File: topomap.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (3108 lines) | stat: -rw-r--r-- 123,537 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
"""Functions to plot M/EEG data e.g. topographies."""

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Robert Luke <mail@robertluke.net>
#          Mikołaj Magnuski <mmagnuski@swps.edu.pl>
#          Marijn van Vliet <w.m.vanvliet@gmail.com>
#
# License: Simplified BSD

import copy
import itertools
from functools import partial
from numbers import Integral
import warnings

import numpy as np

from ..baseline import rescale
from ..channels.channels import _get_ch_type
from ..channels.layout import (
    _find_topomap_coords, find_layout, _pair_grad_sensors, _merge_ch_data)
from ..defaults import (_INTERPOLATION_DEFAULT, _EXTRAPOLATE_DEFAULT,
                        _BORDER_DEFAULT)
from ..io.pick import (pick_types, _picks_by_type, pick_info, pick_channels,
                       _pick_data_channels, _picks_to_idx, _get_channel_types,
                       _MEG_CH_TYPES_SPLIT)
from ..utils import (_clean_names, _time_mask, verbose, logger, fill_doc,
                     _validate_type, _check_sphere, _check_option, _is_numeric,
                     warn, legacy)
from .utils import (tight_layout, _setup_vmin_vmax, _prepare_trellis,
                    _check_delayed_ssp, _draw_proj_checkbox, figure_nobar,
                    plt_show, _process_times, DraggableColorbar, _get_cmap,
                    _validate_if_list_of_axes, _setup_cmap, _check_time_unit,
                    _set_3d_axes_equal, _check_type_projs, _format_units_psd,
                    _prepare_sensor_names, _warn_deprecated_vmin_vmax)
from ..defaults import _handle_default
from ..transforms import apply_trans, invert_transform
from ..io.meas_info import Info, _simplify_info


_fnirs_types = ('hbo', 'hbr', 'fnirs_cw_amplitude', 'fnirs_od')


def _adjust_meg_sphere(sphere, info, ch_type):
    sphere = _check_sphere(sphere, info)
    assert ch_type is not None
    if ch_type in ('mag', 'grad', 'planar1', 'planar2'):
        # move sphere X/Y (head coords) to device X/Y space
        if info['dev_head_t'] is not None:
            head_dev_t = invert_transform(info['dev_head_t'])
            sphere[:3] = apply_trans(head_dev_t, sphere[:3])
            # Set the sphere Z=0 because all this really affects is flattening.
            # We could make the head size change as a function of depth in
            # the helmet like:
            #
            #     sphere[2] /= -5
            #
            # but let's just assume some orthographic rather than parallel
            # projection for explicitness / simplicity.
            sphere[2] = 0.
        clip_origin = (0., 0.)
    else:
        clip_origin = sphere[:2].copy()
    return sphere, clip_origin


def _prepare_topomap_plot(inst, ch_type, sphere=None):
    """Prepare topo plot."""
    info = copy.deepcopy(inst if isinstance(inst, Info) else inst.info)
    sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type)

    clean_ch_names = _clean_names(info['ch_names'])
    for ii, this_ch in enumerate(info['chs']):
        this_ch['ch_name'] = clean_ch_names[ii]
    info['bads'] = _clean_names(info['bads'])
    for comp in info['comps']:
        comp['data']['col_names'] = _clean_names(comp['data']['col_names'])

    info._update_redundant()
    info._check_consistency()

    # special case for merging grad channels
    layout = find_layout(info)
    if (ch_type == 'grad' and layout is not None and
            (layout.kind.startswith('Vectorview') or
             layout.kind.startswith('Neuromag_122'))):
        picks, _ = _pair_grad_sensors(info, layout)
        pos = _find_topomap_coords(info, picks[::2], sphere=sphere)
        merge_channels = True
    elif ch_type in _fnirs_types:
        # fNIRS data commonly has overlapping channels, so deal with separately
        picks, pos, merge_channels, overlapping_channels = \
            _average_fnirs_overlaps(info, ch_type, sphere)
    else:
        merge_channels = False
        if ch_type == 'eeg':
            picks = pick_types(info, meg=False, eeg=True, ref_meg=False,
                               exclude='bads')
        elif ch_type == 'csd':
            picks = pick_types(info, meg=False, csd=True, ref_meg=False,
                               exclude='bads')
        elif ch_type == 'dbs':
            picks = pick_types(info, meg=False, dbs=True, ref_meg=False,
                               exclude='bads')
        elif ch_type == 'seeg':
            picks = pick_types(info, meg=False, seeg=True, ref_meg=False,
                               exclude='bads')
        else:
            picks = pick_types(info, meg=ch_type, ref_meg=False,
                               exclude='bads')

        if len(picks) == 0:
            raise ValueError("No channels of type %r" % ch_type)

        pos = _find_topomap_coords(info, picks, sphere=sphere)

    ch_names = [info['ch_names'][k] for k in picks]
    if ch_type in _fnirs_types:
        # Remove the chroma label type for cleaner labeling.
        ch_names = [k[:-4] for k in ch_names]

    if merge_channels:
        if ch_type == 'grad':
            # change names so that vectorview combined grads appear as MEG014x
            # instead of MEG0142 or MEG0143 which are the 2 planar grads.
            ch_names = [ch_names[k][:-1] + 'x' for k in
                        range(0, len(ch_names), 2)]
        else:
            assert ch_type in _fnirs_types
            # Modify the nirs channel names to indicate they are to be merged
            # New names will have the form  S1_D1xS2_D2
            # More than two channels can overlap and be merged
            for set in overlapping_channels:
                idx = ch_names.index(set[0][:-4])
                new_name = 'x'.join(s[:-4] for s in set)
                ch_names[idx] = new_name

    pos = np.array(pos)[:, :2]  # 2D plot, otherwise interpolation bugs
    return picks, pos, merge_channels, ch_names, ch_type, sphere, clip_origin


def _average_fnirs_overlaps(info, ch_type, sphere):

    from scipy.spatial.distance import pdist, squareform

    picks = pick_types(info, meg=False, ref_meg=False,
                       fnirs=ch_type, exclude='bads')
    chs = [info['chs'][i] for i in picks]
    locs3d = np.array([ch['loc'][:3] for ch in chs])
    dist = pdist(locs3d)

    # Store the sets of channels to be merged
    overlapping_channels = list()
    # Channels to be excluded from picks, as will be removed after merging
    channels_to_exclude = list()

    if len(locs3d) > 1 and np.min(dist) < 1e-10:

        overlapping_mask = np.triu(squareform(dist < 1e-10))
        for chan_idx in range(overlapping_mask.shape[0]):
            already_overlapped = list(itertools.chain.from_iterable(
                overlapping_channels))
            if overlapping_mask[chan_idx].any() and \
                    (chs[chan_idx]['ch_name'] not in already_overlapped):
                # Determine the set of channels to be combined. Ensure the
                # first listed channel is the one to be replaced with merge
                overlapping_set = [chs[i]['ch_name'] for i in
                                   np.where(overlapping_mask[chan_idx])[0]]
                overlapping_set = np.insert(overlapping_set, 0,
                                            (chs[chan_idx]['ch_name']))
                overlapping_channels.append(overlapping_set)
                channels_to_exclude.append(overlapping_set[1:])

        exclude = list(itertools.chain.from_iterable(channels_to_exclude))
        [exclude.append(bad) for bad in info['bads']]
        picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type,
                           exclude=exclude)
        pos = _find_topomap_coords(info, picks, sphere=sphere)
        picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type)
        # Overload the merge_channels variable as this is returned to calling
        # function and indicates that merging of data is required
        merge_channels = overlapping_channels

    else:
        picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type,
                           exclude='bads')
        merge_channels = False
        pos = _find_topomap_coords(info, picks, sphere=sphere)

    return picks, pos, merge_channels, overlapping_channels


def _plot_update_evoked_topomap(params, bools):
    """Update topomaps."""
    projs = [proj for ii, proj in enumerate(params['projs'])
             if ii in np.where(bools)[0]]

    params['proj_bools'] = bools
    new_evoked = params['evoked'].copy()
    with new_evoked.info._unlock():
        new_evoked.info['projs'] = []
    new_evoked.add_proj(projs)
    new_evoked.apply_proj()

    data = new_evoked.data[:, params['time_idx']] * params['scale']
    if params['merge_channels']:
        data, _ = _merge_ch_data(data, 'grad', [])

