1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Cathy Nangini <cnangini@gmail.com>
# Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD
import os.path as op
import numpy as np
from numpy.testing import assert_array_equal
import pytest
import matplotlib.pyplot as plt
from mne import (read_events, read_cov, read_source_spaces, read_evokeds,
read_dipole, SourceEstimate, pick_events)
from mne.chpi import compute_chpi_snr
from mne.datasets import testing
from mne.filter import create_filter
from mne.io import read_raw_fif
from mne.minimum_norm import read_inverse_operator
from mne.viz import (plot_bem, plot_events, plot_source_spectrogram,
plot_snr_estimate, plot_filter, plot_csd, plot_chpi_snr)
from mne.viz.misc import _handle_event_colors
from mne.viz.utils import _get_color_list
from mne.utils import requires_nibabel
from mne.time_frequency import CrossSpectralDensity
data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
src_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
inv_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif')
evoked_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
dip_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip')
chpi_fif_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.fif')
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
event_fname = op.join(base_dir, 'test-eve.fif')
def _get_raw():
"""Get raw data."""
return read_raw_fif(raw_fname, preload=True)
def _get_events():
"""Get events."""
return read_events(event_fname)
def test_plot_filter():
"""Test filter plotting."""
l_freq, h_freq, sfreq = 2., 40., 1000.
data = np.zeros(5000)
freq = [0, 2, 40, 50, 500]
gain = [0, 1, 1, 0, 0]
h = create_filter(data, sfreq, l_freq, h_freq, fir_design='firwin2')
plot_filter(h, sfreq)
plt.close('all')
plot_filter(h, sfreq, freq, gain)
plt.close('all')
iir = create_filter(data, sfreq, l_freq, h_freq, method='iir')
plot_filter(iir, sfreq)
plt.close('all')
iir = create_filter(data, sfreq, l_freq, h_freq,
method='iir', iir_params={'output': 'ba'}
)
plot_filter(iir, sfreq, compensate=True)
plt.close('all')
iir = create_filter(data, sfreq, l_freq, h_freq,
method='iir', iir_params={'output': 'sos'}
)
plot_filter(iir, sfreq, compensate=True)
plt.close('all')
plot_filter(iir, sfreq, freq, gain)
plt.close('all')
iir_ba = create_filter(data, sfreq, l_freq, h_freq, method='iir',
iir_params=dict(output='ba'))
plot_filter(iir_ba, sfreq, freq, gain)
plt.close('all')
fig = plot_filter(h, sfreq, freq, gain, fscale='linear')
assert len(fig.axes) == 3
plt.close('all')
fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
plot=('time', 'delay'))
assert len(fig.axes) == 2
plt.close('all')
fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
plot=['magnitude', 'delay'])
assert len(fig.axes) == 2
plt.close('all')
fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
plot='magnitude')
assert len(fig.axes) == 1
plt.close('all')
fig = plot_filter(h, sfreq, freq, gain, fscale='linear',
plot=('magnitude'))
assert len(fig.axes) == 1
plt.close('all')
with pytest.raises(ValueError, match='Invalid value for the .plot'):
plot_filter(h, sfreq, freq, gain, plot=('turtles'))
_, axes = plt.subplots(1)
fig = plot_filter(h, sfreq, freq, gain, plot=('magnitude'), axes=axes)
assert len(fig.axes) == 1
_, axes = plt.subplots(2)
fig = plot_filter(h, sfreq, freq, gain, plot=('magnitude', 'delay'),
axes=axes)
assert len(fig.axes) == 2
plt.close('all')
_, axes = plt.subplots(1)
with pytest.raises(ValueError, match='Length of axes'):
plot_filter(h, sfreq, freq, gain,
plot=('magnitude', 'delay'), axes=axes)
def test_plot_cov():
"""Test plotting of covariances."""
raw = _get_raw()
cov = read_cov(cov_fname)
with pytest.warns(RuntimeWarning, match='projection'):
fig1, fig2 = cov.plot(raw.info, proj=True, exclude=raw.ch_names[6:])
# test complex numbers
cov['data'] = cov.data * (1 + 1j)
fig1, fig2 = cov.plot(raw.info)
@testing.requires_testing_data
@requires_nibabel()
def test_plot_bem():
"""Test plotting of BEM contours."""
with pytest.raises(IOError, match='MRI file .* not found'):
plot_bem(subject='bad-subject', subjects_dir=subjects_dir)
with pytest.raises(ValueError, match="Invalid value for the 'orientation"):
plot_bem(subject='sample', subjects_dir=subjects_dir,
orientation='bad-ori')
with pytest.raises(ValueError, match="sorted 1D array"):
plot_bem(subject='sample', subjects_dir=subjects_dir, slices=[0, 500])
fig = plot_bem(subject='sample', subjects_dir=subjects_dir,
orientation='sagittal', slices=[25, 50])
assert len(fig.axes) == 2
assert len(fig.axes[0].collections) == 3 # 3 BEM surfaces ...
