1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
|
# -*- coding: utf-8 -*-
"""Functions to make simple plots with M/EEG data."""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Cathy Nangini <cnangini@gmail.com>
# Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD
import copy
import io
from glob import glob
from itertools import cycle
import os.path as op
import warnings
from collections import defaultdict
import numpy as np
from ..defaults import DEFAULTS
from .._freesurfer import (_reorient_image, _read_mri_info, _check_mri,
_mri_orientation)
from ..rank import compute_rank
from ..surface import read_surface
from ..io.constants import FIFF
from ..io.proj import make_projector
from ..io.pick import (_DATA_CH_TYPES_SPLIT, pick_types, pick_info,
pick_channels)
from ..source_space import read_source_spaces, SourceSpaces, _ensure_src
from ..transforms import apply_trans, _frame_to_str
from ..utils import (logger, verbose, warn, _check_option, get_subjects_dir,
_mask_to_onsets_offsets, _pl, _on_missing, fill_doc)
from ..io.pick import _picks_by_type
from ..filter import estimate_ringing_samples
from .utils import (tight_layout, _get_color_list, _prepare_trellis, plt_show,
_figure_agg, _validate_type)
def _index_info_cov(info, cov, exclude):
if exclude == 'bads':
exclude = info['bads']
info = pick_info(info, pick_channels(info['ch_names'], cov['names'],
exclude))
del exclude
picks_list = \
_picks_by_type(info, meg_combined=False, ref_meg=False,
exclude=())
picks_by_type = dict(picks_list)
ch_names = [n for n in cov.ch_names if n in info['ch_names']]
ch_idx = [cov.ch_names.index(n) for n in ch_names]
info_ch_names = info['ch_names']
idx_by_type = defaultdict(list)
for ch_type, sel in picks_by_type.items():
idx_by_type[ch_type] = [ch_names.index(info_ch_names[c])
for c in sel if info_ch_names[c] in ch_names]
idx_names = [(idx_by_type[key],
'%s covariance' % DEFAULTS['titles'][key],
DEFAULTS['units'][key],
DEFAULTS['scalings'][key],
key)
for key in _DATA_CH_TYPES_SPLIT
if len(idx_by_type[key]) > 0]
C = cov.data[ch_idx][:, ch_idx]
return info, C, ch_names, idx_names
@verbose
def plot_cov(cov, info, exclude=(), colorbar=True, proj=False, show_svd=True,
show=True, verbose=None):
"""Plot Covariance data.
Parameters
----------
cov : instance of Covariance
The covariance matrix.
%(info_not_none)s
exclude : list of str | str
List of channels to exclude. If empty do not exclude any channel.
If 'bads', exclude info['bads'].
colorbar : bool
Show colorbar or not.
proj : bool
Apply projections or not.
show_svd : bool
Plot also singular values of the noise covariance for each sensor
type. We show square roots ie. standard deviations.
show : bool
Show figure if True.
%(verbose)s
Returns
-------
fig_cov : instance of matplotlib.figure.Figure
The covariance plot.
fig_svd : instance of matplotlib.figure.Figure | None
The SVD spectra plot of the covariance.
See Also
--------
mne.compute_rank
Notes
-----
For each channel type, the rank is estimated using
:func:`mne.compute_rank`.
.. versionchanged:: 0.19
Approximate ranks for each channel type are shown with red dashed lines.
"""
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
from scipy import linalg
from ..cov import Covariance
info, C, ch_names, idx_names = _index_info_cov(info, cov, exclude)
del cov, exclude
projs = []
if proj:
projs = copy.deepcopy(info['projs'])
# Activate the projection items
for p in projs:
p['active'] = True
P, ncomp, _ = make_projector(projs, ch_names)
if ncomp > 0:
logger.info(' Created an SSP operator (subspace dimension'
' = %d)' % ncomp)
C = np.dot(P, np.dot(C, P.T))
else:
logger.info(' The projection vectors do not apply to these '
'channels.')
if np.iscomplexobj(C):
C = np.sqrt((C * C.conj()).real)
fig_cov, axes = plt.subplots(1, len(idx_names), squeeze=False,
figsize=(3.8 * len(idx_names), 3.7))
for k, (idx, name, _, _, _) in enumerate(idx_names):
vlim = np.max(np.abs(C[idx][:, idx]))
im = axes[0, k].imshow(C[idx][:, idx], interpolation="nearest",
norm=Normalize(vmin=-vlim, vmax=vlim),
cmap='RdBu_r')
axes[0, k].set(title=name)
if colorbar:
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(axes[0, k])
cax = divider.append_axes("right", size="5.5%", pad=0.05)
cax.grid(False) # avoid mpl warning about auto-removal
plt.colorbar(im, cax=cax, format='%.0e')
fig_cov.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.2, 0.26)
tight_layout(fig=fig_cov)
fig_svd = None
if show_svd:
fig_svd, axes = plt.subplots(1, len(idx_names), squeeze=False,
figsize=(3.8 * len(idx_names), 3.7))
for k, (idx, name, unit, scaling, key) in enumerate(idx_names):
this_C = C[idx][:, idx]
s = linalg.svd(this_C, compute_uv=False)
this_C = Covariance(this_C, [info['ch_names'][ii] for ii in idx],
[], [], 0)
this_info = pick_info(info, idx)
with this_info._unlock():
this_info['projs'] = []
this_rank = compute_rank(this_C, info=this_info)
# Protect against true zero singular values
s[s <= 0] = 1e-10 * s[s > 0].min()
s = np.sqrt(s) * scaling
axes[0, k].plot(s, color='k', zorder=3)
this_rank = this_rank[key]
axes[0, k].axvline(this_rank - 1, ls='--', color='r',
alpha=0.5, zorder=4, clip_on=False)
axes[0, k].text(this_rank - 1, axes[0, k].get_ylim()[1],
'rank ≈ %d' % (this_rank,), ha='right', va='top',
color='r', alpha=0.5, zorder=4)
axes[0, k].set(ylabel=u'Noise σ (%s)' % unit, yscale='log',
xlabel='Eigenvalue index', title=name,
xlim=[0, len(s) - 1])
tight_layout(fig=fig_svd)
plt_show(show)
return fig_cov, fig_svd
def plot_source_spectrogram(stcs, freq_bins, tmin=None, tmax=None,
source_index=None, colorbar=False, show=True):
"""Plot source power in time-freqency grid.
