File: test_misc.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (287 lines) | stat: -rw-r--r-- 11,961 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Cathy Nangini <cnangini@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD

import os.path as op

import numpy as np
from numpy.testing import assert_array_equal
import pytest
import matplotlib.pyplot as plt

from mne import (read_events, read_cov, read_source_spaces, read_evokeds,
                 read_dipole, SourceEstimate, pick_events)
from mne.chpi import compute_chpi_snr
from mne.datasets import testing
from mne.filter import create_filter
from mne.io import read_raw_fif
from mne.minimum_norm import read_inverse_operator
from mne.viz import (plot_bem, plot_events, plot_source_spectrogram,
                     plot_snr_estimate, plot_filter, plot_csd, plot_chpi_snr)
from mne.viz.misc import _handle_event_colors
from mne.viz.utils import _get_color_list
from mne.utils import requires_nibabel
from mne.time_frequency import CrossSpectralDensity

data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
src_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
inv_fname = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif')
evoked_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
dip_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip')
chpi_fif_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.fif')
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
event_fname = op.join(base_dir, 'test-eve.fif')


def _get_raw():
    """Get raw data."""
    return read_raw_fif(raw_fname, preload=True)


def _get_events():
    """Get events."""
    return read_events(event_fname)


def test_plot_filter():
    """Test filter plotting."""
    l_freq, h_freq, sfreq = 2., 40., 1000.
    data = np.zeros(5000)
    freq = [0, 2, 40, 50, 500]
    gain = [0, 1, 1, 0, 0]
    h = create_filter(data, sfreq, l_freq, h_freq, fir_design='firwin2')
    plot_filter(h, sfreq)
    plt.close('all')
    plot_filter(h, sfreq, freq, gain)
    plt.close('all')
    iir = create_filter(data, sfreq, l_freq, h_freq, method='iir')
    plot_filter(iir, sfreq)
    plt.close('all')
    iir = create_filter(data, sfreq, l_freq, h_freq,
                        method='iir', iir_params={'output': 'ba'}
                        )
    plot_filter(iir, sfreq, compensate=True)
    plt.close('all')
    iir = create_filter(data, sfreq, l_freq, h_freq,
                        method='iir', iir_params={'output': 'sos'}
                        )
    plot_filter(iir, sfreq, compensate=True)
    plt.close('all')
    plot_filter(iir, sfreq, freq, gain)
    plt.close('all')
    iir_ba = create_filter(data, sfreq, l_freq, h_freq, method='iir',
                           iir_params=dict(output='ba'))
    plot_filter(iir_ba, sfreq, freq, gain)
    plt.close('all')
    fig = plot_filter(h, sfreq, freq, gain, fscale='linear')
    assert len(fig.axes) == 3
    plt.close('all')
    fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
                      plot=('time', 'delay'))
    assert len(fig.axes) == 2
    plt.close('all')
    fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
                      plot=['magnitude', 'delay'])
    assert len(fig.axes) == 2
    plt.close('all')
    fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
                      plot='magnitude')
    assert len(fig.axes) == 1
    plt.close('all')
    fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
                      plot=('magnitude'))
    assert len(fig.axes) == 1
    plt.close('all')
    with pytest.raises(ValueError, match='Invalid value for the .plot'):
        plot_filter(h, sfreq, freq, gain, plot=('turtles'))
    _, axes = plt.subplots(1)
    fig = plot_filter(h, sfreq, freq, gain, plot=('magnitude'), axes=axes)
    assert len(fig.axes) == 1
    _, axes = plt.subplots(2)
    fig = plot_filter(h, sfreq, freq, gain, plot=('magnitude', 'delay'),
                      axes=axes)
    assert len(fig.axes) == 2
    plt.close('all')
    _, axes = plt.subplots(1)
    with pytest.raises(ValueError, match='Length of axes'):
        plot_filter(h, sfreq, freq, gain,
                    plot=('magnitude', 'delay'), axes=axes)


def test_plot_cov():
    """Test plotting of covariances."""
    raw = _get_raw()
    cov = read_cov(cov_fname)
    with pytest.warns(RuntimeWarning, match='projection'):
        fig1, fig2 = cov.plot(raw.info, proj=True, exclude=raw.ch_names[6:])

