File: test_3d.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (872 lines) | stat: -rw-r--r-- 37,708 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#          Mark Wronkiewicz <wronk.mark@gmail.com>
#
# License: Simplified BSD

import os.path as op
from pathlib import Path

import numpy as np
from numpy.testing import assert_array_equal, assert_allclose
import pytest
import matplotlib.pyplot as plt
from matplotlib.colors import Colormap
from matplotlib.figure import Figure

from mne import (make_field_map, pick_channels_evoked, read_evokeds,
                 read_trans, read_dipole, SourceEstimate,
                 make_sphere_model, use_coil_def, pick_types,
                 setup_volume_source_space, read_forward_solution,
                 convert_forward_solution, MixedSourceEstimate)
from mne.source_estimate import _BaseVolSourceEstimate
from mne.io import (read_raw_ctf, read_raw_bti, read_raw_kit, read_info,
                    read_raw_nirx)
from mne.io._digitization import write_dig
from mne.io.pick import pick_info
from mne.io.constants import FIFF
from mne.minimum_norm import apply_inverse
from mne.viz import (plot_sparse_source_estimates, plot_source_estimates,
                     snapshot_brain_montage, plot_head_positions,
                     plot_alignment, Figure3D,
                     plot_brain_colorbar, link_brains, mne_analyze_colormap)
from mne.viz._3d import _process_clim, _linearize_map, _get_map_ticks
from mne.viz.utils import _fake_click, _fake_keypress, _fake_scroll, _get_cmap
from mne.utils import requires_nibabel, catch_logging, _record_warnings
from mne.datasets import testing
from mne.source_space import read_source_spaces
from mne.transforms import Transform
from mne.bem import read_bem_solution, read_bem_surfaces


data_dir = testing.data_path(download=False)
subjects_dir = op.join(data_dir, 'subjects')
trans_fname = op.join(data_dir, 'MEG', 'sample',
                      'sample_audvis_trunc-trans.fif')
src_fname = op.join(data_dir, 'subjects', 'sample', 'bem',
                    'sample-oct-6-src.fif')
dip_fname = op.join(data_dir, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip')
ctf_fname = op.join(data_dir, 'CTF', 'testdata_ctf.ds')
nirx_fname = op.join(data_dir, 'NIRx', 'nirscout',
                     'nirx_15_2_recording_w_short')

io_dir = op.join(op.abspath(op.dirname(__file__)), '..', '..', 'io')
base_dir = op.join(io_dir, 'tests', 'data')
evoked_fname = op.join(base_dir, 'test-ave.fif')

fwd_fname = op.join(data_dir, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-vol-7-fwd.fif')
fwd_fname2 = op.join(data_dir, 'MEG', 'sample',
                     'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')

base_dir = op.join(io_dir, 'bti', 'tests', 'data')
pdf_fname = op.join(base_dir, 'test_pdf_linux')
config_fname = op.join(base_dir, 'test_config_linux')
hs_fname = op.join(base_dir, 'test_hs_linux')
sqd_fname = op.join(io_dir, 'kit', 'tests', 'data', 'test.sqd')

coil_3d = """# custom cube coil def
1   9999    1   8  3e-03  0.000e+00     "QuSpin ZFOPM 3mm cube"
  0.1250 -0.750e-03 -0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250 -0.750e-03  0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03 -0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03  0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250 -0.750e-03 -0.750e-03  0.750e-03  0.000  0.000  1.000
  0.1250 -0.750e-03  0.750e-03  0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03 -0.750e-03  0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03  0.750e-03  0.750e-03  0.000  0.000  1.000
1   9998    1   4  3e-03  0.000e+00     "3mm square"
  0.1250 -0.750e-03 -0.750e-03 0.000  0.000  0.000  1.000
  0.1250 -0.750e-03  0.750e-03 0.000  0.000  0.000  1.000
  0.1250  0.750e-03 -0.750e-03 0.000  0.000  0.000  1.000
  0.1250  0.750e-03  0.750e-03 0.000  0.000  0.000  1.000
"""


def test_plot_head_positions():
    """Test plotting of head positions."""
    info = read_info(evoked_fname)
    pos = np.random.RandomState(0).randn(4, 10)
    pos[:, 0] = np.arange(len(pos))
    destination = (0., 0., 0.04)
    with _record_warnings():  # old MPL will cause a warning
        plot_head_positions(pos)
        plot_head_positions(pos, mode='field', info=info,
                            destination=destination)
        plot_head_positions([pos, pos])  # list support
        pytest.raises(ValueError, plot_head_positions, ['pos'])
        pytest.raises(ValueError, plot_head_positions, pos[:, :9])
    pytest.raises(ValueError, plot_head_positions, pos, 'foo')
    with pytest.raises(ValueError, match='shape'):
        plot_head_positions(pos, axes=1.)