fig = plot_bem(subject='sample', subjects_dir=subjects_dir,
orientation='coronal', brain_surfaces='white')
assert len(fig.axes[0].collections) == 5 # 3 BEM surfaces + 2 hemis
fig = plot_bem(subject='sample', subjects_dir=subjects_dir,
orientation='coronal', slices=[25, 50], src=src_fname)
assert len(fig.axes[0].collections) == 4 # 3 BEM surfaces + 1 src contour
with pytest.raises(ValueError, match='MRI coordinates, got head'):
plot_bem(subject='sample', subjects_dir=subjects_dir,
src=inv_fname)
def test_event_colors():
"""Test color assignment."""
events = pick_events(_get_events(), include=[1, 2])
unique_events = set(events[:, 2])
# make sure defaults work
colors = _handle_event_colors(None, unique_events, dict())
default_colors = _get_color_list()
assert colors[1] == default_colors[0]
# make sure custom color overrides default
colors = _handle_event_colors(color_dict=dict(foo='k', bar='#facade'),
unique_events=unique_events,
event_id=dict(foo=1, bar=2))
assert colors[1] == 'k'
assert colors[2] == '#facade'
def test_plot_events():
"""Test plotting events."""
event_labels = {'aud_l': 1, 'aud_r': 2, 'vis_l': 3, 'vis_r': 4}
color = {1: 'green', 2: 'yellow', 3: 'red', 4: 'c'}
raw = _get_raw()
events = _get_events()
fig = plot_events(events, raw.info['sfreq'], raw.first_samp)
assert fig.axes[0].get_legend() is not None # legend even with no event_id
plot_events(events, raw.info['sfreq'], raw.first_samp, equal_spacing=False)
# Test plotting events without sfreq
plot_events(events, first_samp=raw.first_samp)
with pytest.warns(RuntimeWarning, match='will be ignored'):
fig = plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=event_labels)
assert fig.axes[0].get_legend() is not None
with pytest.warns(RuntimeWarning, match='Color was not assigned'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
color=color)
with pytest.warns(RuntimeWarning, match=r'vent \d+ missing from event_id'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=event_labels, color=color)
multimatch = r'event \d+ missing from event_id|in the color dict but is'
with pytest.warns(RuntimeWarning, match=multimatch):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id={'aud_l': 1}, color=color)
extra_id = {'missing': 111}
with pytest.raises(ValueError, match='from event_id is not present in'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=extra_id)
with pytest.raises(RuntimeError, match='No usable event IDs'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=extra_id, on_missing='ignore')
extra_id = {'aud_l': 1, 'missing': 111}
with pytest.warns(RuntimeWarning, match='from event_id is not present in'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=extra_id, on_missing='warn')
with pytest.warns(RuntimeWarning, match='event 2 missing'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=extra_id, on_missing='ignore')
events = events[events[:, 2] == 1]
assert len(events) > 0
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=extra_id, on_missing='ignore')
with pytest.raises(ValueError, match='No events'):
plot_events(np.empty((0, 3)))
@testing.requires_testing_data
def test_plot_source_spectrogram():
"""Test plotting of source spectrogram."""
sample_src = read_source_spaces(op.join(subjects_dir, 'sample',
'bem', 'sample-oct-6-src.fif'))
# dense version
vertices = [s['vertno'] for s in sample_src]
n_times = 5
n_verts = sum(len(v) for v in vertices)
stc_data = np.ones((n_verts, n_times))
stc = SourceEstimate(stc_data, vertices, 1, 1)
plot_source_spectrogram([stc, stc], [[1, 2], [3, 4]])
pytest.raises(ValueError, plot_source_spectrogram, [], [])
pytest.raises(ValueError, plot_source_spectrogram, [stc, stc],
[[1, 2], [3, 4]], tmin=0)
pytest.raises(ValueError, plot_source_spectrogram, [stc, stc],
[[1, 2], [3, 4]], tmax=7)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_plot_snr():
"""Test plotting SNR estimate."""
inv = read_inverse_operator(inv_fname)
evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0]
plot_snr_estimate(evoked, inv)
@testing.requires_testing_data
def test_plot_dipole_amplitudes():
"""Test plotting dipole amplitudes."""
dipoles = read_dipole(dip_fname)
dipoles.plot_amplitudes(show=False)
def test_plot_csd():
"""Test plotting of CSD matrices."""
csd = CrossSpectralDensity([1, 2, 3], ['CH1', 'CH2'],
frequencies=[(10, 20)], n_fft=1,
tmin=0, tmax=1,)
plot_csd(csd, mode='csd') # Plot cross-spectral density
plot_csd(csd, mode='coh') # Plot coherence
@pytest.mark.slowtest # Slow on Azure
@testing.requires_testing_data
def test_plot_chpi_snr():
"""Test plotting cHPI SNRs."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
result = compute_chpi_snr(raw)
# test figure creation
fig = plot_chpi_snr(result)
assert len(fig.axes) == len(result) - 2
assert len(fig.axes[0].lines) == len(result['freqs'])
assert len(fig.legends) == 1
texts = [entry.get_text() for entry in fig.legends[0].get_texts()]
assert len(texts) == len(result['freqs'])
freqs = [float(text.split()[0]) for text in texts]
assert_array_equal(freqs, result['freqs'])
# test user-passed axes
_, axs = plt.subplots(2, 3)
_ = plot_chpi_snr(result, axes=axs.ravel())
# test error
_, axs = plt.subplots(5)
with pytest.raises(ValueError, match='a list of 6 axes, got length 5'):
_ = plot_chpi_snr(result, axes=axs.ravel())
|