    # test complex numbers
    cov['data'] = cov.data * (1 + 1j)
    fig1, fig2 = cov.plot(raw.info)


@testing.requires_testing_data
@requires_nibabel()
def test_plot_bem():
    """Test plotting of BEM contours."""
    with pytest.raises(IOError, match='MRI file .* not found'):
        plot_bem(subject='bad-subject', subjects_dir=subjects_dir)
    with pytest.raises(ValueError, match="Invalid value for the 'orientation"):
        plot_bem(subject='sample', subjects_dir=subjects_dir,
                 orientation='bad-ori')
    with pytest.raises(ValueError, match="sorted 1D array"):
        plot_bem(subject='sample', subjects_dir=subjects_dir, slices=[0, 500])
    fig = plot_bem(subject='sample', subjects_dir=subjects_dir,
                   orientation='sagittal', slices=[25, 50])
    assert len(fig.axes) == 2
    assert len(fig.axes[0].collections) == 3  # 3 BEM surfaces ...
    fig = plot_bem(subject='sample', subjects_dir=subjects_dir,
                   orientation='coronal', brain_surfaces='white')
    assert len(fig.axes[0].collections) == 5  # 3 BEM surfaces + 2 hemis
    fig = plot_bem(subject='sample', subjects_dir=subjects_dir,
                   orientation='coronal', slices=[25, 50], src=src_fname)
    assert len(fig.axes[0].collections) == 4  # 3 BEM surfaces + 1 src contour
    with pytest.raises(ValueError, match='MRI coordinates, got head'):
        plot_bem(subject='sample', subjects_dir=subjects_dir,
                 src=inv_fname)


def test_event_colors():
    """Test color assignment."""
    events = pick_events(_get_events(), include=[1, 2])
    unique_events = set(events[:, 2])
    # make sure defaults work
    colors = _handle_event_colors(None, unique_events, dict())
    default_colors = _get_color_list()
    assert colors[1] == default_colors[0]
    # make sure custom color overrides default
    colors = _handle_event_colors(color_dict=dict(foo='k', bar='#facade'),
                                  unique_events=unique_events,
                                  event_id=dict(foo=1, bar=2))
    assert colors[1] == 'k'
    assert colors[2] == '#facade'


def test_plot_events():
    """Test plotting events."""
    event_labels = {'aud_l': 1, 'aud_r': 2, 'vis_l': 3, 'vis_r': 4}
    color = {1: 'green', 2: 'yellow', 3: 'red', 4: 'c'}
    raw = _get_raw()
    events = _get_events()
    fig = plot_events(events, raw.info['sfreq'], raw.first_samp)
    assert fig.axes[0].get_legend() is not None  # legend even with no event_id
    plot_events(events, raw.info['sfreq'], raw.first_samp, equal_spacing=False)
    # Test plotting events without sfreq
    plot_events(events, first_samp=raw.first_samp)
    with pytest.warns(RuntimeWarning, match='will be ignored'):
        fig = plot_events(events, raw.info['sfreq'], raw.first_samp,
                          event_id=event_labels)
    assert fig.axes[0].get_legend() is not None
    with pytest.warns(RuntimeWarning, match='Color was not assigned'):
        plot_events(events, raw.info['sfreq'], raw.first_samp,
                    color=color)
    with pytest.warns(RuntimeWarning, match=r'vent \d+ missing from event_id'):
        plot_events(events, raw.info['sfreq'], raw.first_samp,
                    event_id=event_labels, color=color)
    multimatch = r'event \d+ missing from event_id|in the color dict but is'
    with pytest.warns(RuntimeWarning, match=multimatch):
        plot_events(events, raw.info['sfreq'], raw.first_samp,
                    event_id={'aud_l': 1}, color=color)
    extra_id = {'missing': 111}
    with pytest.raises(ValueError, match='from event_id is not present in'):
        plot_events(events, raw.info['sfreq'], raw.first_samp,
                    event_id=extra_id)
    with pytest.raises(RuntimeError, match='No usable event IDs'):
        plot_events(events, raw.info['sfreq'], raw.first_samp,
                    event_id=extra_id, on_missing='ignore')
    extra_id = {'aud_l': 1, 'missing': 111}
    with pytest.warns(RuntimeWarning, match='from event_id is not present in'):
        plot_events(events, raw.info['sfreq'], raw.first_samp,
                    event_id=extra_id, on_missing='warn')
    with pytest.warns(RuntimeWarning, match='event 2 missing'):
        plot_events(events, raw.info['sfreq'], raw.first_samp,
                    event_id=extra_id, on_missing='ignore')
    events = events[events[:, 2] == 1]
    assert len(events) > 0
    plot_events(events, raw.info['sfreq'], raw.first_samp,
                event_id=extra_id, on_missing='ignore')
    with pytest.raises(ValueError, match='No events'):
        plot_events(np.empty((0, 3)))