Parameters
----------
stcs : list of SourceEstimate
Source power for consecutive time windows, one SourceEstimate object
should be provided for each frequency bin.
freq_bins : list of tuples of float
Start and end points of frequency bins of interest.
tmin : float
Minimum time instant to show.
tmax : float
Maximum time instant to show.
source_index : int | None
Index of source for which the spectrogram will be plotted. If None,
the source with the largest activation will be selected.
colorbar : bool
If true, a colorbar will be added to the plot.
show : bool
Show figure if True.
Returns
-------
fig : instance of Figure
The figure.
"""
import matplotlib.pyplot as plt
# Input checks
if len(stcs) == 0:
raise ValueError('cannot plot spectrogram if len(stcs) == 0')
stc = stcs[0]
if tmin is not None and tmin < stc.times[0]:
raise ValueError('tmin cannot be smaller than the first time point '
'provided in stcs')
if tmax is not None and tmax > stc.times[-1] + stc.tstep:
raise ValueError('tmax cannot be larger than the sum of the last time '
'point and the time step, which are provided in stcs')
# Preparing time-frequency cell boundaries for plotting
if tmin is None:
tmin = stc.times[0]
if tmax is None:
tmax = stc.times[-1] + stc.tstep
time_bounds = np.arange(tmin, tmax + stc.tstep, stc.tstep)
freq_bounds = sorted(set(np.ravel(freq_bins)))
freq_ticks = copy.deepcopy(freq_bounds)
# Reject time points that will not be plotted and gather results
source_power = []
for stc in stcs:
stc = stc.copy() # copy since crop modifies inplace
stc.crop(tmin, tmax - stc.tstep)
source_power.append(stc.data)
source_power = np.array(source_power)
# Finding the source with maximum source power
if source_index is None:
source_index = np.unravel_index(source_power.argmax(),
source_power.shape)[1]
# If there is a gap in the frequency bins record its locations so that it
# can be covered with a gray horizontal bar
gap_bounds = []
for i in range(len(freq_bins) - 1):
lower_bound = freq_bins[i][1]
upper_bound = freq_bins[i + 1][0]
if lower_bound != upper_bound:
freq_bounds.remove(lower_bound)
gap_bounds.append((lower_bound, upper_bound))
# Preparing time-frequency grid for plotting
time_grid, freq_grid = np.meshgrid(time_bounds, freq_bounds)
# Plotting the results
fig = plt.figure(figsize=(9, 6))
plt.pcolor(time_grid, freq_grid, source_power[:, source_index, :],
cmap='Reds')
ax = plt.gca()
ax.set(title='Source power', xlabel='Time (s)', ylabel='Frequency (Hz)')
time_tick_labels = [str(np.round(t, 2)) for t in time_bounds]
n_skip = 1 + len(time_bounds) // 10
for i in range(len(time_bounds)):
if i % n_skip != 0:
time_tick_labels[i] = ''
ax.set_xticks(time_bounds)
ax.set_xticklabels(time_tick_labels)
plt.xlim(time_bounds[0], time_bounds[-1])
plt.yscale('log')
ax.set_yticks(freq_ticks)
ax.set_yticklabels([np.round(freq, 2) for freq in freq_ticks])
plt.ylim(freq_bounds[0], freq_bounds[-1])
plt.grid(True, ls='-')
if colorbar:
plt.colorbar()
tight_layout(fig=fig)
# Covering frequency gaps with horizontal bars
for lower_bound, upper_bound in gap_bounds:
plt.barh(lower_bound, time_bounds[-1] - time_bounds[0], upper_bound -
lower_bound, time_bounds[0], color='#666666')
plt_show(show)
return fig
def _plot_mri_contours(*, mri_fname, surfaces, src, orientation='coronal',
slices=None, show=True, show_indices=False,
show_orientation=False, width=512,
slices_as_subplots=True):
"""Plot BEM contours on anatomical MRI slices.
Parameters
----------
slices_as_subplots : bool
Whether to add all slices as subplots to a single figure, or to
create a new figure for each slice. If ``False``, return NumPy
arrays instead of Matplotlib figures.
Returns
-------
matplotlib.figure.Figure | list of array
The plotted slices.
"""