    interp = params['interp']
    new_contours = list()
    for cont, ax, im, d in zip(params['contours_'], params['axes'],
                               params['images'], data.T):
        Zi = interp.set_values(d)()
        im.set_data(Zi)
        # must be removed and re-added
        color = 'k'
        if len(cont.collections) > 0:
            tp = cont.collections[0]
            visible = tp.get_visible()
            patch_ = tp.get_clip_path()
            color = tp.get_edgecolors()
            lw = tp.get_linewidth()
        for tp in cont.collections:
            tp.remove()
        cont = ax.contour(interp.Xi, interp.Yi, Zi, params['contours'],
                          colors=color, linewidths=lw)
        for tp in cont.collections:
            tp.set_visible(visible)
            tp.set_clip_path(patch_)
        new_contours.append(cont)
    params['contours_'] = new_contours

    params['fig'].canvas.draw()


def _add_colorbar(ax, im, cmap, side="right", pad=.05, title=None,
                  format=None, size="5%"):
    """Add a colorbar to an axis."""
    import matplotlib.pyplot as plt
    from mpl_toolkits.axes_grid1 import make_axes_locatable
    divider = make_axes_locatable(ax)
    cax = divider.append_axes(side, size=size, pad=pad)
    cbar = plt.colorbar(im, cax=cax, format=format)
    if cmap is not None and cmap[1]:
        ax.CB = DraggableColorbar(cbar, im)
    if title is not None:
        cax.set_title(title, y=1.05, fontsize=10)
    return cbar, cax


def _eliminate_zeros(proj):
    """Remove grad or mag data if only contains 0s (gh 5641)."""
    GRAD_ENDING = ('2', '3')
    MAG_ENDING = '1'

    proj = copy.deepcopy(proj)
    proj['data']['data'] = np.atleast_2d(proj['data']['data'])

    for ending in (GRAD_ENDING, MAG_ENDING):
        names = proj['data']['col_names']
        idx = [i for i, name in enumerate(names) if name.endswith(ending)]

        # if all 0, remove the 0s an their labels
        if not proj['data']['data'][0][idx].any():
            new_col_names = np.delete(np.array(names), idx).tolist()
            new_data = np.delete(np.array(proj['data']['data'][0]), idx)
            proj['data']['col_names'] = new_col_names
            proj['data']['data'] = np.array([new_data])

    proj['data']['ncol'] = len(proj['data']['col_names'])
    return proj


@fill_doc
def plot_projs_topomap(
        projs, info, *, sensors=True, show_names=False, contours=6,
        outlines='head', sphere=None, image_interp=_INTERPOLATION_DEFAULT,
        extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT, res=64,
        size=1, cmap=None, vlim=(None, None), cnorm=None, colorbar=False,
        cbar_fmt='%3.1f', units=None, axes=None, show=True):
    """Plot topographic maps of SSP projections.

    Parameters
    ----------
    projs : list of Projection
        The projections.
    %(info_not_none)s Must be associated with the channels in the projectors.

        .. versionchanged:: 0.20
            The positional argument ``layout`` was deprecated and replaced
            by ``info``.
    %(sensors_topomap)s
    %(show_names_topomap)s

        .. versionadded:: 1.2
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s

        .. versionadded:: 0.20
    %(border_topomap)s
    %(res_topomap)s
    %(size_topomap)s
    %(cmap_topomap)s
    %(vlim_plot_topomap_proj)s
    %(cnorm)s

        .. versionadded:: 1.2
    %(colorbar_topomap)s
    %(cbar_fmt_topomap)s

        .. versionadded:: 1.2
    %(units_topomap)s

        .. versionadded:: 1.2
    %(axes_plot_projs_topomap)s
    %(show)s

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Figure with a topomap subplot for each projector.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    fig = _plot_projs_topomap(
        projs, info, sensors=sensors, show_names=show_names, contours=contours,
        outlines=outlines, sphere=sphere, image_interp=image_interp,
        extrapolate=extrapolate, border=border, res=res, size=size, cmap=cmap,
        vlim=vlim, cnorm=cnorm, colorbar=colorbar, cbar_fmt=cbar_fmt,
        units=units, axes=axes)
    with warnings.catch_warnings(record=True):
        warnings.simplefilter('ignore')
        tight_layout(fig=fig)
    plt_show(show)
    return fig


def _plot_projs_topomap(
        projs, info, sensors=True, show_names=False, contours=6,
        outlines='head', sphere=None, image_interp=_INTERPOLATION_DEFAULT,
        extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT, res=64,
        size=1, cmap=None, vlim=(None, None), cnorm=None, colorbar=False,
        cbar_fmt='%3.1f', units=None, axes=None):
    import matplotlib.pyplot as plt
    sphere = _check_sphere(sphere, info)
    projs = _check_type_projs(projs)
    _validate_type(info, 'info', 'info')

    types, datas, poss, spheres, outliness, ch_typess = [], [], [], [], [], []
    for proj in projs:
        # get ch_names, ch_types, data
        proj = _eliminate_zeros(proj)  # gh 5641
        ch_names = _clean_names(proj['data']['col_names'],
                                remove_whitespace=True)
        if vlim == 'joint':
            ch_idxs = np.where(np.in1d(info['ch_names'],
                                       proj['data']['col_names']))[0]
            these_ch_types = _get_channel_types(info, ch_idxs, unique=True)
            # each projector should have only one channel type
            assert len(these_ch_types) == 1
            types.append(list(these_ch_types)[0])
        data = proj['data']['data'].ravel()
        info_names = _clean_names(info['ch_names'], remove_whitespace=True)
        picks = pick_channels(info_names, ch_names)
        if len(picks) == 0:
            raise ValueError(
                f'No channel names in info match projector {proj}')
        use_info = pick_info(info, picks)
        data_picks, pos, merge_channels, names, ch_type, this_sphere, \
            clip_origin = _prepare_topomap_plot(
                use_info, _get_ch_type(use_info, None), sphere=sphere)
        these_outlines = _make_head_outlines(
            sphere, pos, outlines, clip_origin)
        data = data[data_picks]
        if merge_channels:
            data, _ = _merge_ch_data(data, 'grad', [])
            data = data.ravel()

        # populate containers
        datas.append(data)
        poss.append(pos)
        spheres.append(this_sphere)
        outliness.append(these_outlines)
        ch_typess.append(ch_type)
        del data, pos, this_sphere, these_outlines, ch_type
    del sphere

    # setup axes
    n_projs = len(projs)
    if axes is None:
        fig, axes, ncols, nrows = _prepare_trellis(
            n_projs, ncols='auto', nrows='auto', size=size,
            sharex=True, sharey=True)
    elif isinstance(axes, plt.Axes):
        axes = [axes]
    _validate_if_list_of_axes(axes, n_projs)

    # handle vmin/vmax
    vlims = [None for _ in range(len(datas))]
    if vlim == 'joint':
        for _ch_type in set(types):
            idx = np.where(np.in1d(types, _ch_type))[0]
            these_data = np.concatenate(np.array(datas, dtype=object)[idx])
            norm = all(these_data >= 0)
            _vl = _setup_vmin_vmax(these_data, vmin=None, vmax=None, norm=norm)
            for _idx in idx:
                vlims[_idx] = _vl
        # make sure we got a vlim for all projs
        assert all([vl is not None for vl in vlims])
    else:
        vlims = [vlim] * len(datas)

    # plot
    for proj, ax, _data, _pos, _vlim, _sphere, _outlines, _ch_type in zip(
            projs, axes, datas, poss, vlims, spheres, outliness, ch_typess):
        # ch_names
        names = [info['ch_names'][k] for k in _picks_to_idx(info, _ch_type)]
        names = _prepare_sensor_names(names, show_names)
        # title
        title = proj['desc']
        title = '\n'.join(title[ii:ii + 22] for ii in range(0, len(title), 22))
        ax.set_title(title, fontsize=10)
        # plot
        im, _ = plot_topomap(
            _data, _pos[:, :2], vlim=_vlim, cmap=cmap, sensors=sensors,
            names=names, res=res, axes=ax, outlines=_outlines,
            contours=contours, cnorm=cnorm, image_interp=image_interp,
            show=False, extrapolate=extrapolate, sphere=_sphere, border=border,
            ch_type=_ch_type)

        if colorbar:
            _add_colorbar(ax, im, cmap, title=units, format=cbar_fmt)

    return ax.get_figure()


def _make_head_outlines(sphere, pos, outlines, clip_origin):
    """Check or create outlines for topoplot."""
    assert isinstance(sphere, np.ndarray)
    x, y, _, radius = sphere
    del sphere

    if outlines in ('head', None):
        ll = np.linspace(0, 2 * np.pi, 101)
        head_x = np.cos(ll) * radius + x
        head_y = np.sin(ll) * radius + y
        dx = np.exp(np.arccos(np.deg2rad(12)) * 1j)
        dx, dy = dx.real, dx.imag
        nose_x = np.array([-dx, 0, dx]) * radius + x
        nose_y = np.array([dy, 1.15, dy]) * radius + y
        ear_x = np.array([.497, .510, .518, .5299, .5419, .54, .547,
                          .532, .510, .489]) * (radius * 2)
        ear_y = np.array([.0555, .0775, .0783, .0746, .0555, -.0055, -.0932,
                          -.1313, -.1384, -.1199]) * (radius * 2) + y

        if outlines is not None:
            # Define the outline of the head, ears and nose
            outlines_dict = dict(head=(head_x, head_y), nose=(nose_x, nose_y),
                                 ear_left=(-ear_x + x, ear_y),
                                 ear_right=(ear_x + x, ear_y))
        else:
            outlines_dict = dict()