@testing.requires_testing_data
def test_plot_source_spectrogram():
    """Test plotting of source spectrogram."""
    sample_src = read_source_spaces(op.join(subjects_dir, 'sample',
                                            'bem', 'sample-oct-6-src.fif'))

    # dense version
    vertices = [s['vertno'] for s in sample_src]
    n_times = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.ones((n_verts, n_times))
    stc = SourceEstimate(stc_data, vertices, 1, 1)
    plot_source_spectrogram([stc, stc], [[1, 2], [3, 4]])
    pytest.raises(ValueError, plot_source_spectrogram, [], [])
    pytest.raises(ValueError, plot_source_spectrogram, [stc, stc],
                  [[1, 2], [3, 4]], tmin=0)
    pytest.raises(ValueError, plot_source_spectrogram, [stc, stc],
                  [[1, 2], [3, 4]], tmax=7)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_plot_snr():
    """Test plotting SNR estimate."""
    inv = read_inverse_operator(inv_fname)
    evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0]
    plot_snr_estimate(evoked, inv)


@testing.requires_testing_data
def test_plot_dipole_amplitudes():
    """Test plotting dipole amplitudes."""
    dipoles = read_dipole(dip_fname)
    dipoles.plot_amplitudes(show=False)


def test_plot_csd():
    """Test plotting of CSD matrices."""
    csd = CrossSpectralDensity([1, 2, 3], ['CH1', 'CH2'],
                               frequencies=[(10, 20)], n_fft=1,
                               tmin=0, tmax=1,)
    plot_csd(csd, mode='csd')  # Plot cross-spectral density
    plot_csd(csd, mode='coh')  # Plot coherence


@pytest.mark.slowtest  # Slow on Azure
@testing.requires_testing_data
def test_plot_chpi_snr():
    """Test plotting cHPI SNRs."""
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
    result = compute_chpi_snr(raw)
    # test figure creation
    fig = plot_chpi_snr(result)
    assert len(fig.axes) == len(result) - 2
    assert len(fig.axes[0].lines) == len(result['freqs'])
    assert len(fig.legends) == 1
    texts = [entry.get_text() for entry in fig.legends[0].get_texts()]
    assert len(texts) == len(result['freqs'])
    freqs = [float(text.split()[0]) for text in texts]
    assert_array_equal(freqs, result['freqs'])
    # test user-passed axes
    _, axs = plt.subplots(2, 3)
    _ = plot_chpi_snr(result, axes=axs.ravel())
    # test error
    _, axs = plt.subplots(5)
    with pytest.raises(ValueError, match='a list of 6 axes, got length 5'):
        _ = plot_chpi_snr(result, axes=axs.ravel())