@testing.requires_testing_data
@pytest.mark.slowtest
def test_plot_sparse_source_estimates(renderer_interactive, brain_gc):
    """Test plotting of (sparse) source estimates."""
    sample_src = read_source_spaces(src_fname)

    # dense version
    vertices = [s['vertno'] for s in sample_src]
    n_time = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.zeros((n_verts * n_time))
    stc_size = stc_data.size
    stc_data[(np.random.rand(stc_size // 20) * stc_size).astype(int)] = \
        np.random.RandomState(0).rand(stc_data.size // 20)
    stc_data.shape = (n_verts, n_time)
    stc = SourceEstimate(stc_data, vertices, 1, 1)

    colormap = 'mne_analyze'
    brain = plot_source_estimates(
        stc, 'sample', colormap=colormap, background=(1, 1, 0),
        subjects_dir=subjects_dir, colorbar=True, clim='auto')
    brain.close()
    del brain
    with pytest.raises(TypeError, match='figure must be'):
        plot_source_estimates(
            stc, 'sample', figure='foo', hemi='both', clim='auto',
            subjects_dir=subjects_dir)

    # now do sparse version
    vertices = sample_src[0]['vertno']
    inds = [111, 333]
    stc_data = np.zeros((len(inds), n_time))
    stc_data[0, 1] = 1.
    stc_data[1, 4] = 2.
    vertices = [vertices[inds], np.empty(0, dtype=np.int64)]
    stc = SourceEstimate(stc_data, vertices, 1, 1)
    out = plot_sparse_source_estimates(
        sample_src, stc, bgcolor=(1, 1, 1), opacity=0.5,
        high_resolution=False)
    assert isinstance(out, Figure3D)


@testing.requires_testing_data
@pytest.mark.slowtest
def test_plot_evoked_field(renderer):
    """Test plotting evoked field."""
    evoked = read_evokeds(evoked_fname, condition='Left Auditory',
                          baseline=(-0.2, 0.0))
    evoked = pick_channels_evoked(evoked, evoked.ch_names[::10])  # speed
    for t, n_contours in zip(['meg', None], [21, 0]):
        with pytest.warns(RuntimeWarning, match='projection'):
            maps = make_field_map(evoked, trans_fname, subject='sample',
                                  subjects_dir=subjects_dir, n_jobs=None,
                                  ch_type=t)
        evoked.plot_field(maps, time=0.1, n_contours=n_contours)


def _assert_n_actors(fig, renderer, n_actors):
    __tracebackhide__ = True
    assert isinstance(fig, Figure3D)
    assert len(fig.plotter.renderer.actors) == n_actors


@pytest.mark.slowtest  # Slow on Azure
@testing.requires_testing_data  # all use trans + head surf
@pytest.mark.parametrize('system', [
    'Neuromag',
    'CTF',
    'BTi',
    'KIT',
])
def test_plot_alignment_meg(renderer, system):
    """Test plotting of MEG sensors + helmet."""
    if system == 'Neuromag':
        this_info = read_info(evoked_fname)
    elif system == 'CTF':
        this_info = read_raw_ctf(ctf_fname).info
    elif system == 'BTi':
        this_info = read_raw_bti(
            pdf_fname, config_fname, hs_fname, convert=True,
            preload=False).info
    else:
        assert system == 'KIT'
        this_info = read_raw_kit(sqd_fname).info

    meg = ['helmet', 'sensors']
    if system == 'KIT':
        meg.append('ref')
    fig = plot_alignment(
        this_info, read_trans(trans_fname), subject='sample',
        subjects_dir=subjects_dir, meg=meg, eeg=False)
    assert isinstance(fig, Figure3D)
    # count the number of objects: should be n_meg_ch + 1 (helmet) + 1 (head)
    use_info = pick_info(this_info, pick_types(
        this_info, meg=True, eeg=False, ref_meg='ref' in meg, exclude=()))
    n_actors = use_info['nchan'] + 2
    _assert_n_actors(fig, renderer, n_actors)


@testing.requires_testing_data
def test_plot_alignment_surf(renderer):
    """Test plotting of a surface."""
    info = read_info(evoked_fname)
    fig = plot_alignment(
        info, read_trans(trans_fname), subject='sample',
        subjects_dir=subjects_dir, meg=False, eeg=False, dig=False,
        surfaces=['white', 'head'])
    _assert_n_actors(fig, renderer, 3)  # left and right hemis plus head