        # Make the figure encompass slightly more than all points
        # We probably want to ensure it always contains our most
        # extremely positioned channels, so we do:
        mask_scale = max(
            1.0, np.linalg.norm(pos, axis=1).max() * 1.01 / radius)
        outlines_dict['mask_pos'] = (mask_scale * head_x, mask_scale * head_y)
        clip_radius = radius * mask_scale
        outlines_dict['clip_radius'] = (clip_radius,) * 2
        outlines_dict['clip_origin'] = clip_origin
        outlines = outlines_dict

    elif isinstance(outlines, dict):
        if 'mask_pos' not in outlines:
            raise ValueError('You must specify the coordinates of the image '
                             'mask.')
    else:
        raise ValueError('Invalid value for `outlines`.')

    return outlines


def _draw_outlines(ax, outlines):
    """Draw the outlines for a topomap."""
    from matplotlib import rcParams
    outlines_ = {k: v for k, v in outlines.items()
                 if k not in ['patch']}
    for key, (x_coord, y_coord) in outlines_.items():
        if 'mask' in key or key in ('clip_radius', 'clip_origin'):
            continue
        ax.plot(x_coord, y_coord, color=rcParams['axes.edgecolor'],
                linewidth=1, clip_on=False)
    return outlines_


def _get_extra_points(pos, extrapolate, origin, radii):
    """Get coordinates of additional interpolation points."""
    from scipy.spatial import Delaunay
    radii = np.array(radii, float)
    assert radii.shape == (2,)
    x, y = origin
    # auto should be gone by now
    _check_option('extrapolate', extrapolate, ('head', 'box', 'local'))

    # the old method of placement - large box
    mask_pos = None
    if extrapolate == 'box':
        extremes = np.array([pos.min(axis=0), pos.max(axis=0)])
        diffs = extremes[1] - extremes[0]
        extremes[0] -= diffs
        extremes[1] += diffs
        eidx = np.array(list(itertools.product(
            *([[0] * (pos.shape[1] - 1) + [1]] * pos.shape[1]))))
        pidx = np.tile(np.arange(pos.shape[1])[np.newaxis], (len(eidx), 1))
        outer_pts = extremes[eidx, pidx]
        return outer_pts, mask_pos, Delaunay(np.concatenate((pos, outer_pts)))

    # check if positions are colinear:
    diffs = np.diff(pos, axis=0)
    with np.errstate(divide='ignore'):
        slopes = diffs[:, 1] / diffs[:, 0]
    colinear = ((slopes == slopes[0]).all() or np.isinf(slopes).all())

    # compute median inter-electrode distance
    if colinear or pos.shape[0] < 4:
        dim = 1 if diffs[:, 1].sum() > diffs[:, 0].sum() else 0
        sorting = np.argsort(pos[:, dim])
        pos_sorted = pos[sorting, :]
        diffs = np.diff(pos_sorted, axis=0)
        distances = np.linalg.norm(diffs, axis=1)
        distance = np.median(distances)
    else:
        tri = Delaunay(pos, incremental=True)
        idx1, idx2, idx3 = tri.simplices.T
        distances = np.concatenate(
            [np.linalg.norm(pos[i1, :] - pos[i2, :], axis=1)
             for i1, i2 in zip([idx1, idx2], [idx2, idx3])])
        distance = np.median(distances)

    if extrapolate == 'local':
        if colinear or pos.shape[0] < 4:
            # special case for colinear points and when there is too
            # little points for Delaunay (needs at least 3)
            edge_points = sorting[[0, -1]]
            line_len = np.diff(pos[edge_points, :], axis=0)
            unit_vec = line_len / np.linalg.norm(line_len) * distance
            unit_vec_par = unit_vec[:, ::-1] * [[-1, 1]]

            edge_pos = (pos[edge_points, :] +
                        np.concatenate([-unit_vec, unit_vec], axis=0))
            new_pos = np.concatenate([pos + unit_vec_par,
                                      pos - unit_vec_par, edge_pos], axis=0)

            if pos.shape[0] == 3:
                # there may be some new_pos points that are too close
                # to the original points
                new_pos_diff = pos[..., np.newaxis] - new_pos.T[np.newaxis, :]
                new_pos_diff = np.linalg.norm(new_pos_diff, axis=1)
                good_extra = (new_pos_diff > 0.5 * distance).all(axis=0)
                new_pos = new_pos[good_extra]

            tri = Delaunay(np.concatenate([pos, new_pos], axis=0))
            return new_pos, new_pos, tri

        # get the convex hull of data points from triangulation
        hull_pos = pos[tri.convex_hull]

        # extend the convex hull limits outwards a bit
        channels_center = pos.mean(axis=0)
        radial_dir = hull_pos - channels_center
        unit_radial_dir = radial_dir / np.linalg.norm(radial_dir, axis=-1,
                                                      keepdims=True)
        hull_extended = hull_pos + unit_radial_dir * distance
        mask_pos = hull_pos + unit_radial_dir * distance * 0.5
        hull_diff = np.diff(hull_pos, axis=1)[:, 0]
        hull_distances = np.linalg.norm(hull_diff, axis=-1)
        del channels_center

        # Construct a mask
        mask_pos = np.unique(mask_pos.reshape(-1, 2), axis=0)
        mask_center = np.mean(mask_pos, axis=0)
        mask_pos -= mask_center
        mask_pos = mask_pos[
            np.argsort(np.arctan2(mask_pos[:, 1], mask_pos[:, 0]))]
        mask_pos += mask_center

        # add points along hull edges so that the distance between points
        # is around that of average distance between channels
        add_points = list()
        eps = np.finfo('float').eps
        n_times_dist = np.round(0.25 * hull_distances / distance).astype('int')
        for n in range(2, n_times_dist.max() + 1):
            mask = n_times_dist == n
            mult = np.arange(1 / n, 1 - eps, 1 / n)[:, np.newaxis, np.newaxis]
            steps = hull_diff[mask][np.newaxis, ...] * mult
            add_points.append((hull_extended[mask, 0][np.newaxis, ...] +
                               steps).reshape((-1, 2)))

        # remove duplicates from hull_extended
        hull_extended = np.unique(hull_extended.reshape((-1, 2)), axis=0)
        new_pos = np.concatenate([hull_extended] + add_points)
    else:
        assert extrapolate == 'head'
        # return points on the head circle
        angle = np.arcsin(min(distance / np.mean(radii), 1))
        n_pnts = max(12, int(np.round(2 * np.pi / angle)))
        points_l = np.linspace(0, 2 * np.pi, n_pnts, endpoint=False)
        use_radii = radii * 1.1 + distance
        points_x = np.cos(points_l) * use_radii[0] + x
        points_y = np.sin(points_l) * use_radii[1] + y
        new_pos = np.stack([points_x, points_y], axis=1)
        if colinear or pos.shape[0] == 3:
            tri = Delaunay(np.concatenate([pos, new_pos], axis=0))
            return new_pos, mask_pos, tri
    tri.add_points(new_pos)
    return new_pos, mask_pos, tri


class _GridData(object):
    """Unstructured (x,y) data interpolator.