import matplotlib.pyplot as plt
from matplotlib import patheffects
# For ease of plotting, we will do everything in voxel coordinates.
_validate_type(show_orientation, (bool, str), 'show_orientation')
if isinstance(show_orientation, str):
_check_option('show_orientation', show_orientation, ('always',),
extra='when str')
_check_option('orientation', orientation, ('coronal', 'axial', 'sagittal'))
# Load the T1 data
_, _, _, _, _, nim = _read_mri_info(
mri_fname, units='mm', return_img=True)
data, rasvox_mri_t = _reorient_image(nim)
mri_rasvox_t = np.linalg.inv(rasvox_mri_t)
axis, x, y = _mri_orientation(orientation)
n_slices = data.shape[axis]
# if no slices were specified, pick some equally-spaced ones automatically
if slices is None:
slices = np.round(
np.linspace(
start=0,
stop=n_slices - 1,
num=14
)
).astype(int)
# omit first and last one (not much brain visible there anyway…)
slices = slices[1:-1]
slices = np.atleast_1d(slices).copy()
slices[slices < 0] += n_slices # allow negative indexing
if not np.array_equal(np.sort(slices), slices) or slices.ndim != 1 or \
slices.size < 1 or slices[0] < 0 or slices[-1] >= n_slices or \
slices.dtype.kind not in 'iu':
raise ValueError('slices must be a sorted 1D array of int with unique '
'elements, at least one element, and no elements '
'greater than %d, got %s' % (n_slices - 1, slices))
# create of list of surfaces
surfs = list()
for file_name, color in surfaces:
surf = dict()
surf['rr'], surf['tris'] = read_surface(file_name)
# move surface to voxel coordinate system
surf['rr'] = apply_trans(mri_rasvox_t, surf['rr'])
surfs.append((surf, color))
sources = list()
if src is not None:
_ensure_src(src, extra=' or None')
# Eventually we can relax this by allowing ``trans`` if need be
if src[0]['coord_frame'] != FIFF.FIFFV_COORD_MRI:
raise ValueError(
'Source space must be in MRI coordinates, got '
f'{_frame_to_str[src[0]["coord_frame"]]}')
for src_ in src:
points = src_['rr'][src_['inuse'].astype(bool)]
sources.append(apply_trans(mri_rasvox_t, points * 1e3))
sources = np.concatenate(sources, axis=0)
# get the figure dimensions right
if slices_as_subplots:
n_col = 4
fig, axs, _, _ = _prepare_trellis(len(slices), n_col)
fig.set_facecolor('k')
dpi = fig.get_dpi()
n_axes = len(axs)
else:
n_col = n_axes = 1
dpi = 96
# 2x standard MRI resolution is probably good enough for the
# traces
w = width / dpi
figsize = (w, w / data.shape[x] * data.shape[y])
bounds = np.concatenate(
[[-np.inf], slices[:-1] + np.diff(slices) / 2.,
[np.inf]]
) # float
slicer = [slice(None)] * 3
ori_labels = dict(R='LR', A='PA', S='IS')
xlabels, ylabels = ori_labels['RAS'[x]], ori_labels['RAS'[y]]
path_effects = [patheffects.withStroke(linewidth=4, foreground="k",
alpha=0.75)]
figs = []
for ai, (sl, lower, upper) in enumerate(
zip(slices, bounds[:-1], bounds[1:])
):
if slices_as_subplots:
ax = axs[ai]
else:
fig = _figure_agg(figsize=figsize, dpi=dpi, facecolor='k')
ax = fig.add_axes([0, 0, 1, 1], frame_on=False, facecolor='k')
# adjust the orientations for good view
slicer[axis] = sl
dat = data[tuple(slicer)].T
# First plot the anatomical data
ax.imshow(dat, cmap=plt.cm.gray, origin='lower')
ax.set_autoscale_on(False)
ax.axis('off')
ax.set_aspect('equal') # XXX eventually could deal with zooms
# and then plot the contours on top
for surf, color in surfs:
with warnings.catch_warnings(record=True): # ignore contour warn
warnings.simplefilter('ignore')
ax.tricontour(surf['rr'][:, x], surf['rr'][:, y],
surf['tris'], surf['rr'][:, axis],
levels=[sl], colors=color, linewidths=1.0,
zorder=1)
if len(sources):
in_slice = (sources[:, axis] >= lower) & (sources[:, axis] < upper)
ax.scatter(sources[in_slice, x], sources[in_slice, y],
marker='.', color='#FF00FF', s=1, zorder=2)
if show_indices:
ax.text(dat.shape[1] // 8 + 0.5, 0.5, str(sl),
color='w', fontsize='x-small', va='bottom', ha='left')
# label the axes
kwargs = dict(
color='#66CCEE', fontsize='medium', path_effects=path_effects,
family='monospace', clip_on=False, zorder=5, weight='bold')
always = (show_orientation == 'always')
if show_orientation:
if ai % n_col == 0 or always: # left
ax.text(0, dat.shape[0] / 2., xlabels[0],
va='center', ha='left', **kwargs)
if ai % n_col == n_col - 1 or ai == n_axes - 1 or always: # right
ax.text(dat.shape[1] - 1, dat.shape[0] / 2., xlabels[1],
va='center', ha='right', **kwargs)
if ai >= n_axes - n_col or always: # bottom
ax.text(dat.shape[1] / 2., 0, ylabels[0],
ha='center', va='bottom', **kwargs)
if ai < n_col or n_col == 1 or always: # top
ax.text(dat.shape[1] / 2., dat.shape[0] - 1, ylabels[1],
ha='center', va='top', **kwargs)
if not slices_as_subplots:
# convert to NumPy array
with io.BytesIO() as buff:
fig.savefig(
buff, format='raw', bbox_inches='tight', pad_inches=0,
dpi=dpi
)
w_, h_ = fig.canvas.get_width_height()
plt.close(fig)
buff.seek(0)
fig_array = np.frombuffer(buff.getvalue(), dtype=np.uint8)
fig = fig_array.reshape((int(h_), int(w_), -1))
figs.append(fig)
if slices_as_subplots:
fig.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0.,
hspace=0.)
plt_show(show, fig=fig)
return fig
else:
return figs
@fill_doc
def plot_bem(subject, subjects_dir=None, orientation='coronal',
slices=None, brain_surfaces=None, src=None, show=True,
show_indices=True, mri='T1.mgz', show_orientation=True):
"""Plot BEM contours on anatomical MRI slices.
Parameters
----------
%(subject)s
%(subjects_dir)s
orientation : str
'coronal' or 'axial' or 'sagittal'.
slices : list of int | None
The indices of the MRI slices to plot. If ``None``, automatically
pick 12 equally-spaced slices.
brain_surfaces : None | str | list of str
One or more brain surface to plot (optional). Entries should correspond
to files in the subject's ``surf`` directory (e.g. ``"white"``).
src : None | SourceSpaces | str
SourceSpaces instance or path to a source space to plot individual
sources as scatter-plot. Sources will be shown on exactly one slice
(whichever slice is closest to each source in the given orientation
plane). Path can be absolute or relative to the subject's ``bem``
folder.
.. versionchanged:: 0.20
All sources are shown on the nearest slice rather than some
being omitted.
show : bool
Show figure if True.
show_indices : bool
Show slice indices if True.
.. versionadded:: 0.20
mri : str
The name of the MRI to use. Can be a standard FreeSurfer MRI such as
``'T1.mgz'``, or a full path to a custom MRI file.