@pytest.mark.slowtest  # can be slow on OSX
@testing.requires_testing_data
def test_plot_alignment_basic(tmp_path, renderer, mixed_fwd_cov_evoked):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmp_path)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{'coord_frame': 5, 'ident': 1, 'kind': 1,
            'r': [-0.08061612, -0.02908875, -0.04131077]},
           {'coord_frame': 5, 'ident': 2, 'kind': 1,
            'r': [0.00146763, 0.08506715, -0.03483611]},
           {'coord_frame': 5, 'ident': 3, 'kind': 1,
            'r': [0.08436285, -0.02850276, -0.04127743]}]
    write_dig(fiducials_path, fid, 5)
    evoked = read_evokeds(evoked_fname)[0]
    info = evoked.info

    sample_src = read_source_spaces(src_fname)
    pytest.raises(TypeError, plot_alignment, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    pytest.raises(OSError, plot_alignment, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir, src='foo')
    pytest.raises(ValueError, plot_alignment, info, trans_fname,
                  subject='fsaverage', subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True,
                    brain='white')
    # mixed source space
    mixed_src = mixed_fwd_cov_evoked[0]['src']
    assert mixed_src.kind == 'mixed'
    fig = plot_alignment(
        info, meg=['helmet', 'sensors'], dig=True,
        coord_frame='head', trans=Path(trans_fname),
        subject='sample', mri_fiducials=fiducials_path,
        subjects_dir=subjects_dir, src=mixed_src)
    assert isinstance(fig, Figure3D)
    renderer.backend._close_all()
    # no-head version
    renderer.backend._close_all()
    # trans required
    with pytest.raises(ValueError, match='transformation matrix.*in head'):
        plot_alignment(info, trans=None, src=src_fname)
    with pytest.raises(ValueError, match='transformation matrix.*in head'):
        plot_alignment(info, trans=None, mri_fiducials=True)
    with pytest.raises(ValueError, match='transformation matrix.*in head'):
        plot_alignment(info, trans=None, surfaces=['brain'])
    assert mixed_src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
    with pytest.raises(ValueError, match='head-coordinate source space in mr'):
        plot_alignment(trans=None, src=mixed_src, coord_frame='mri')
    # all coord frames
    plot_alignment(info)  # works: surfaces='auto' default
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(
            info, meg=['helmet', 'sensors'], dig=True, coord_frame=coord_frame,
            trans=Path(trans_fname), subject='sample', src=src_fname,
            mri_fiducials=fiducials_path, subjects_dir=subjects_dir)
    renderer.backend._close_all()
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    with evoked_eeg_ecog_seeg.info._unlock():
        evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({'EEG 001': 'ecog',
                                            'EEG 002': 'seeg'})
    with catch_logging() as log:
        plot_alignment(evoked_eeg_ecog_seeg.info, subject='sample',
                       trans=trans_fname, subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'], ecog=True, seeg=True,
                       verbose=True)
    log = log.getvalue()
    assert 'ecog: 1' in log
    assert 'seeg: 1' in log
    renderer.backend._close_all()