    This class allows optimized interpolation by computing parameters
    for a fixed set of true points, and allowing the values at those points
    to be set independently.
    """

    def __init__(self, pos, image_interp, extrapolate, origin, radii, border):
        from scipy.interpolate import (CloughTocher2DInterpolator,
                                       NearestNDInterpolator,
                                       LinearNDInterpolator)
        # in principle this works in N dimensions, not just 2
        assert pos.ndim == 2 and pos.shape[1] == 2, pos.shape
        _validate_type(border, ('numeric', str), 'border')

        # check that border, if string, is correct
        if isinstance(border, str):
            _check_option('border', border, ('mean',), extra='when a string')

        # Adding points outside the extremes helps the interpolators
        outer_pts, mask_pts, tri = _get_extra_points(
            pos, extrapolate, origin, radii)
        self.n_extra = outer_pts.shape[0]
        self.mask_pts = mask_pts
        self.border = border
        self.tri = tri
        self.interp = {'cubic': CloughTocher2DInterpolator,
                       'nearest': NearestNDInterpolator,  # used only for anim
                       'linear': LinearNDInterpolator}[image_interp]

    def set_values(self, v):
        """Set the values at interpolation points."""
        # Rbf with thin-plate is what we used to use, but it's slower and
        # looks about the same:
        #
        #     zi = Rbf(x, y, v, function='multiquadric', smooth=0)(xi, yi)
        #
        # Eventually we could also do set_values with this class if we want,
        # see scipy/interpolate/rbf.py, especially the self.nodes one-liner.
        if isinstance(self.border, str):
            # we've already checked that border = 'mean'
            n_points = v.shape[0]
            v_extra = np.zeros(self.n_extra)
            indices, indptr = self.tri.vertex_neighbor_vertices
            rng = range(n_points, n_points + self.n_extra)
            used = np.zeros(len(rng), bool)
            for idx, extra_idx in enumerate(rng):
                ngb = indptr[indices[extra_idx]:indices[extra_idx + 1]]
                ngb = ngb[ngb < n_points]
                if len(ngb) > 0:
                    used[idx] = True
                    v_extra[idx] = v[ngb].mean()
            if not used.all() and used.any():
                # Eventually we might want to use the value of the nearest
                # point or something, but this case should hopefully be
                # rare so for now just use the average value of all extras
                v_extra[~used] = np.mean(v_extra[used])
        else:
            v_extra = np.full(self.n_extra, self.border, dtype=float)

        v = np.concatenate((v, v_extra))
        self.interpolator = self.interp(self.tri, v)
        return self

    def set_locations(self, Xi, Yi):
        """Set locations for easier (delayed) calling."""
        self.Xi = Xi
        self.Yi = Yi
        return self

    def __call__(self, *args):
        """Evaluate the interpolator."""
        if len(args) == 0:
            args = [self.Xi, self.Yi]
        return self.interpolator(*args)


def _topomap_plot_sensors(pos_x, pos_y, sensors, ax):
    """Plot sensors."""
    if sensors is True:
        ax.scatter(pos_x, pos_y, s=0.25, marker='o',
                   edgecolor=['k'] * len(pos_x), facecolor='none')
    else:
        ax.plot(pos_x, pos_y, sensors)


def _get_pos_outlines(info, picks, sphere, to_sphere=True):
    ch_type = _get_ch_type(pick_info(_simplify_info(info), picks), None)
    orig_sphere = sphere
    sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type)
    logger.debug('Generating pos outlines with sphere '
                 f'{sphere} from {orig_sphere} for {ch_type}')
    pos = _find_topomap_coords(
        info, picks, ignore_overlap=True, to_sphere=to_sphere,
        sphere=sphere)
    outlines = _make_head_outlines(sphere, pos, 'head', clip_origin)
    return pos, outlines


@fill_doc
def plot_topomap(
        data, pos, *, ch_type='eeg', sensors=True, names=None,
        mask=None, mask_params=None, contours=6, outlines='head', sphere=None,
        image_interp=_INTERPOLATION_DEFAULT, extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT, res=64, size=1, cmap=None, vlim=(None, None),
        cnorm=None, axes=None, show=True, onselect=None):
    """Plot a topographic map as image.

    Parameters
    ----------
    data : array, shape (n_chan,)
        The data values to plot.
    %(pos_topomap)s
        If an :class:`~mne.Info` object it must contain only one channel type
        and exactly ``len(data)`` channels; the x/y coordinates will
        be inferred from the montage in the :class:`~mne.Info` object.
    %(ch_type_topomap)s

        .. versionadded:: 0.21
    %(sensors_topomap)s
    %(names_topomap)s
    %(mask_topomap)s
    %(mask_params_topomap)s
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s

        .. versionadded:: 0.18
    %(border_topomap)s
    %(res_topomap)s
    %(size_topomap)s
    %(cmap_topomap_simple)s
    %(vlim_plot_topomap)s

        .. versionadded:: 1.2
    %(cnorm)s

        .. versionadded:: 0.24
    %(axes_plot_topomap)s

        .. versionchanged:: 1.2
           If ``axes=None``, a new :class:`~matplotlib.figure.Figure` is
           created instead of plotting into the current axes.
    %(show)s
    onselect : callable | None
        A function to be called when the user selects a set of channels by
        click-dragging (uses a matplotlib
        :class:`~matplotlib.widgets.RectangleSelector`). If ``None``
        interactive channel selection is disabled. Defaults to ``None``.

    Returns
    -------
    im : matplotlib.image.AxesImage
        The interpolated data.
    cn : matplotlib.contour.ContourSet
        The fieldlines.
    """
    import matplotlib.pyplot as plt
    from matplotlib.colors import Normalize

    if axes is None:
        _, axes = plt.subplots(figsize=(size, size))
    sphere = _check_sphere(sphere, pos if isinstance(pos, Info) else None)
    _validate_type(cnorm, (Normalize, None), 'cnorm')
    if cnorm is not None and (vlim[0] is not None or vlim[1] is not None):
        warn(f'Provided cnorm implicitly defines vmin={cnorm.vmin} and '
             f'vmax={cnorm.vmax}; ignoring additional vlim/vmin/vmax params.')
    return _plot_topomap(
        data, pos, vmin=vlim[0], vmax=vlim[1], cmap=cmap, sensors=sensors,
        res=res, axes=axes, names=names, mask=mask, mask_params=mask_params,
        outlines=outlines, contours=contours, image_interp=image_interp,
        show=show, onselect=onselect, extrapolate=extrapolate, sphere=sphere,
        border=border, ch_type=ch_type, cnorm=cnorm)[:2]


def _setup_interp(pos, res, image_interp, extrapolate, outlines, border):
    if image_interp not in ('cubic', 'linear', 'nearest'):
        raise RuntimeError(
            '`image_interp` must be `cubic`, `linear` or `nearest`, got '
            f'{image_interp}. Previously, `image_interp` controlled '
            'the matplotlib image interpolation after an original cubic '
            'interpolation but this was changed to control the first '
            'interpolation instead for simplicity. To change the '
            'matplotlib image interpolation, use '
            '`im.set_interpolation(...)')
    logger.debug(f'Interpolation mode {image_interp}, '
                 f'extrapolation mode {extrapolate} to {border}')
    xlim = np.inf, -np.inf,
    ylim = np.inf, -np.inf,
    mask_ = np.c_[outlines['mask_pos']]
    clip_radius = outlines['clip_radius']
    clip_origin = outlines.get('clip_origin', (0., 0.))
    xmin, xmax = (np.min(np.r_[xlim[0],
                               mask_[:, 0],
                               clip_origin[0] - clip_radius[0]]),
                  np.max(np.r_[xlim[1],
                               mask_[:, 0],
                               clip_origin[0] + clip_radius[0]]))
    ymin, ymax = (np.min(np.r_[ylim[0],
                               mask_[:, 1],
                               clip_origin[1] - clip_radius[1]]),
                  np.max(np.r_[ylim[1],
                               mask_[:, 1],
                               clip_origin[1] + clip_radius[1]]))
    xi = np.linspace(xmin, xmax, res)
    yi = np.linspace(ymin, ymax, res)
    Xi, Yi = np.meshgrid(xi, yi)
    interp = _GridData(pos, image_interp, extrapolate,
                       clip_origin, clip_radius, border)
    extent = (xmin, xmax, ymin, ymax)
    return extent, Xi, Yi, interp


_VORONOI_CIRCLE_RES = 100


def _voronoi_topomap(data, pos, outlines, ax, cmap, norm, extent, res):
    """Make a Voronoi diagram on a topomap."""
    from scipy.spatial import Voronoi
    # we need an image axis object so first empty image to plot over
    im = ax.imshow(np.zeros((res, res)) * np.nan, cmap=cmap,
                   origin='lower', aspect='equal', extent=extent,
                   norm=norm)
    rx, ry = outlines['clip_radius']
    cx, cy = outlines.get('clip_origin', (0., 0.))
    # add points on the circle to make boundaries, expand out to
    # ensure regions extend to the edge of the topomap
    vor = Voronoi(np.concatenate(
        [pos, [(rx * 1.5 * np.cos(2 * np.pi / _VORONOI_CIRCLE_RES * t),
                ry * 1.5 * np.sin(2 * np.pi / _VORONOI_CIRCLE_RES * t))
               for t in range(_VORONOI_CIRCLE_RES)]]))
    for point_idx, region_idx in enumerate(
            vor.point_region[:-_VORONOI_CIRCLE_RES]):
        if -1 in vor.regions[region_idx]:
            continue
        polygon = list()
        for i in vor.regions[region_idx]:
            x, y = vor.vertices[i]
            if (x - cx)**2 / rx**2 + (y - cy)**2 / ry**2 < 1:
                polygon.append((x, y))
            else:
                x *= rx / np.linalg.norm(vor.vertices[i])
                y *= ry / np.linalg.norm(vor.vertices[i])
                polygon.append((x, y))
        ax.fill(*zip(*polygon), color=cmap(norm(data[point_idx])))
    return im