.. versionadded:: 0.21
show_orientation : bool | str
Show the orientation (L/R, P/A, I/S) of the data slices.
True (default) will only show it on the outside most edges of the
figure, False will never show labels, and "always" will label each
plot.
.. versionadded:: 0.21
.. versionchanged:: 0.24
Added support for "always".
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
See Also
--------
mne.viz.plot_alignment
Notes
-----
Images are plotted in MRI voxel coordinates.
If ``src`` is not None, for a given slice index, all source points are
shown that are halfway between the previous slice and the given slice,
and halfway between the given slice and the next slice.
For large slice decimations, this can
make some source points appear outside the BEM contour, which is shown
for the given slice index. For example, in the case where the single
midpoint slice is used ``slices=[128]``, all source points will be shown
on top of the midpoint MRI slice with the BEM boundary drawn for that
slice.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
mri_fname = _check_mri(mri, subject, subjects_dir)
# Get the BEM surface filenames
bem_path = op.join(subjects_dir, subject, 'bem')
if not op.isdir(bem_path):
raise IOError(f'Subject bem directory "{bem_path}" does not exist')
surfaces = _get_bem_plotting_surfaces(bem_path)
if brain_surfaces is not None:
if isinstance(brain_surfaces, str):
brain_surfaces = (brain_surfaces,)
for surf_name in brain_surfaces:
for hemi in ('lh', 'rh'):
surf_fname = op.join(subjects_dir, subject, 'surf',
hemi + '.' + surf_name)
if op.exists(surf_fname):
surfaces.append((surf_fname, '#00DD00'))
else:
raise IOError("Surface %s does not exist." % surf_fname)
if isinstance(src, str):
if not op.exists(src):
src_ = op.join(subjects_dir, subject, 'bem', src)
if op.exists(src_):
src = src_
else:
raise IOError("%s does not exist" % src)
src = read_source_spaces(src)
elif src is not None and not isinstance(src, SourceSpaces):
raise TypeError("src needs to be None, str or SourceSpaces instance, "
"not %s" % repr(src))
if len(surfaces) == 0:
raise IOError('No surface files found. Surface files must end with '
'inner_skull.surf, outer_skull.surf or outer_skin.surf')
# Plot the contours
fig = _plot_mri_contours(
mri_fname=mri_fname, surfaces=surfaces, src=src,
orientation=orientation, slices=slices, show=show,
show_indices=show_indices, show_orientation=show_orientation,
slices_as_subplots=True
)
return fig
def _get_bem_plotting_surfaces(bem_path):
surfaces = []
for surf_name, color in (('*inner_skull', '#FF0000'),
('*outer_skull', '#FFFF00'),
('*outer_skin', '#FFAA80')):
surf_fname = glob(op.join(bem_path, surf_name + '.surf'))
if len(surf_fname) > 0:
surf_fname = surf_fname[0]
logger.info("Using surface: %s" % surf_fname)
surfaces.append((surf_fname, color))
return surfaces
@verbose
def plot_events(events, sfreq=None, first_samp=0, color=None, event_id=None,
axes=None, equal_spacing=True, show=True, on_missing='raise',
verbose=None):
"""Plot :term:`events` to get a visual display of the paradigm.
Parameters
----------
%(events)s
sfreq : float | None
The sample frequency. If None, data will be displayed in samples (not
seconds).
first_samp : int
The index of the first sample. Recordings made on Neuromag systems
number samples relative to the system start (not relative to the
beginning of the recording). In such cases the ``raw.first_samp``
attribute can be passed here. Default is 0.
color : dict | None
Dictionary of event_id integers as keys and colors as values. If None,
colors are automatically drawn from a default list (cycled through if
number of events longer than list of default colors). Color can be any
valid :doc:`matplotlib color <matplotlib:tutorials/colors/colors>`.
event_id : dict | None
Dictionary of event labels (e.g. 'aud_l') as keys and their associated
event_id values. Labels are used to plot a legend. If None, no legend
is drawn.
axes : instance of Axes
The subplot handle.
equal_spacing : bool
Use equal spacing between events in y-axis.
show : bool
Show figure if True.
%(on_missing_events)s
%(verbose)s
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
if sfreq is None:
sfreq = 1.0
xlabel = 'Samples'
else:
xlabel = 'Time (s)'
events = np.asarray(events)
if len(events) == 0:
raise ValueError('No events in events array, cannot plot.')
unique_events = np.unique(events[:, 2])
if event_id is not None:
# get labels and unique event ids from event_id dict,
# sorted by value
event_id_rev = {v: k for k, v in event_id.items()}
conditions, unique_events_id = zip(*sorted(event_id.items(),
key=lambda x: x[1]))
keep = np.ones(len(unique_events_id), bool)
for ii, this_event in enumerate(unique_events_id):
if this_event not in unique_events:
msg = f'{this_event} from event_id is not present in events.'
_on_missing(on_missing, msg)
keep[ii] = False
conditions = [cond for cond, k in zip(conditions, keep) if k]
unique_events_id = [id_ for id_, k in zip(unique_events_id, keep) if k]
if len(unique_events_id) == 0:
raise RuntimeError('No usable event IDs found')
for this_event in unique_events:
if this_event not in unique_events_id:
warn('event %s missing from event_id will be ignored'
% this_event)
else:
unique_events_id = unique_events
color = _handle_event_colors(color, unique_events, event_id)
import matplotlib.pyplot as plt
fig = None
if axes is None:
fig = plt.figure()
ax = axes if axes else plt.gca()
unique_events_id = np.array(unique_events_id)
min_event = np.min(unique_events_id)
max_event = np.max(unique_events_id)
max_x = (events[np.in1d(events[:, 2], unique_events_id), 0].max() -
first_samp) / sfreq
handles, labels = list(), list()
for idx, ev in enumerate(unique_events_id):
ev_mask = events[:, 2] == ev
count = ev_mask.sum()
if count == 0:
continue
y = np.full(count, idx + 1 if equal_spacing else events[ev_mask, 2][0])
if event_id is not None:
event_label = '%s (%s)' % (event_id_rev[ev], count)
else:
event_label = 'N=%d' % (count,)
labels.append(event_label)
kwargs = {}
if ev in color:
kwargs['color'] = color[ev]
handles.append(
ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
y, '.', clip_on=False, **kwargs)[0])
if equal_spacing:
ax.set_ylim(0, unique_events_id.size + 1)
ax.set_yticks(1 + np.arange(unique_events_id.size))
ax.set_yticklabels(unique_events_id)
else:
ax.set_ylim([min_event - 1, max_event + 1])
ax.set(xlabel=xlabel, ylabel='Event id', xlim=[0, max_x])
ax.grid(True)
fig = fig if fig is not None else plt.gcf()
# reverse order so that the highest numbers are at the top
# (match plot order)
handles, labels = handles[::-1], labels[::-1]
box = ax.get_position()
factor = 0.8 if event_id is not None else 0.9
ax.set_position([box.x0, box.y0, box.width * factor, box.height])
ax.legend(handles, labels, loc='center left', bbox_to_anchor=(1, 0.5),
fontsize='small')
fig.canvas.draw()
plt_show(show)
return fig
def _get_presser(fig):
"""Get our press callback."""
