 3), (1984, 1, 1)]
for dd, cal, jd in zip(dds, cals, jds):
assert (dd == _julian_to_dt(jd))
assert (cal == _julian_to_cal(jd))
assert (jd == _dt_to_julian(dd))
assert (jd == _cal_to_julian(cal[0], cal[1], cal[2]))
def test_grand_average_empty_sequence():
"""Test if mne.grand_average handles an empty sequence correctly."""
with pytest.raises(ValueError, match='Please pass a list of Evoked'):
grand_average([])
def test_grand_average_len_1():
"""Test if mne.grand_average handles a sequence of length 1 correctly."""
# returns a list of length 1
evokeds = read_evokeds(ave_fname, condition=[0], proj=True)
with pytest.warns(RuntimeWarning, match='Only a single dataset'):
gave = grand_average(evokeds)
assert_allclose(gave.data, evokeds[0].data)
def test_reuse_cycle():
"""Test _ReuseCycle."""
vals = 'abcde'
iterable = _ReuseCycle(vals)
assert ''.join(next(iterable) for _ in range(2 * len(vals))) == vals + vals
# we're back to initial
assert ''.join(next(iterable) for _ in range(2)) == 'ab'
iterable.restore('a')
assert ''.join(next(iterable) for _ in range(10)) == 'acdeabcdea'
assert ''.join(next(iterable) for _ in range(4)) == 'bcde'
# we're back to initial
assert ''.join(next(iterable) for _ in range(3)) == 'abc'
iterable.restore('a')
iterable.restore('b')
iterable.restore('c')
assert ''.join(next(iterable) for _ in range(5)) == 'abcde'
# we're back to initial
assert ''.join(next(iterable) for _ in range(3)) == 'abc'
iterable.restore('a')
iterable.restore('c')
assert ''.join(next(iterable) for _ in range(4)) == 'acde'
assert ''.join(next(iterable) for _ in range(5)) == 'abcde'
# we're back to initial
assert ''.join(next(iterable) for _ in range(3)) == 'abc'
iterable.restore('c')
iterable.restore('a')
with pytest.warns(RuntimeWarning, match='Could not find'):
iterable.restore('a')
assert ''.join(next(iterable) for _ in range(4)) == 'acde'
assert ''.join(next(iterable) for _ in range(5)) == 'abcde'
@pytest.mark.parametrize('n', (0, 1, 10, 1000))
@pytest.mark.parametrize('d', (0.0001, 1, 2.5, 1000))
def test_arange_div(numba_conditional, n, d):
"""Test Numba arange_div."""
want = np.arange(n) / d
got = numerics._arange_div(n, d)
assert_allclose(got, want)
def test_custom_lru_cache():
"""Test our _custom_lru_cache implementation."""
n_calls = [0, 0]
start_size = len(_LRU_CACHES)
@_custom_lru_cache(2)
def my_fun(*args):
n_calls[0] += 1
return ', '.join(arg.__class__.__name__ for arg in args)
assert len(_LRU_CACHES) == start_size + 1
fun_hash = list(_LRU_CACHES)[-1]
assert _LRU_CACHE_MAXSIZES[fun_hash] == 2
@_custom_lru_cache(1)
def my_fun_2(*args):
n_calls[1] += 1
return ', '.join(arg.__class__.__name__ for arg in args)
assert len(_LRU_CACHES) == start_size + 2
fun_2_hash = list(_LRU_CACHES)[-1]
assert _LRU_CACHE_MAXSIZES[fun_2_hash] == 1
assert n_calls == [0, 0]
assert my_fun(1, 2, 3) == 'int, int, int'
assert n_calls == [1, 0]
assert my_fun_2(1, 2, 3.) == 'int, int, float'
assert n_calls == [1, 1]
# repeated calls use cached version
assert my_fun(1, 2, 3) == 'int, int, int'
assert n_calls == [1, 1]
assert my_fun_2(1, 2, 3.) == 'int, int, float'
assert n_calls == [1, 1]
assert len(_LRU_CACHES[fun_hash]) == 1
assert len(_LRU_CACHES[fun_2_hash]) == 1
assert my_fun(1, np.array([2]), 3) == 'int, ndarray, int'
assert n_calls == [2, 1]
assert len(_LRU_CACHES[fun_hash]) == 2
assert my_fun_2(1, sparse.eye(1, format='csc')) == 'int, csc_matrix'
assert n_calls == [2, 2]
assert len(_LRU_CACHES[fun_2_hash]) == 1 # other got popped
# we could add support for this eventually, but don't bother for now
with pytest.raises(RuntimeError, match='Unsupported sparse type'):
my_fun_2(1, sparse.eye(1, format='coo'))
assert n_calls == [2, 2] # never did any computation
|