    sphere = make_sphere_model(info=info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(op.join(subjects_dir, 'sample', 'bem',
                                        'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(op.join(subjects_dir, 'sample', 'bem',
                                          'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(info, trans_fname, subject='sample',
                   eeg='projected', meg='helmet', bem=sphere, dig=True,
                   surfaces=['brain', 'inner_skull', 'outer_skull',
                             'outer_skin'])
    plot_alignment(info, trans_fname, subject='sample', meg='helmet',
                   subjects_dir=subjects_dir, eeg='projected', bem=sphere,
                   surfaces=['head', 'brain'], src=sample_src)
    # no trans okay, no mri surfaces
    plot_alignment(info, bem=sphere, surfaces=['brain'])
    with pytest.raises(ValueError, match='A head surface is required'):
        plot_alignment(info, trans=trans_fname, subject='sample',
                       subjects_dir=subjects_dir, eeg='projected',
                       surfaces=[])
    with pytest.raises(RuntimeError, match='No brain surface found'):
        plot_alignment(info, trans=trans_fname, subject='foo',
                       subjects_dir=subjects_dir, surfaces=['brain'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample', meg=[],
                   subjects_dir=subjects_dir, bem=bem_sol, eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample',
                   meg=True, subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'], bem=bem_surfs)
    # single-layer BEM can still plot head surface
    assert bem_surfs[-1]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
    bem_sol_homog = read_bem_solution(op.join(subjects_dir, 'sample', 'bem',
                                              'sample-1280-bem-sol.fif'))
    for use_bem in (bem_surfs[-1:], bem_sol_homog):
        with catch_logging() as log:
            plot_alignment(info, trans_fname, subject='sample',
                           meg=True, subjects_dir=subjects_dir,
                           surfaces=['head', 'inner_skull'], bem=use_bem,
                           verbose=True)
        log = log.getvalue()
        assert 'not find the surface for head in the provided BEM model' in log
    # sphere model
    sphere = make_sphere_model('auto', 'auto', info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(
        info, trans=Transform('head', 'mri'), eeg='projected',
        meg='helmet', bem=sphere, src=src, dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, info)  # one layer
    # if you ask for a brain surface with a 1-layer sphere model it's an error
    with pytest.raises(RuntimeError, match='Sphere model does not have'):
        plot_alignment(
            trans=trans_fname, subject='sample', subjects_dir=subjects_dir,
            surfaces=['brain'], bem=sphere)
    # but you can ask for a specific brain surface, and
    # no info is permitted
    plot_alignment(
        trans=trans_fname, subject='sample', meg=False, coord_frame='mri',
        subjects_dir=subjects_dir, surfaces=['white'], bem=sphere,
        show_axes=True)
    renderer.backend._close_all()
    # TODO: We need to make this class public and document it properly
    # assert isinstance(fig, some_public_class)
    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, np.arange(6))
    with info._unlock():
        info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    info_cube['chs'][1]['coil_type'] = 9998
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    # make sure our other OPMs can be plotted, too
    for ii, kind in enumerate(('QUSPIN_ZFOPM_MAG', 'QUSPIN_ZFOPM_MAG2',
                               'FIELDLINE_OPM_MAG_GEN1',
                               'KERNEL_OPM_MAG_GEN1'), 2):
        info_cube['chs'][ii]['coil_type'] = getattr(
            FIFF, f'FIFFV_COIL_{kind}')
    with use_coil_def(coil_def_fname):
        with catch_logging() as log:
            plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True,
                           verbose='debug')
    log = log.getvalue()
    assert 'planar geometry' in log

    # one layer bem with skull surfaces:
    with pytest.raises(RuntimeError, match='Sphere model does not.*boundary'):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir,
                       surfaces=['brain', 'head', 'inner_skull'], bem=sphere)
    # wrong eeg value:
    with pytest.raises(ValueError, match='Invalid value for the .eeg'):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir, eeg='foo')
    # wrong meg value:
    with pytest.raises(ValueError, match='Invalid value for the .meg'):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir, meg='bar')
    # multiple brain surfaces:
    with pytest.raises(ValueError, match='Only one brain surface can be plot'):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir,
                       surfaces=['white', 'pial'])
    with pytest.raises(TypeError, match='surfaces.*must be'):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir,
                       surfaces=[1])
    with pytest.raises(ValueError, match='Unknown surface type'):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir,
                       surfaces=['foo'])
    with pytest.raises(TypeError, match="must be an instance of "):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir,
                       surfaces=dict(brain='super clear'))
    with pytest.raises(ValueError, match="must be between 0 and 1"):
        plot_alignment(info=info, trans=trans_fname,
                       subject='sample', subjects_dir=subjects_dir,
                       surfaces=dict(brain=42))
    fwd_fname = op.join(data_dir, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
    fwd = read_forward_solution(fwd_fname)
    plot_alignment(subject='sample', subjects_dir=subjects_dir,
                   trans=trans_fname, fwd=fwd,
                   surfaces='white', coord_frame='head')
    fwd = convert_forward_solution(fwd, force_fixed=True)
    plot_alignment(subject='sample', subjects_dir=subjects_dir,
                   trans=trans_fname, fwd=fwd,
                   surfaces='white', coord_frame='head')
    fwd['coord_frame'] = FIFF.FIFFV_COORD_MRI  # check required to get to MRI
    with pytest.raises(ValueError, match='transformation matrix.*in head coo'):
        plot_alignment(info, trans=None, fwd=fwd)
    # surfaces as dict
    plot_alignment(subject='sample', coord_frame='head',
                   trans=trans_fname, subjects_dir=subjects_dir,
                   surfaces={'white': 0.4, 'outer_skull': 0.6, 'head': None})


@testing.requires_testing_data
def test_plot_alignment_fnirs(renderer, tmp_path):
    """Test fNIRS plotting."""
    # Here we use subjects_dir=tmp_path, since no surfaces should actually
    # be loaded!