def _get_patch(outlines, extrapolate, interp, ax):
    from matplotlib import patches
    clip_radius = outlines['clip_radius']
    clip_origin = outlines.get('clip_origin', (0., 0.))
    _use_default_outlines = any(k.startswith('head') for k in outlines)
    patch_ = None
    if 'patch' in outlines:
        patch_ = outlines['patch']
        patch_ = patch_() if callable(patch_) else patch_
        patch_.set_clip_on(False)
        ax.add_patch(patch_)
        ax.set_transform(ax.transAxes)
        ax.set_clip_path(patch_)
    if _use_default_outlines:
        if extrapolate == 'local':
            patch_ = patches.Polygon(
                interp.mask_pts, clip_on=True, transform=ax.transData)
        else:
            patch_ = patches.Ellipse(
                clip_origin, 2 * clip_radius[0], 2 * clip_radius[1],
                clip_on=True, transform=ax.transData)
    return patch_


def _plot_topomap(
        data, pos, axes, *, ch_type='eeg', sensors=True, names=None, mask=None,
        mask_params=None, contours=6, outlines='head', sphere=None,
        image_interp=_INTERPOLATION_DEFAULT, extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT, res=64, cmap=None, vmin=None, vmax=None,
        cnorm=None, show=True, onselect=None):
    from matplotlib.colors import Normalize
    import matplotlib.pyplot as plt
    from matplotlib.widgets import RectangleSelector
    data = np.asarray(data)
    logger.debug(f'Plotting topomap for {ch_type} data shape {data.shape}')

    if isinstance(pos, Info):  # infer pos from Info object
        picks = _pick_data_channels(pos, exclude=())  # pick only data channels
        pos = pick_info(pos, picks)

        # check if there is only 1 channel type, and n_chans matches the data
        ch_type = _get_channel_types(pos, unique=True)
        info_help = ("Pick Info with e.g. mne.pick_info and "
                     "mne.io.pick.channel_indices_by_type.")
        if len(ch_type) > 1:
            raise ValueError("Multiple channel types in Info structure. " +
                             info_help)
        elif len(pos["chs"]) != data.shape[0]:
            raise ValueError("Number of channels in the Info object (%s) and "
                             "the data array (%s) do not match. "
                             % (len(pos['chs']), data.shape[0]) + info_help)
        else:
            ch_type = ch_type.pop()

        if any(type_ in ch_type for type_ in ('planar', 'grad')):
            # deal with grad pairs
            picks = _pair_grad_sensors(pos, topomap_coords=False)
            pos = _find_topomap_coords(pos, picks=picks[::2], sphere=sphere)
            data, _ = _merge_ch_data(data[picks], ch_type, [])
            data = data.reshape(-1)
        else:
            picks = list(range(data.shape[0]))
            pos = _find_topomap_coords(pos, picks=picks, sphere=sphere)

    extrapolate = _check_extrapolate(extrapolate, ch_type)
    if data.ndim > 1:
        raise ValueError("Data needs to be array of shape (n_sensors,); got "
                         "shape %s." % str(data.shape))

    # Give a helpful error message for common mistakes regarding the position
    # matrix.
    pos_help = ("Electrode positions should be specified as a 2D array with "
                "shape (n_channels, 2). Each row in this matrix contains the "
                "(x, y) position of an electrode.")
    if pos.ndim != 2:
        error = ("{ndim}D array supplied as electrode positions, where a 2D "
                 "array was expected").format(ndim=pos.ndim)
        raise ValueError(error + " " + pos_help)
    elif pos.shape[1] == 3:
        error = ("The supplied electrode positions matrix contains 3 columns. "
                 "Are you trying to specify XYZ coordinates? Perhaps the "
                 "mne.channels.create_eeg_layout function is useful for you.")
        raise ValueError(error + " " + pos_help)
    # No error is raised in case of pos.shape[1] == 4. In this case, it is
    # assumed the position matrix contains both (x, y) and (width, height)
    # values, such as Layout.pos.
    elif pos.shape[1] == 1 or pos.shape[1] > 4:
        raise ValueError(pos_help)
    pos = pos[:, :2]

    if len(data) != len(pos):
        raise ValueError("Data and pos need to be of same length. Got data of "
                         "length %s, pos of length %s" % (len(data), len(pos)))

    norm = min(data) >= 0
    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)
    if cmap is None:
        cmap = 'Reds' if norm else 'RdBu_r'
    cmap = _get_cmap(cmap)

    outlines = _make_head_outlines(sphere, pos, outlines, (0., 0.))
    assert isinstance(outlines, dict)

    _prepare_topomap(pos, axes)

    mask_params = _handle_default('mask_params', mask_params)

    # find mask limits and setup interpolation
    extent, Xi, Yi, interp = _setup_interp(
        pos, res, image_interp, extrapolate, outlines, border)
    interp.set_values(data)
    Zi = interp.set_locations(Xi, Yi)()

    # plot outline
    patch_ = _get_patch(outlines, extrapolate, interp, axes)

    # get colormap normalization
    if cnorm is None:
        cnorm = Normalize(vmin=vmin, vmax=vmax)

    # plot interpolated map
    if image_interp == 'nearest':  # plot over with Voronoi, more accurate
        im = _voronoi_topomap(data, pos=pos, outlines=outlines, ax=axes,
                              cmap=cmap, norm=cnorm, extent=extent, res=res)
    else:
        im = axes.imshow(Zi, cmap=cmap, origin='lower', aspect='equal',
                         extent=extent, interpolation='bilinear', norm=cnorm)

    # gh-1432 had a workaround for no contours here, but we'll remove it
    # because mpl has probably fixed it
    linewidth = mask_params['markeredgewidth']
    cont = True
    if isinstance(contours, (np.ndarray, list)):
        pass
    elif contours == 0 or ((Zi == Zi[0, 0]) | np.isnan(Zi)).all():
        cont = None  # can't make contours for constant-valued functions
    if cont:
        with warnings.catch_warnings(record=True):
            warnings.simplefilter('ignore')
            cont = axes.contour(Xi, Yi, Zi, contours, colors='k',
                                linewidths=linewidth / 2.)

    if patch_ is not None:
        im.set_clip_path(patch_)
        if cont is not None:
            for col in cont.collections:
                col.set_clip_path(patch_)

    pos_x, pos_y = pos.T
    mask = mask.astype(bool, copy=False) if mask is not None else None
    if sensors is not False and mask is None:
        _topomap_plot_sensors(pos_x, pos_y, sensors=sensors, ax=axes)
    elif sensors and mask is not None:
        idx = np.where(mask)[0]
        axes.plot(pos_x[idx], pos_y[idx], **mask_params)
        idx = np.where(~mask)[0]
        _topomap_plot_sensors(pos_x[idx], pos_y[idx], sensors=sensors, ax=axes)
    elif not sensors and mask is not None:
        idx = np.where(mask)[0]
        axes.plot(pos_x[idx], pos_y[idx], **mask_params)

    if isinstance(outlines, dict):
        _draw_outlines(axes, outlines)

    if names is not None:
        show_idx = np.arange(len(names)) if mask is None else np.where(mask)[0]
        for ii, (_pos, _name) in enumerate(zip(pos, names)):
            if ii not in show_idx:
                continue
            axes.text(_pos[0], _pos[1], _name, horizontalalignment='center',
                      verticalalignment='center', size='x-small')

    if not axes.figure.get_constrained_layout():
        plt.subplots_adjust(top=.95)

    if onselect is not None:
        lim = axes.dataLim
        x0, y0, width, height = lim.x0, lim.y0, lim.width, lim.height
        axes.RS = RectangleSelector(axes, onselect=onselect)
        axes.set(xlim=[x0, x0 + width], ylim=[y0, y0 + height])
    plt_show(show)
    return im, cont, interp


def _plot_ica_topomap(ica, idx=0, ch_type=None, res=64,
                      vmin=None, vmax=None, cmap='RdBu_r', colorbar=False,
                      title=None, show=True, outlines='head', contours=6,
                      image_interp=_INTERPOLATION_DEFAULT, axes=None,
                      sensors=True, allow_ref_meg=False,
                      extrapolate=_EXTRAPOLATE_DEFAULT,
                      sphere=None, border=_BORDER_DEFAULT):
    """Plot single ica map to axes."""
    from matplotlib.axes import Axes

    if ica.info is None:
        raise RuntimeError('The ICA\'s measurement info is missing. Please '
                           'fit the ICA or add the corresponding info object.')
    sphere = _check_sphere(sphere, ica.info)
    if not isinstance(axes, Axes):
        raise ValueError('axis has to be an instance of matplotlib Axes, '
                         'got %s instead.' % type(axes))
    ch_type = _get_ch_type(ica, ch_type, allow_ref_meg=ica.allow_ref_meg)
    if ch_type == "ref_meg":
        logger.info("Cannot produce topographies for MEG reference channels.")
        return

    data = ica.get_components()[:, idx]
    data_picks, pos, merge_channels, names, _, sphere, clip_origin = \
        _prepare_topomap_plot(ica, ch_type, sphere=sphere)
    data = data[data_picks]
    outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)

    if merge_channels:
        data, names = _merge_ch_data(data, ch_type, names)

    topo_title = ica._ica_names[idx]
    if len(set(ica.get_channel_types())) > 1:
        topo_title += f' ({ch_type})'
    axes.set_title(topo_title, fontsize=12)
    vlim = _setup_vmin_vmax(data, vmin, vmax)
    im = plot_topomap(
        data.ravel(), pos, vlim=vlim, res=res, axes=axes,
        cmap=cmap, outlines=outlines, contours=contours, sensors=sensors,
        image_interp=image_interp, show=show, extrapolate=extrapolate,
        sphere=sphere, border=border, ch_type=ch_type)[0]
    if colorbar:
        cbar, cax = _add_colorbar(axes, im, cmap, pad=.05, title="AU",
                                  format='%3.2f')
        cbar.ax.tick_params(labelsize=12)
        cbar.set_ticks(vlim)
    _hide_frame(axes)