callbacks = fig.canvas.callbacks.callbacks['button_press_event']
func = None
for key, val in callbacks.items():
func = val()
if func.__class__.__name__ == 'partial':
break
else:
func = None
assert func is not None
return func
def plot_dipole_amplitudes(dipoles, colors=None, show=True):
"""Plot the amplitude traces of a set of dipoles.
Parameters
----------
dipoles : list of instance of Dipole
The dipoles whose amplitudes should be shown.
colors : list of color | None
Color to plot with each dipole. If None default colors are used.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
import matplotlib.pyplot as plt
if colors is None:
colors = cycle(_get_color_list())
fig, ax = plt.subplots(1, 1)
xlim = [np.inf, -np.inf]
for dip, color in zip(dipoles, colors):
ax.plot(dip.times, dip.amplitude * 1e9, color=color, linewidth=1.5)
xlim[0] = min(xlim[0], dip.times[0])
xlim[1] = max(xlim[1], dip.times[-1])
ax.set(xlim=xlim, xlabel='Time (s)', ylabel='Amplitude (nAm)')
if show:
fig.show(warn=False)
return fig
def adjust_axes(axes, remove_spines=('top', 'right'), grid=True):
"""Adjust some properties of axes.
Parameters
----------
axes : list
List of axes to process.
remove_spines : list of str
Which axis spines to remove.
grid : bool
Turn grid on (True) or off (False).
"""
axes = [axes] if not isinstance(axes, (list, tuple, np.ndarray)) else axes
for ax in axes:
if grid:
ax.grid(zorder=0)
for key in remove_spines:
ax.spines[key].set_visible(False)
def _filter_ticks(lims, fscale):
"""Create approximately spaced ticks between lims."""
if fscale == 'linear':
return None, None # let matplotlib handle it
lims = np.array(lims)
ticks = list()
if lims[1] > 20 * lims[0]:
base = np.array([1, 2, 4])
else:
base = np.arange(1, 11)
for exp in range(int(np.floor(np.log10(lims[0]))),
int(np.floor(np.log10(lims[1]))) + 1):
ticks += (base * (10 ** exp)).tolist()
ticks = np.array(ticks)
ticks = ticks[(ticks >= lims[0]) & (ticks <= lims[1])]
ticklabels = [('%g' if t < 1 else '%d') % t for t in ticks]
return ticks, ticklabels
def _get_flim(flim, fscale, freq, sfreq=None):
"""Get reasonable frequency limits."""
if flim is None:
if freq is None:
flim = [0.1 if fscale == 'log' else 0., sfreq / 2.]
else:
if fscale == 'linear':
flim = [freq[0]]
else:
flim = [freq[0] if freq[0] > 0 else 0.1 * freq[1]]
flim += [freq[-1]]
if fscale == 'log':
if flim[0] <= 0:
raise ValueError('flim[0] must be positive, got %s' % flim[0])
elif flim[0] < 0:
raise ValueError('flim[0] must be non-negative, got %s' % flim[0])
return flim
def _check_fscale(fscale):
"""Check for valid fscale."""
if not isinstance(fscale, str) or fscale not in ('log', 'linear'):
raise ValueError('fscale must be "log" or "linear", got %s'
% (fscale,))
_DEFAULT_ALIM = (-80, 10)
def plot_filter(h, sfreq, freq=None, gain=None, title=None, color='#1f77b4',
flim=None, fscale='log', alim=_DEFAULT_ALIM, show=True,
compensate=False, plot=('time', 'magnitude', 'delay'),
axes=None, *, dlim=None):
"""Plot properties of a filter.
Parameters
----------
h : dict or ndarray
An IIR dict or 1D ndarray of coefficients (for FIR filter).
sfreq : float
Sample rate of the data (Hz).
freq : array-like or None
The ideal response frequencies to plot (must be in ascending order).
If None (default), do not plot the ideal response.
gain : array-like or None
The ideal response gains to plot.
If None (default), do not plot the ideal response.
title : str | None
The title to use. If None (default), determine the title based
on the type of the system.
color : color object
The color to use (default '#1f77b4').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None, freq will be used. If None (default) and freq is None,
``(0.1, sfreq / 2.)`` will be used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
The y-axis amplitude limits (dB) to use (default: (-60, 10)).
show : bool
Show figure if True (default).
compensate : bool
If True, compensate for the filter delay (phase will not be shown).
- For linear-phase FIR filters, this visualizes the filter coefficients
assuming that the output will be shifted by ``N // 2``.
- For IIR filters, this changes the filter coefficient display
by filtering backward and forward, and the frequency response
by squaring it.
.. versionadded:: 0.18
plot : list | tuple | str
A list of the requested plots from ``time``, ``magnitude`` and
``delay``. Default is to plot all three filter properties
('time', 'magnitude', 'delay').
.. versionadded:: 0.21.0
axes : instance of Axes | list | None
The axes to plot to. If list, the list must be a list of Axes of
the same length as the number of requested plot types. If instance of
Axes, there must be only one filter property plotted.