    # fNIRS (default is pairs)
    info = read_raw_nirx(nirx_fname).info
    assert info['nchan'] == 26
    kwargs = dict(trans='fsaverage', subject='fsaverage', surfaces=(),
                  verbose=True, subjects_dir=tmp_path)
    with catch_logging() as log:
        fig = plot_alignment(info, **kwargs)
    log = log.getvalue()
    assert f'fnirs_cw_amplitude: {info["nchan"]}' in log
    _assert_n_actors(fig, renderer, info['nchan'])

    fig = plot_alignment(
        info, fnirs=['channels', 'sources', 'detectors'], **kwargs)
    _assert_n_actors(fig, renderer, 3)


@pytest.mark.slowtest  # can be slow on OSX
@testing.requires_testing_data
def test_process_clim_plot(renderer_interactive, brain_gc):
    """Test functionality for determining control points with stc.plot."""
    sample_src = read_source_spaces(src_fname)
    kwargs = dict(subjects_dir=subjects_dir, smoothing_steps=1,
                  time_viewer=False, show_traces=False)

    vertices = [s['vertno'] for s in sample_src]
    n_time = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.random.RandomState(0).rand((n_verts * n_time))
    stc_data.shape = (n_verts, n_time)
    stc = SourceEstimate(stc_data, vertices, 1, 1, 'sample')

    # Test for simple use cases
    brain = stc.plot(**kwargs)
    assert brain.data['center'] is None
    brain.close()
    brain = stc.plot(clim=dict(pos_lims=(10, 50, 90)), **kwargs)
    assert brain.data['center'] == 0.
    brain.close()
    brain = stc.plot(colormap='hot', clim='auto', **kwargs)
    brain.close()
    brain = stc.plot(colormap='mne', clim='auto', **kwargs)
    brain.close()
    brain = stc.plot(clim=dict(kind='value', lims=(10, 50, 90)), figure=99,
                     **kwargs)
    brain.close()
    with pytest.raises(TypeError, match='must be a'):
        stc.plot(clim='auto', figure=[0], **kwargs)

    # Test for correct clim values
    with pytest.raises(ValueError, match='monotonically'):
        stc.plot(clim=dict(kind='value', pos_lims=[0, 1, 0]), **kwargs)
    with pytest.raises(ValueError, match=r'.*must be \(3,\)'):
        stc.plot(colormap='mne', clim=dict(pos_lims=(5, 10, 15, 20)), **kwargs)
    with pytest.raises(ValueError, match="'value', 'values', and 'percent'"):
        stc.plot(clim=dict(pos_lims=(5, 10, 15), kind='foo'), **kwargs)
    with pytest.raises(ValueError, match='must be "auto" or dict'):
        stc.plot(colormap='mne', clim='foo', **kwargs)
    with pytest.raises(TypeError, match='must be an instance of'):
        plot_source_estimates('foo', clim='auto', **kwargs)
    with pytest.raises(ValueError, match='hemi'):
        stc.plot(hemi='foo', clim='auto', **kwargs)
    with pytest.raises(ValueError, match='Exactly one'):
        stc.plot(clim=dict(lims=[0, 1, 2], pos_lims=[0, 1, 2], kind='value'),
                 **kwargs)

    # Test handling of degenerate data: thresholded maps
    stc._data.fill(0.)
    with pytest.warns(RuntimeWarning, match='All data were zero'):
        brain = plot_source_estimates(stc, **kwargs)
    brain.close()


def _assert_mapdata_equal(a, b):
    __tracebackhide__ = True
    assert set(a.keys()) == {'clim', 'colormap', 'transparent'}
    assert a.keys() == b.keys()
    assert a['transparent'] == b['transparent'], 'transparent'
    aa, bb = a['clim'], b['clim']
    assert aa.keys() == bb.keys(), 'clim keys'
    assert aa['kind'] == bb['kind'] == 'value'
    key = 'pos_lims' if 'pos_lims' in aa else 'lims'
    assert_array_equal(aa[key], bb[key], err_msg=key)
    assert isinstance(a['colormap'], Colormap), 'Colormap'
    assert isinstance(b['colormap'], Colormap), 'Colormap'
    assert a['colormap'].name == b['colormap'].name


def test_process_clim_round_trip():
    """Test basic input-output support."""
    # With some negative data
    out = _process_clim('auto', 'auto', True, -1.)
    want = dict(
        colormap=mne_analyze_colormap([0, 0.5, 1], 'matplotlib'),
        clim=dict(kind='value', pos_lims=[1, 1, 1]),
        transparent=True,)
    _assert_mapdata_equal(out, want)
    out2 = _process_clim(**out)
    _assert_mapdata_equal(out, out2)
    _linearize_map(out)  # smoke test
    ticks = _get_map_ticks(out)
    assert_allclose(ticks, [-1, 0, 1])