@verbose
def plot_ica_components(
        ica, picks=None, ch_type=None, *, inst=None, plot_std=True,
        reject='auto', sensors=True, show_names=False, contours=6,
        outlines='head', sphere=None, image_interp=_INTERPOLATION_DEFAULT,
        extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT, res=64,
        size=1, cmap='RdBu_r', vlim=(None, None), vmin=None, vmax=None,
        cnorm=None, colorbar=False, cbar_fmt='%3.2f', axes=None, title=None,
        nrows='auto', ncols='auto', show=True, topomap_args=None,
        image_args=None, psd_args=None, verbose=None):
    """Project mixing matrix on interpolated sensor topography.

    Parameters
    ----------
    ica : instance of mne.preprocessing.ICA
        The ICA solution.
    %(picks_ica)s
    %(ch_type_topomap)s
    inst : Raw | Epochs | None
        To be able to see component properties after clicking on component
        topomap you need to pass relevant data - instances of Raw or Epochs
        (for example the data that ICA was trained on). This takes effect
        only when running matplotlib in interactive mode.
    plot_std : bool | float
        Whether to plot standard deviation in ERP/ERF and spectrum plots.
        Defaults to True, which plots one standard deviation above/below.
        If set to float allows to control how many standard deviations are
        plotted. For example 2.5 will plot 2.5 standard deviation above/below.
    reject : 'auto' | dict | None
        Allows to specify rejection parameters used to drop epochs
        (or segments if continuous signal is passed as inst).
        If None, no rejection is applied. The default is 'auto',
        which applies the rejection parameters used when fitting
        the ICA object.
    %(sensors_topomap)s
    %(show_names_topomap)s
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s

        .. versionadded:: 1.3
    %(border_topomap)s

        .. versionadded:: 1.3
    %(res_topomap)s
    %(size_topomap)s

        .. versionadded:: 1.3
    %(cmap_topomap)s
    %(vlim_plot_topomap)s

        .. versionadded:: 1.3
    %(vmin_vmax_topomap)s

        .. deprecated:: v1.4
           The ``vmin`` and ``vmax`` parameters will be removed in version
           1.4. Please use the ``vlim`` parameter instead.
    %(cnorm)s

        .. versionadded:: 1.3
    %(colorbar_topomap)s
    %(cbar_fmt_topomap)s
    %(axes_evoked_plot_topomap)s
    title : str | None
        The title of the generated figure. If ``None`` (default) and
        ``axes=None``, a default title of "ICA Components" will be used.
    %(nrows_ncols_ica_components)s

        .. versionadded:: 1.3
    %(show)s
    topomap_args : dict | None
        Dictionary of arguments to ``plot_topomap``. If None, doesn't pass any
        additional arguments. Defaults to None.

        .. deprecated:: v1.4
           The ``topomap_args`` parameter will be removed in version 1.4. All
           relevant topomap parameters (e.g., ``show_names``, ``extrapolate``,
           ``border``, ``size``, etc) are now directly exposed in this
           function's signature.
    image_args : dict | None
        Dictionary of arguments to pass to :func:`~mne.viz.plot_epochs_image`
        in interactive mode. Ignored if ``inst`` is not supplied. If ``None``,
        nothing is passed. Defaults to ``None``.
    psd_args : dict | None
        Dictionary of arguments to pass to :meth:`~mne.Epochs.compute_psd` in
        interactive  mode. Ignored if ``inst`` is not supplied. If ``None``,
        nothing is passed. Defaults to ``None``.
    %(verbose)s

    Returns
    -------
    fig : instance of matplotlib.figure.Figure | list of matplotlib.figure.Figure
        The figure object(s).

    Notes
    -----
    When run in interactive mode, ``plot_ica_components`` allows to reject
    components by clicking on their title label. The state of each component
    is indicated by its label color (gray: rejected; black: retained). It is
    also possible to open component properties by clicking on the component
    topomap (this option is only available when the ``inst`` argument is
    supplied).
    """  # noqa E501
    from ..io import BaseRaw
    from ..epochs import BaseEpochs

    if ica.info is None:
        raise RuntimeError('The ICA\'s measurement info is missing. Please '
                           'fit the ICA or add the corresponding info object.')
    # TODO ↓↓↓↓↓ remove after 1.3 release (begin)
    vlim = _warn_deprecated_vmin_vmax(vlim, vmin, vmax, '1.4')

    if topomap_args:  # not None, not empty dict
        warn('The "topomap_args" parameter is deprecated and will be '
             'removed in version 1.4. All relevant topomap parameters are now '
             'directly exposed in this function\'s signature.', FutureWarning)
        topomap_args = copy.copy(topomap_args)
    else:
        topomap_args = dict()
    # TODO ↑↑↑↑↑ remove after 1.3 release (end)

    n_components = ica.mixing_matrix_.shape[1]

    # for backward compat, nrow='auto' ncol='auto' should yield 4 rows 5 cols
    # and create multiple figures if more than 20 components requested
    if nrows == 'auto' and ncols == 'auto':
        ncols = 5
        max_subplots = 20
    elif nrows == 'auto' or ncols == 'auto':
        # user provided incomplete row/col spec; put all in one figure
        max_subplots = n_components
    else:
        max_subplots = nrows * ncols

    # handle ch_type=None
    ch_type = _get_ch_type(ica, ch_type)

    if picks is None:
        figs = []
        cut_points = range(max_subplots, n_components, max_subplots)
        pick_groups = np.split(range(n_components), cut_points)
        for _picks in pick_groups:
            fig = plot_ica_components(
                ica, picks=_picks, ch_type=ch_type, inst=inst,
                plot_std=plot_std, reject=reject, sensors=sensors,
                show_names=show_names, contours=contours, outlines=outlines,
                sphere=sphere, image_interp=image_interp,
                extrapolate=extrapolate, border=border, res=res, size=size,
                cmap=cmap, vlim=vlim, cnorm=cnorm, colorbar=colorbar,
                cbar_fmt=cbar_fmt, axes=axes, title=title, nrows=nrows,
                ncols=ncols, show=show, topomap_args=topomap_args,
                image_args=image_args, psd_args=psd_args, verbose=verbose)
            figs.append(fig)
        return figs
    else:
        picks = _picks_to_idx(ica.n_components_, picks, picks_on="components")

    data_picks, pos, merge_channels, names, ch_type, sphere, clip_origin = \
        _prepare_topomap_plot(ica, ch_type, sphere=sphere)

    cmap = _setup_cmap(cmap, n_axes=len(picks))
    names = _prepare_sensor_names(names, show_names)
    outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)

    data = np.dot(ica.mixing_matrix_[:, picks].T,
                  ica.pca_components_[:ica.n_components_])
    data = np.atleast_2d(data)
    data = data[:, data_picks]

    if title is None:
        title = 'ICA components'
    user_passed_axes = axes is not None
    if not user_passed_axes:
        fig, axes, _, _ = _prepare_trellis(len(data), ncols=ncols, nrows=nrows)
        fig.suptitle(title)

    subplot_titles = list()
    for ii, data_, ax in zip(picks, data, axes):
        kwargs = dict(color='gray') if ii in ica.exclude else dict()
        comp_title = ica._ica_names[ii]
        if len(set(ica.get_channel_types())) > 1:
            comp_title += f' ({ch_type})'
        subplot_titles.append(ax.set_title(comp_title, fontsize=12, **kwargs))
        if merge_channels:
            data_, names_ = _merge_ch_data(data_, ch_type, copy.copy(names))
        # ↓↓↓ NOTE: we intentionally use the default norm=False here, so that
        # ↓↓↓ we get vlims that are symmetric-about-zero, even if the data for
        # ↓↓↓ a given component happens to be one-sided.
        _vlim = _setup_vmin_vmax(data_, *vlim)
        im = plot_topomap(
            data_.flatten(), pos, ch_type=ch_type, sensors=sensors,
            names=names, contours=contours, outlines=outlines, sphere=sphere,
            image_interp=image_interp, extrapolate=extrapolate, border=border,
            res=res, size=size, cmap=cmap[0], vlim=_vlim, cnorm=cnorm,
            axes=ax, show=False, **topomap_args)[0]

        im.axes.set_label(ica._ica_names[ii])
        if colorbar:
            cbar, cax = _add_colorbar(ax, im, cmap, title="AU",
                                      side="right", pad=.05, format=cbar_fmt)
            cbar.ax.tick_params(labelsize=12)
            cbar.set_ticks(_vlim)
        _hide_frame(ax)
    del pos
    tight_layout(fig=fig)
    # TODO ↓↓↓↓↓ remove after 1.3 release (begin)
    if not user_passed_axes:
        fig.subplots_adjust(top=0.88, bottom=0.)
    # TODO ↑↑↑↑↑ remove after 1.3 release (end)
    fig.canvas.draw()