Defaults to ``None``.
.. versionadded:: 0.21.0
dlim : None | tuple
The y-axis delay limits (sec) to use (default:
``(-tmax / 2., tmax / 2.)``).
.. versionadded:: 1.1.0
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the plots.
See Also
--------
mne.filter.create_filter
plot_ideal_filter
Notes
-----
.. versionadded:: 0.14
"""
from scipy.signal import (
freqz, group_delay, lfilter, filtfilt, sosfilt, sosfiltfilt)
import matplotlib.pyplot as plt
sfreq = float(sfreq)
_check_option('fscale', fscale, ['log', 'linear'])
if isinstance(plot, str):
plot = [plot]
for xi, x in enumerate(plot):
_check_option('plot[%d]' % xi, x, ('magnitude', 'delay', 'time'))
flim = _get_flim(flim, fscale, freq, sfreq)
if fscale == 'log':
omega = np.logspace(np.log10(flim[0]), np.log10(flim[1]), 1000)
else:
omega = np.linspace(flim[0], flim[1], 1000)
xticks, xticklabels = _filter_ticks(flim, fscale)
omega /= sfreq / (2 * np.pi)
if isinstance(h, dict): # IIR h.ndim == 2: # second-order sections
if 'sos' in h:
H = np.ones(len(omega), np.complex128)
gd = np.zeros(len(omega))
for section in h['sos']:
this_H = freqz(section[:3], section[3:], omega)[1]
H *= this_H
if compensate:
H *= this_H.conj() # time reversal is freq conj
else:
# Assume the forward-backward delay zeros out, which it
# mostly should
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter('ignore')
gd += group_delay((section[:3], section[3:]), omega)[1]
n = estimate_ringing_samples(h['sos'])
delta = np.zeros(n)
delta[0] = 1
if compensate:
delta = np.pad(delta, [(n - 1, 0)], 'constant')
func = sosfiltfilt
gd += (len(delta) - 1) // 2
else:
func = sosfilt
h = func(h['sos'], delta)
else:
H = freqz(h['b'], h['a'], omega)[1]
if compensate:
H *= H.conj()
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter('ignore')
gd = group_delay((h['b'], h['a']), omega)[1]
if compensate:
gd += group_delay((h['b'].conj(), h['a'].conj()), omega)[1]
n = estimate_ringing_samples((h['b'], h['a']))
delta = np.zeros(n)
delta[0] = 1
if compensate:
delta = np.pad(delta, [(n - 1, 0)], 'constant')
func = filtfilt
else:
func = lfilter
h = func(h['b'], h['a'], delta)
if title is None:
title = 'SOS (IIR) filter'
if compensate:
title += ' (forward-backward)'
else:
H = freqz(h, worN=omega)[1]
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter('ignore')
gd = group_delay((h, [1.]), omega)[1]
title = 'FIR filter' if title is None else title
if compensate:
title += ' (delay-compensated)'
fig = None
if axes is None:
fig, axes = plt.subplots(len(plot), 1)
if isinstance(axes, plt.Axes):
axes = [axes]
elif isinstance(axes, np.ndarray):
axes = list(axes)
if fig is None:
fig = axes[0].get_figure()
if len(axes) != len(plot):
raise ValueError('Length of axes (%d) must be the same as number of '
'requested filter properties (%d)'
% (len(axes), len(plot)))
t = np.arange(len(h))
if dlim is None:
dlim = np.abs(t).max() / 2.
dlim = [-dlim, dlim]
if compensate:
n_shift = (len(h) - 1) // 2
t -= n_shift
assert t[0] == -t[-1]
gd -= n_shift
t = t / sfreq
gd = gd / sfreq
f = omega * sfreq / (2 * np.pi)
sl = slice(0 if fscale == 'linear' else 1, None, None)
mag = 10 * np.log10(np.maximum((H * H.conj()).real, 1e-20))
if 'time' in plot:
ax_time_idx = np.where([p == 'time' for p in plot])[0][0]
axes[ax_time_idx].plot(t, h, color=color, linewidth=1.2)
axes[ax_time_idx].grid(visible=True, which='major', axis='both',
linewidth=0.15)
axes[ax_time_idx].set(xlim=t[[0, -1]], xlabel='Time (s)',
ylabel='Amplitude', title=title)
# Magnitude
if 'magnitude' in plot:
ax_mag_idx = np.where([p == 'magnitude' for p in plot])[0][0]
axes[ax_mag_idx].plot(f[sl], mag[sl], color=color,
linewidth=1.2, zorder=4)
axes[ax_mag_idx].grid(visible=True, which='major', axis='both',
linewidth=0.15)
if freq is not None and gain is not None:
plot_ideal_filter(freq, gain, axes[ax_mag_idx],
fscale=fscale, show=False)
axes[ax_mag_idx].set(ylabel='Magnitude (dB)', xlabel='', xscale=fscale)
if xticks is not None:
axes[ax_mag_idx].set(xticks=xticks)
axes[ax_mag_idx].set(xticklabels=xticklabels)
axes[ax_mag_idx].set(xlim=flim, ylim=alim, xlabel='Frequency (Hz)',
ylabel='Amplitude (dB)')
# Delay
if 'delay' in plot:
ax_delay_idx = np.where([p == 'delay' for p in plot])[0][0]
axes[ax_delay_idx].plot(f[sl], gd[sl], color=color,
linewidth=1.2, zorder=4)
axes[ax_delay_idx].grid(visible=True, which='major', axis='both',
linewidth=0.15)
# shade nulled regions
for start, stop in zip(*_mask_to_onsets_offsets(mag <= -39.9)):
axes[ax_delay_idx].axvspan(f[start], f[stop - 1],
facecolor='k', alpha=0.05,
zorder=5)
axes[ax_delay_idx].set(xlim=flim, ylabel='Group delay (s)',
xlabel='Frequency (Hz)',
xscale=fscale)
if xticks is not None:
axes[ax_delay_idx].set(xticks=xticks)
axes[ax_delay_idx].set(xticklabels=xticklabels)
axes[ax_delay_idx].set(xlim=flim, ylim=dlim, xlabel='Frequency (Hz)',
ylabel='Delay (s)')
adjust_axes(axes)
tight_layout()
plt_show(show)
return fig
def plot_ideal_filter(freq, gain, axes=None, title='', flim=None, fscale='log',
alim=_DEFAULT_ALIM, color='r', alpha=0.5, linestyle='--',
show=True):
"""Plot an ideal filter response.