    # With some positive data
    out = _process_clim('auto', 'auto', True, 1.)
    want = dict(
        colormap=_get_cmap('hot'),
        clim=dict(kind='value', lims=[1, 1, 1]),
        transparent=True,)
    _assert_mapdata_equal(out, want)
    out2 = _process_clim(**out)
    _assert_mapdata_equal(out, out2)
    _linearize_map(out)
    ticks = _get_map_ticks(out)
    assert_allclose(ticks, [1])

    # With some actual inputs
    clim = dict(kind='value', pos_lims=[0, 0.5, 1])
    out = _process_clim(clim, 'auto', True)
    want = dict(
        colormap=mne_analyze_colormap([0, 0.5, 1], 'matplotlib'),
        clim=clim, transparent=True)
    _assert_mapdata_equal(out, want)
    _linearize_map(out)
    ticks = _get_map_ticks(out)
    assert_allclose(ticks, [-1, -0.5, 0, 0.5, 1])

    clim = dict(kind='value', pos_lims=[0.25, 0.5, 1])
    out = _process_clim(clim, 'auto', True)
    want = dict(
        colormap=mne_analyze_colormap([0, 0.5, 1], 'matplotlib'),
        clim=clim, transparent=True)
    _assert_mapdata_equal(out, want)
    _linearize_map(out)
    ticks = _get_map_ticks(out)
    assert_allclose(ticks, [-1, -0.5, -0.25, 0, 0.25, 0.5, 1])


@testing.requires_testing_data
@requires_nibabel()
def test_stc_mpl():
    """Test plotting source estimates with matplotlib."""
    sample_src = read_source_spaces(src_fname)

    vertices = [s['vertno'] for s in sample_src]
    n_time = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.ones((n_verts * n_time))
    stc_data.shape = (n_verts, n_time)
    stc = SourceEstimate(stc_data, vertices, 1, 1, 'sample')
    stc.plot(subjects_dir=subjects_dir, time_unit='s', views='ven',
             hemi='rh', smoothing_steps=7, subject='sample',
             backend='matplotlib', spacing='oct1', initial_time=0.001,
             colormap='Reds')
    fig = stc.plot(subjects_dir=subjects_dir, time_unit='ms', views='dor',
                   hemi='lh', smoothing_steps=7, subject='sample',
                   backend='matplotlib', spacing='ico2', time_viewer=True,
                   colormap='mne')
    time_viewer = fig.time_viewer
    _fake_click(time_viewer, time_viewer.axes[0], (0.5, 0.5))  # change t
    _fake_keypress(time_viewer, 'ctrl+right')
    _fake_keypress(time_viewer, 'left')
    pytest.raises(ValueError, stc.plot, subjects_dir=subjects_dir,
                  hemi='both', subject='sample', backend='matplotlib')
    pytest.raises(ValueError, stc.plot, subjects_dir=subjects_dir,
                  time_unit='ss', subject='sample', backend='matplotlib')


@pytest.mark.slowtest
@pytest.mark.timeout(60)  # can sometimes take > 60 sec
@testing.requires_testing_data
@requires_nibabel()
@pytest.mark.parametrize('coord_frame, idx, show_all, title',
                         [('head', 'gof', True, 'Test'),
                          ('mri', 'amplitude', False, None)])
def test_plot_dipole_mri_orthoview(coord_frame, idx, show_all, title):
    """Test mpl dipole plotting."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    fig = dipoles.plot_locations(trans=trans, subject='sample',
                                 subjects_dir=subjects_dir,
                                 coord_frame=coord_frame, idx=idx,
                                 show_all=show_all, title=title,
                                 mode='orthoview')
    _fake_scroll(fig, 0.5, 0.5, 1)  # scroll up
    _fake_scroll(fig, 0.5, 0.5, -1)  # scroll down
    _fake_keypress(fig, 'up')
    _fake_keypress(fig, 'down')
    _fake_keypress(fig, 'a')  # some other key
    ax = fig.add_subplot(211)
    with pytest.raises(TypeError, match='instance of Axes3D'):
        dipoles.plot_locations(trans, 'sample', subjects_dir, ax=ax)