    # add title selection interactivity
    def onclick_title(event, ica=ica, titles=subplot_titles):
        # check if any title was pressed
        title_pressed = None
        for title in titles:
            if title.contains(event)[0]:
                title_pressed = title
                break
        # title was pressed -> identify the IC
        if title_pressed is not None:
            label = title_pressed.get_text()
            ic = int(label.split(' ')[0][-3:])
            # add or remove IC from exclude depending on current state
            if ic in ica.exclude:
                ica.exclude.remove(ic)
                title_pressed.set_color('k')
            else:
                ica.exclude.append(ic)
                title_pressed.set_color('gray')
            fig.canvas.draw()
    fig.canvas.mpl_connect('button_press_event', onclick_title)

    # add plot_properties interactivity only if inst was passed
    if isinstance(inst, (BaseRaw, BaseEpochs)):
        def onclick_topo(event, ica=ica, inst=inst):
            # check which component to plot
            if event.inaxes is not None:
                label = event.inaxes.get_label()
                if label.startswith('ICA'):
                    ic = int(label.split(' ')[0][-3:])
                    ica.plot_properties(inst, picks=ic, show=True,
                                        plot_std=plot_std,
                                        topomap_args=topomap_args,
                                        image_args=image_args,
                                        psd_args=psd_args, reject=reject)
        fig.canvas.mpl_connect('button_press_event', onclick_topo)

    plt_show(show)
    return fig


@fill_doc
def plot_tfr_topomap(
        tfr, tmin=None, tmax=None, fmin=0., fmax=np.inf, *, ch_type=None,
        baseline=None, mode='mean', sensors=True, show_names=False, mask=None,
        mask_params=None, contours=6, outlines='head', sphere=None,
        image_interp=_INTERPOLATION_DEFAULT, extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT, res=64, size=2, cmap=None, vlim=(None, None),
        cnorm=None, colorbar=True, cbar_fmt='%1.1e', units=None, axes=None,
        show=True):
    """Plot topographic maps of specific time-frequency intervals of TFR data.

    Parameters
    ----------
    tfr : AverageTFR
        The AverageTFR object.
    %(tmin_tmax_psd)s
    %(fmin_fmax_psd)s
    %(ch_type_topomap_psd)s
    baseline : tuple or list of length 2
        The time interval to apply rescaling / baseline correction. If None do
        not apply it. If baseline is (a, b) the interval is between "a (s)" and
        "b (s)". If a is None the beginning of the data is used and if b is
        None then b is set to the end of the interval. If baseline is equal to
        (None, None) the whole time interval is used.
    mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio' | None
        Perform baseline correction by

          - subtracting the mean baseline power ('mean')
          - dividing by the mean baseline power ('ratio')
          - dividing by the mean baseline power and taking the log ('logratio')
          - subtracting the mean baseline power followed by dividing by the
            mean baseline power ('percent')
          - subtracting the mean baseline power and dividing by the standard
            deviation of the baseline power ('zscore')
          - dividing by the mean baseline power, taking the log, and dividing
            by the standard deviation of the baseline power ('zlogratio')

        If None no baseline correction is applied.
    %(sensors_topomap)s
    %(show_names_topomap)s
    %(mask_evoked_topomap)s
    %(mask_params_topomap)s
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s
    %(border_topomap)s
    %(res_topomap)s
    %(size_topomap)s
    %(cmap_topomap)s
    %(vlim_plot_topomap)s

        .. versionadded:: 1.2
    %(cnorm)s

        .. versionadded:: 1.2
    %(colorbar_topomap)s
    %(cbar_fmt_topomap)s
    %(units_topomap)s
    %(axes_plot_topomap)s
    %(show)s

    Returns
    -------
    fig : matplotlib.figure.Figure
        The figure containing the topography.
    """  # noqa: E501
    import matplotlib.pyplot as plt
    ch_type = _get_ch_type(tfr, ch_type)

    picks, pos, merge_channels, names, _, sphere, clip_origin = \
        _prepare_topomap_plot(tfr, ch_type, sphere=sphere)
    outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)

    data = tfr.data[picks, :, :]

    # merging grads before rescaling makes ERDs visible
    if merge_channels:
        data, names = _merge_ch_data(data, ch_type, names, method='mean')

    data = rescale(data, tfr.times, baseline, mode, copy=True)

    if np.iscomplexobj(data):
        data = np.sqrt((data * data.conj()).real)

    # crop time
    itmin, itmax = None, None
    idx = np.where(_time_mask(tfr.times, tmin, tmax))[0]
    if tmin is not None:
        itmin = idx[0]
    if tmax is not None:
        itmax = idx[-1] + 1

    # crop freqs
    ifmin, ifmax = None, None
    idx = np.where(_time_mask(tfr.freqs, fmin, fmax))[0]
    ifmin = idx[0]
    ifmax = idx[-1] + 1

    data = data[:, ifmin:ifmax, itmin:itmax]
    data = np.mean(np.mean(data, axis=2), axis=1)[:, np.newaxis]

    norm = False if np.min(data) < 0 else True
    vlim = _setup_vmin_vmax(data, *vlim, norm)
    cmap = _setup_cmap(cmap, norm=norm)

    axes = plt.subplots(figsize=(size, size))[1] if axes is None else axes
    fig = axes.figure

    _hide_frame(axes)

    locator = None
    if not isinstance(contours, (list, np.ndarray)):
        locator, contours = _set_contour_locator(*vlim, contours)

    fig_wrapper = list()
    selection_callback = partial(_onselect, tfr=tfr, pos=pos, ch_type=ch_type,
                                 itmin=itmin, itmax=itmax, ifmin=ifmin,
                                 ifmax=ifmax, cmap=cmap[0], fig=fig_wrapper)

    if not isinstance(contours, (list, np.ndarray)):
        _, contours = _set_contour_locator(*vlim, contours)

    names = _prepare_sensor_names(names, show_names)

    im, _ = plot_topomap(
        data[:, 0], pos, ch_type=ch_type, sensors=sensors, names=names,
        mask=mask, mask_params=mask_params, contours=contours,
        outlines=outlines, sphere=sphere, image_interp=image_interp,
        extrapolate=extrapolate, border=border, res=res, size=size,
        cmap=cmap[0], vlim=vlim, cnorm=cnorm, axes=axes,
        show=False, onselect=selection_callback)

    if colorbar:
        from matplotlib import ticker
        units = _handle_default('units', units)['misc']
        cbar, cax = _add_colorbar(axes, im, cmap, title=units, format=cbar_fmt)
        if locator is None:
            locator = ticker.MaxNLocator(nbins=5)
        cbar.locator = locator
        cbar.update_ticks()
        cbar.ax.tick_params(labelsize=12)

    plt_show(show)
    return fig


@fill_doc
def plot_evoked_topomap(
        evoked, times="auto", *, average=None, ch_type=None, scalings=None,
        proj=False, sensors=True, show_names=False, mask=None,
        mask_params=None, contours=6, outlines='head', sphere=None,
        image_interp=_INTERPOLATION_DEFAULT, extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT, res=64, size=1, cmap=None, vlim=(None, None),
        cnorm=None, colorbar=True, cbar_fmt='%3.1f', units=None, axes=None,
        time_unit='s', time_format=None, nrows=1, ncols='auto', show=True):
    """Plot topographic maps of specific time points of evoked data.