Parameters
----------
freq : array-like
The ideal response frequencies to plot (must be in ascending order).
gain : array-like or None
The ideal response gains to plot.
axes : instance of Axes | None
The subplot handle. With None (default), axes are created.
title : str
The title to use, (default: '').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None (default), freq used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
If not None (default), the y-axis limits (dB) to use.
color : color object
The color to use (default: 'r').
alpha : float
The alpha to use (default: 0.5).
linestyle : str
The line style to use (default: '--').
show : bool
Show figure if True (default).
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
See Also
--------
plot_filter
Notes
-----
.. versionadded:: 0.14
Examples
--------
Plot a simple ideal band-pass filter::
>>> from mne.viz import plot_ideal_filter
>>> freq = [0, 1, 40, 50]
>>> gain = [0, 1, 1, 0]
>>> plot_ideal_filter(freq, gain, flim=(0.1, 100)) #doctest: +SKIP
<...Figure...>
"""
import matplotlib.pyplot as plt
my_freq, my_gain = list(), list()
if freq[0] != 0:
raise ValueError('freq should start with DC (zero) and end with '
'Nyquist, but got %s for DC' % (freq[0],))
freq = np.array(freq)
# deal with semilogx problems @ x=0
_check_option('fscale', fscale, ['log', 'linear'])
if fscale == 'log':
freq[0] = 0.1 * freq[1] if flim is None else min(flim[0], freq[1])
flim = _get_flim(flim, fscale, freq)
transitions = list()
for ii in range(len(freq)):
if ii < len(freq) - 1 and gain[ii] != gain[ii + 1]:
transitions += [[freq[ii], freq[ii + 1]]]
my_freq += np.linspace(freq[ii], freq[ii + 1], 20,
endpoint=False).tolist()
my_gain += np.linspace(gain[ii], gain[ii + 1], 20,
endpoint=False).tolist()
else:
my_freq.append(freq[ii])
my_gain.append(gain[ii])
my_gain = 10 * np.log10(np.maximum(my_gain, 10 ** (alim[0] / 10.)))
if axes is None:
axes = plt.subplots(1)[1]
for transition in transitions:
axes.axvspan(*transition, color=color, alpha=0.1)
axes.plot(my_freq, my_gain, color=color, linestyle=linestyle, alpha=alpha,
linewidth=2, zorder=3)
xticks, xticklabels = _filter_ticks(flim, fscale)
axes.set(ylim=alim, xlabel='Frequency (Hz)', ylabel='Amplitude (dB)',
xscale=fscale)
if xticks is not None:
axes.set(xticks=xticks)
axes.set(xticklabels=xticklabels)
axes.set(xlim=flim)
if title:
axes.set(title=title)
adjust_axes(axes)
tight_layout()
plt_show(show)
return axes.figure
def _handle_event_colors(color_dict, unique_events, event_id):
"""Create event-integer-to-color mapping, assigning defaults as needed."""
default_colors = dict(zip(sorted(unique_events), cycle(_get_color_list())))
# warn if not enough colors
if color_dict is None:
if len(unique_events) > len(_get_color_list()):
warn('More events than default colors available. You should pass '
'a list of unique colors.')
else:
custom_colors = dict()
for key, color in color_dict.items():
if key in unique_events: # key was a valid event integer
custom_colors[key] = color
elif key in event_id: # key was an event label
custom_colors[event_id[key]] = color
else: # key not a valid event, warn and ignore
warn('Event ID %s is in the color dict but is not '
'present in events or event_id.' % str(key))
# warn if color_dict is missing any entries
unassigned = sorted(set(unique_events) - set(custom_colors))
if len(unassigned):
unassigned_str = ', '.join(str(e) for e in unassigned)
warn('Color was not assigned for event%s %s. Default colors will '
'be used.' % (_pl(unassigned), unassigned_str))
default_colors.update(custom_colors)
return default_colors
@fill_doc
def plot_csd(csd, info=None, mode='csd', colorbar=True, cmap=None,
n_cols=None, show=True):
"""Plot CSD matrices.
A sub-plot is created for each frequency. If an info object is passed to
the function, different channel types are plotted in different figures.
Parameters
----------
csd : instance of CrossSpectralDensity
The CSD matrix to plot.
%(info)s
Used to split the figure by channel-type, if provided.
By default, the CSD matrix is plotted as a whole.
mode : 'csd' | 'coh'
Whether to plot the cross-spectral density ('csd', the default), or
the coherence ('coh') between the channels.
colorbar : bool
Whether to show a colorbar. Defaults to ``True``.
cmap : str | None
The matplotlib colormap to use. Defaults to None, which means the
colormap will default to matplotlib's default.
n_cols : int | None
CSD matrices are plotted in a grid. This parameter controls how
many matrix to plot side by side before starting a new row. By
default, a number will be chosen to make the grid as square as
possible.
show : bool
Whether to show the figure. Defaults to ``True``.
Returns
-------
fig : list of Figure
The figures created by this function.