@testing.requires_testing_data
@pytest.mark.parametrize('surf, coord_frame, ax, title', [
    pytest.param('white', 'mri', None, None, marks=pytest.mark.slowtest),
    pytest.param(None, 'head', None, None, marks=pytest.mark.slowtest),
    (None, 'mri_rotated', 'mpl', 'check'),
])
def test_plot_dipole_mri_outlines(surf, coord_frame, ax, title):
    """Test mpl dipole plotting."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    if ax is not None:
        assert isinstance(ax, str) and ax == 'mpl', ax
        _, ax = plt.subplots(3, 1)
        ax = list(ax)
        with pytest.raises(ValueError, match='but the length is 2'):
            dipoles.plot_locations(
                trans, 'sample', subjects_dir, ax=ax[:2], mode='outlines')
    fig = dipoles.plot_locations(
        trans=trans, subject='sample', subjects_dir=subjects_dir,
        mode='outlines', coord_frame=coord_frame, surf=surf, ax=ax,
        title=title)
    assert isinstance(fig, Figure)


@testing.requires_testing_data
def test_plot_dipole_orientations(renderer):
    """Test dipole plotting in 3d."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    for coord_frame, mode in zip(['head', 'mri'],
                                 ['arrow', 'sphere']):
        fig = dipoles.plot_locations(
            trans=trans, subject='sample', subjects_dir=subjects_dir,
            mode=mode, coord_frame=coord_frame)
        assert isinstance(fig, Figure3D)
    renderer.backend._close_all()


@pytest.mark.slowtest  # slow on Azure
@testing.requires_testing_data
def test_snapshot_brain_montage(renderer):
    """Test snapshot brain montage."""
    info = read_info(evoked_fname)
    fig = plot_alignment(
        info, trans=Transform('head', 'mri'), subject='sample',
        subjects_dir=subjects_dir)

    xyz = np.vstack([ich['loc'][:3] for ich in info['chs']])
    ch_names = [ich['ch_name'] for ich in info['chs']]
    xyz_dict = dict(zip(ch_names, xyz))
    xyz_dict[info['chs'][0]['ch_name']] = [1, 2]  # Set one ch to only 2 vals

    # Make sure wrong types are checked
    pytest.raises(TypeError, snapshot_brain_montage, fig, xyz)

    # All chs must have 3 position values
    pytest.raises(ValueError, snapshot_brain_montage, fig, xyz_dict)

    # Make sure we raise error if the figure has no scene
    pytest.raises(ValueError, snapshot_brain_montage, None, info)


@pytest.mark.slowtest  # can be slow on OSX
@testing.requires_testing_data
@pytest.mark.parametrize('pick_ori', ('vector', None))
@pytest.mark.parametrize('kind', ('surface', 'volume', 'mixed'))
def test_plot_source_estimates(renderer_interactive, all_src_types_inv_evoked,
                               pick_ori, kind, brain_gc):
    """Test plotting of scalar and vector source estimates."""
    backend = renderer_interactive._get_3d_backend()
    invs, evoked = all_src_types_inv_evoked
    inv = invs[kind]
    with _record_warnings():  # PCA mag
        stc = apply_inverse(evoked, inv, pick_ori=pick_ori)
    stc.data[1] *= -1  # make it signed
    meth_key = 'plot_3d' if isinstance(stc, _BaseVolSourceEstimate) else 'plot'
    stc.subject = 'sample'
    meth = getattr(stc, meth_key)
    kwargs = dict(subjects_dir=subjects_dir,
                  time_viewer=False, show_traces=False,  # for speed
                  smoothing_steps=1, verbose='error', src=inv['src'],
                  volume_options=dict(resolution=None),  # for speed
                  )
    if pick_ori != 'vector':
        kwargs['surface'] = 'white'
        kwargs['backend'] = backend
    brain = meth(**kwargs)
    brain.close()
    del brain

    these_kwargs = kwargs.copy()
    these_kwargs['show_traces'] = 'foo'
    with pytest.raises(ValueError, match='show_traces'):
        meth(**these_kwargs)
    del these_kwargs
    if pick_ori == 'vector':
        with pytest.raises(ValueError, match='use "pos_lims"'):
            meth(**kwargs, clim=dict(pos_lims=[1, 2, 3]))
    if kind in ('volume', 'mixed'):
        with pytest.raises(TypeError, match='when stc is a mixed or vol'):
            these_kwargs = kwargs.copy()
            these_kwargs.pop('src')
            meth(**these_kwargs)

    with pytest.raises(ValueError, match='cannot be used'):
        these_kwargs = kwargs.copy()
        these_kwargs.update(show_traces=True, time_viewer=False)
        meth(**these_kwargs)

    # flatmaps (mostly a lot of error checking)
    these_kwargs = kwargs.copy()
    these_kwargs.update(surface='flat', views='auto', hemi='both',
                        verbose='debug')
    if kind == 'surface' and pick_ori != 'vector':
        with catch_logging() as log:
            with pytest.raises(FileNotFoundError, match='flatmap'):
                meth(**these_kwargs)  # sample does not have them
        log = log.getvalue()
        assert 'offset: 0' in log
    fs_stc = stc.copy()
    fs_stc.subject = 'fsaverage'  # this is wrong, but don't have to care
    flat_meth = getattr(fs_stc, meth_key)
    these_kwargs.pop('src')
    if pick_ori == 'vector':
        pass  # can't even pass "surface" variable
    elif kind != 'surface':
        with pytest.raises(TypeError, match='SourceEstimate when a flatmap'):
            flat_meth(**these_kwargs)
    else:
        brain = flat_meth(**these_kwargs)
        brain.close()
        del brain
        these_kwargs.update(surface='inflated', views='flat')
        with pytest.raises(ValueError, match='surface="flat".*views="flat"'):
            flat_meth(**these_kwargs)

    # just test one for speed
    if kind != 'mixed':
        return
    brain = meth(
        views=['lat', 'med', 'ven'], hemi='lh',
        view_layout='horizontal', **kwargs)
    brain.close()
    assert brain._subplot_shape == (1, 3)
    del brain
    these_kwargs = kwargs.copy()
    these_kwargs['volume_options'] = dict(blending='foo')
    with pytest.raises(ValueError, match='mip'):
        meth(**these_kwargs)
    these_kwargs['volume_options'] = dict(badkey='foo')
    with pytest.raises(ValueError, match='unknown'):
        meth(**these_kwargs)
    # with resampling (actually downsampling but it's okay)
    these_kwargs['volume_options'] = dict(resolution=20., surface_alpha=0.)
    brain = meth(**these_kwargs)
    brain.close()
    del brain


@pytest.mark.parametrize('orientation', ('horizontal', 'vertical'))
@pytest.mark.parametrize('diverging', (True, False))
@pytest.mark.parametrize('lims', ([0.5, 1, 10], [0, 1, 10]))
def test_brain_colorbar(orientation, diverging, lims):
    """Test brain colorbar plotting."""
    _, ax = plt.subplots()
    clim = dict(kind='value')
    if diverging:
        clim['pos_lims'] = lims
    else:
        clim['lims'] = lims
    cbar = plot_brain_colorbar(ax, clim, orientation=orientation)
    ax = cbar.ax  # in newer mpl this can be inset axes relative to the orig
    if orientation == 'vertical':
        have, empty = ax.get_yticklabels, ax.get_xticklabels
    else:
        have, empty = ax.get_xticklabels, ax.get_yticklabels
    if diverging:
        if lims[0] == 0:
            ticks = list(-np.array(lims[1:][::-1])) + lims
        else:
            ticks = list(-np.array(lims[::-1])) + [0] + lims
    else:
        ticks = lims
    ax.figure.canvas.draw_idle()
    assert_array_equal(
        [float(h.get_text().replace('−', '-')) for h in have()], ticks)
    assert_array_equal(empty(), [])


@pytest.mark.slowtest  # slow-ish on Travis OSX
@testing.requires_testing_data
def test_mixed_sources_plot_surface(renderer_interactive):
    """Test plot_surface() for mixed source space."""
    src = read_source_spaces(fwd_fname2)
    N = np.sum([s['nuse'] for s in src])  # number of sources

    T = 2  # number of time points
    S = 3  # number of source spaces

    rng = np.random.RandomState(0)
    data = rng.randn(N, T)
    vertno = S * [np.arange(N // S)]

    stc = MixedSourceEstimate(data, vertno, 0, 1)

    brain = stc.surface().plot(views='lat', hemi='split',
                               subject='fsaverage', subjects_dir=subjects_dir,
                               colorbar=False)
    brain.close()
    del brain


@testing.requires_testing_data
@pytest.mark.slowtest
def test_link_brains(renderer_interactive):
    """Test plotting linked brains."""
    sample_src = read_source_spaces(src_fname)
    vertices = [s['vertno'] for s in sample_src]
    n_time = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.zeros((n_verts * n_time))
    stc_size = stc_data.size
    stc_data[(np.random.rand(stc_size // 20) * stc_size).astype(int)] = \
        np.random.RandomState(0).rand(stc_data.size // 20)
    stc_data.shape = (n_verts, n_time)
    stc = SourceEstimate(stc_data, vertices, 1, 1)

    colormap = 'mne_analyze'
    brain = plot_source_estimates(
        stc, 'sample', colormap=colormap,
        background=(1, 1, 0),
        subjects_dir=subjects_dir, colorbar=True,
        clim='auto'
    )
    with pytest.raises(ValueError, match='is empty'):
        link_brains([])
    with pytest.raises(TypeError, match='type is Brain'):
        link_brains('foo')
    link_brains(brain, time=True, camera=True)