"""
import matplotlib.pyplot as plt
if mode not in ['csd', 'coh']:
raise ValueError('"mode" should be either "csd" or "coh".')
if info is not None:
info_ch_names = info['ch_names']
sel_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=[])
sel_mag = pick_types(info, meg='mag', eeg=False, ref_meg=False,
exclude=[])
sel_grad = pick_types(info, meg='grad', eeg=False, ref_meg=False,
exclude=[])
idx_eeg = [csd.ch_names.index(info_ch_names[c])
for c in sel_eeg if info_ch_names[c] in csd.ch_names]
idx_mag = [csd.ch_names.index(info_ch_names[c])
for c in sel_mag if info_ch_names[c] in csd.ch_names]
idx_grad = [csd.ch_names.index(info_ch_names[c])
for c in sel_grad if info_ch_names[c] in csd.ch_names]
indices = [idx_eeg, idx_mag, idx_grad]
titles = ['EEG', 'Magnetometers', 'Gradiometers']
if mode == 'csd':
# The units in which to plot the CSD
units = dict(eeg='µV²', grad='fT²/cm²', mag='fT²')
scalings = dict(eeg=1e12, grad=1e26, mag=1e30)
else:
indices = [np.arange(len(csd.ch_names))]
if mode == 'csd':
titles = ['Cross-spectral density']
# Units and scaling unknown
units = dict()
scalings = dict()
elif mode == 'coh':
titles = ['Coherence']
n_freqs = len(csd.frequencies)
if n_cols is None:
n_cols = int(np.ceil(np.sqrt(n_freqs)))
n_rows = int(np.ceil(n_freqs / float(n_cols)))
figs = []
for ind, title, ch_type in zip(indices, titles, ['eeg', 'mag', 'grad']):
if len(ind) == 0:
continue
fig, axes = plt.subplots(n_rows, n_cols, squeeze=False,
figsize=(2 * n_cols + 1, 2.2 * n_rows))
csd_mats = []
for i in range(len(csd.frequencies)):
cm = csd.get_data(index=i)[ind][:, ind]
if mode == 'csd':
cm = np.abs(cm) * scalings.get(ch_type, 1)
elif mode == 'coh':
# Compute coherence from the CSD matrix
psd = np.diag(cm).real
cm = np.abs(cm) ** 2 / psd[np.newaxis, :] / psd[:, np.newaxis]
csd_mats.append(cm)
vmax = np.max(csd_mats)
for i, (freq, mat) in enumerate(zip(csd.frequencies, csd_mats)):
ax = axes[i // n_cols][i % n_cols]
im = ax.imshow(mat, interpolation='nearest', cmap=cmap, vmin=0,
vmax=vmax)
ax.set_xticks([])
ax.set_yticks([])
if csd._is_sum:
ax.set_title('%.1f-%.1f Hz.' % (np.min(freq),
np.max(freq)))
else:
ax.set_title('%.1f Hz.' % freq)
plt.suptitle(title)
plt.subplots_adjust(top=0.8)
if colorbar:
cb = plt.colorbar(im, ax=[a for ax_ in axes for a in ax_])
if mode == 'csd':
label = u'CSD'
if ch_type in units:
label += u' (%s)' % units[ch_type]
cb.set_label(label)
elif mode == 'coh':
cb.set_label('Coherence')
figs.append(fig)
plt_show(show)
return figs
def plot_chpi_snr(snr_dict, axes=None):
"""Plot time-varying SNR estimates of the HPI coils.
Parameters
----------
snr_dict : dict
The dictionary returned by `~mne.chpi.compute_chpi_snr`. Must have keys
``times``, ``freqs``, ``TYPE_snr``, ``TYPE_power``, and ``TYPE_resid``
(where ``TYPE`` can be ``mag`` or ``grad`` or both).
axes : None | list of matplotlib.axes.Axes
Figure axes in which to draw the SNR, power, and residual plots. The
number of axes should be 3× the number of MEG sensor types present in
``snr_dict``. If ``None`` (the default), a new
`~matplotlib.figure.Figure` is created with the required number of
axes.
Returns
-------
fig : instance of matplotlib.figure.Figure
A figure with subplots for SNR, power, and residual variance,
separately for magnetometers and/or gradiometers (depending on what is
present in ``snr_dict``).
Notes
-----
If you supply a list of existing `~matplotlib.axes.Axes`, then the figure
legend will not be drawn automatically. If you still want it, running
``fig.legend(loc='right', title='cHPI frequencies')`` will recreate it,
though you may also need to manually adjust the margin to make room for it
(e.g., using ``fig.subplots_adjust(right=0.8)``).
.. versionadded:: 0.24
"""
import matplotlib.pyplot as plt
valid_keys = list(snr_dict)[2:]
titles = dict(snr='SNR', power='cHPI power', resid='Residual variance')
full_names = dict(mag='magnetometers', grad='gradiometers')
axes_was_none = axes is None
if axes_was_none:
fig, axes = plt.subplots(len(valid_keys), 1, sharex=True)
else:
fig = axes[0].get_figure()
if len(axes) != len(valid_keys):
raise ValueError(f'axes must be a list of {len(valid_keys)} axes, got '
f'length {len(axes)} ({axes}).')
fig.set_size_inches(10, 10)
legend_labels_exist = False
for key, ax in zip(valid_keys, axes):
ch_type, kind = key.split('_')
scaling = 1 if kind == 'snr' else DEFAULTS['scalings'][ch_type]
plot_kwargs = dict(color='k') if kind == 'resid' else dict()
lines = ax.plot(snr_dict['times'], snr_dict[key] * scaling ** 2,
**plot_kwargs)
# the freqs should be the same for all sensor types (and for SNR and
# power subplots), so we only need to label the lines on one axes
# (otherwise we get duplicate legend entries).
if not legend_labels_exist:
for line, freq in zip(lines, snr_dict['freqs']):
line.set_label(f'{freq} Hz')
legend_labels_exist = True
unit = DEFAULTS['units'][ch_type]
unit = f'({unit})' if '/' in unit else unit
set_kwargs = dict(title=f'{titles[kind]}, {full_names[ch_type]}',
ylabel='dB' if kind == 'snr' else f'{unit}²')
if not axes_was_none:
set_kwargs.update(xlabel='Time (s)')
ax.set(**set_kwargs)
if axes_was_none:
ax.set(xlabel='Time (s)')
fig.align_ylabels()
fig.subplots_adjust(left=0.1, right=0.825, bottom=0.075, top=0.95,
hspace=0.7)
fig.legend(loc='right', title='cHPI frequencies')
return fig
|