    Parameters
    ----------
    evoked : Evoked
        The Evoked object.
    times : float | array of float | "auto" | "peaks" | "interactive"
        The time point(s) to plot. If "auto", the number of ``axes`` determines
        the amount of time point(s). If ``axes`` is also None, at most 10
        topographies will be shown with a regular time spacing between the
        first and last time instant. If "peaks", finds time points
        automatically by checking for local maxima in global field power. If
        "interactive", the time can be set interactively at run-time by using a
        slider.
    %(average_plot_evoked_topomap)s
    %(ch_type_topomap)s
    %(scalings_topomap)s
    %(proj_plot)s
    %(sensors_topomap)s
    %(show_names_topomap)s
    %(mask_evoked_topomap)s
    %(mask_params_topomap)s
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s

        .. versionadded:: 0.18
    %(border_topomap)s
    %(res_topomap)s
    %(size_topomap)s
    %(cmap_topomap)s
    %(vlim_plot_topomap_psd)s

        .. versionadded:: 1.2
    %(cnorm)s

        .. versionadded:: 1.2
    %(colorbar_topomap)s
    %(cbar_fmt_topomap)s
    %(units_topomap_evoked)s
    %(axes_evoked_plot_topomap)s
    time_unit : str
        The units for the time axis, can be "ms" or "s" (default).

        .. versionadded:: 0.16
    time_format : str | None
        String format for topomap values. Defaults (None) to "%%01d ms" if
        ``time_unit='ms'``, "%%0.3f s" if ``time_unit='s'``, and
        "%%g" otherwise. Can be an empty string to omit the time label.
    %(nrows_ncols_topomap)s Ignored when times == 'interactive'.

        .. versionadded:: 0.20
    %(show)s

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
       The figure.

    Notes
    -----
    When existing ``axes`` are provided and ``colorbar=True``, note that the
    colorbar scale will only accurately reflect topomaps that are generated in
    the same call as the colorbar. Note also that the colorbar will not be
    resized automatically when ``axes`` are provided; use Matplotlib's
    :meth:`axes.set_position() <matplotlib.axes.Axes.set_position>` method or
    :doc:`gridspec <matplotlib:tutorials/intermediate/arranging_axes>`
    interface to adjust the colorbar size yourself.
    """
    import matplotlib.pyplot as plt
    from matplotlib.gridspec import GridSpec
    from matplotlib.widgets import Slider
    from ..evoked import Evoked

    _validate_type(evoked, Evoked, 'evoked')
    _validate_type(colorbar, bool, 'colorbar')
    evoked = evoked.copy()  # make a copy, since we'll be picking
    ch_type = _get_ch_type(evoked, ch_type)
    # time units / formatting
    time_unit, _ = _check_time_unit(time_unit, evoked.times)
    scaling_time = 1. if time_unit == 's' else 1e3
    _validate_type(time_format, (None, str), 'time_format')
    if time_format is None:
        time_format = '%0.3f s' if time_unit == 's' else '%01d ms'
    del time_unit
    # mask_params defaults
    mask_params = _handle_default('mask_params', mask_params)
    mask_params['markersize'] *= size / 2.
    mask_params['markeredgewidth'] *= size / 2.
    # setup various parameters, and prepare outlines
    picks, pos, merge_channels, names, ch_type, sphere, clip_origin = \
        _prepare_topomap_plot(evoked, ch_type, sphere=sphere)
    outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
    # check interactive
    axes_given = axes is not None
    interactive = isinstance(times, str) and times == 'interactive'
    if interactive and axes_given:
        raise ValueError("User-provided axes not allowed when "
                         "times='interactive'.")
    # units, scalings
    key = 'grad' if ch_type.startswith('planar') else ch_type
    default_scaling = _handle_default('scalings', None)[key]
    scaling = _handle_default('scalings', scalings)[key]
    # if non-default scaling, fall back to "AU" if unit wasn't given by user
    key = 'misc' if scaling != default_scaling else key
    unit = _handle_default('units', units)[key]
    # ch_names (required for NIRS)
    ch_names = names
    names = _prepare_sensor_names(names, show_names)
    # apply projections before picking. NOTE: the `if proj is True`
    # anti-pattern is needed here to exclude proj='interactive'
    _check_option('proj', proj, (True, False, 'interactive', 'reconstruct'))
    if proj is True and not evoked.proj:
        evoked.apply_proj()
    elif proj == 'reconstruct':
        evoked._reconstruct_proj()
    data = evoked.data

    # remove compensation matrices (safe: only plotting & already made copy)
    with evoked.info._unlock():
        evoked.info['comps'] = []
    evoked = evoked._pick_drop_channels(picks, verbose=False)
    # determine which times to plot
    if isinstance(axes, plt.Axes):
        axes = [axes]
    n_peaks = len(axes) - int(colorbar) if axes_given else None
    times = _process_times(evoked, times, n_peaks)
    n_times = len(times)
    space = 1 / (2. * evoked.info['sfreq'])
    if (max(times) > max(evoked.times) + space or
            min(times) < min(evoked.times) - space):
        raise ValueError(f'Times should be between {evoked.times[0]:0.3} and '
                         f'{evoked.times[-1]:0.3}.')
    # create axes
    want_axes = n_times + int(colorbar)
    if interactive:
        height_ratios = [5, 1]
        nrows = 2
        ncols = want_axes
        width = size * ncols
        height = size + max(0, 0.1 * (4 - size))
        fig = figure_nobar(figsize=(width * 1.5, height * 1.5))
        g_kwargs = {'left': 0.2, 'right': 0.8, 'bottom': 0.05, 'top': 0.9}
        gs = GridSpec(nrows, ncols, height_ratios=height_ratios, **g_kwargs)
        axes = []
        for ax_idx in range(n_times):
            axes.append(plt.subplot(gs[0, ax_idx]))
    elif axes is None:
        fig, axes, ncols, nrows = _prepare_trellis(
            n_times, ncols=ncols, nrows=nrows, colorbar=colorbar, size=size)
    else:
        nrows, ncols = None, None  # Deactivate ncols when axes were passed
        fig = axes[0].get_figure()
        # check: enough space for colorbar?
        if len(axes) != want_axes:
            cbar_err = ' plus one for the colorbar' if colorbar else ''
            raise RuntimeError(f'You must provide {want_axes} axes (one for '
                               f'each time{cbar_err}), got {len(axes)}.')
    # figure margins
    if not fig.get_constrained_layout():
        side_margin = plt.rcParams['figure.subplot.wspace'] / (2 * want_axes)
        top_margin = max(0.05, .2 / size)
        fig.subplots_adjust(left=side_margin, right=1 - side_margin, bottom=0,
                            top=1 - top_margin)
    # find first index that's >= (to rounding error) to each time point
    time_idx = [np.where(_time_mask(evoked.times, tmin=t, tmax=None,
                                    sfreq=evoked.info['sfreq']))[0][0]
                for t in times]
    # do averaging if requested
    avg_err = ('"average" must be `None`, a positive number of seconds, or '
               'an array-like object of the previous')

    averaged_times = []
    if average is None:
        average = np.array([None] * n_times)
        data = data[np.ix_(picks, time_idx)]
    else:
        if _is_numeric(average):
            average = np.array([average] * n_times)
        elif np.array(average).ndim == 0:
            # It should be an array-like object
            raise TypeError(f'{avg_err}; got type: {type(average)}.')
        else:
            average = np.array(average)

        if len(average) != n_times:
            raise ValueError(
                f'You requested to plot topographic maps for {n_times} time '
                f'points, but provided {len(average)} periods for '
                f'averaging. The number of time points and averaging periods '
                f'must be equal.'
            )
        data_ = np.zeros((len(picks), len(time_idx)))

        for average_idx, (this_average, this_time, this_time_idx) in enumerate(
            zip(average, evoked.times[time_idx], time_idx)
        ):
            if (
                (_is_numeric(this_average) and this_average <= 0) or
                (not _is_numeric(this_average) and this_average is not None)
            ):
                if len(average) == 1:
                    msg = f'{avg_err}; got {this_average}'
                else:
                    msg = f'{avg_err}; got {this_average} in {average}'
                raise ValueError(msg)

            if this_average is None:
                data_[:, average_idx] = data[picks][:, this_time_idx]
                averaged_times.append([this_time])
            else:
                tmin_ = this_time - this_average / 2
                tmax_ = this_time + this_average / 2
                time_mask = (tmin_ < evoked.times) & (evoked.times < tmax_)
                data_[:, average_idx] = data[picks][:, time_mask].mean(-1)
                averaged_times.append(evoked.times[time_mask])
        data = data_

    # apply scalings and merge channels
    data *= scaling
    if merge_channels:
        data, ch_names = _merge_ch_data(data, ch_type, ch_names)
        if ch_type in _fnirs_types:
            merge_channels = False
    # apply mask if requested
    if mask is not None:
        mask = mask.astype(bool, copy=False)
        if ch_type == 'grad':
            mask_ = (mask[np.ix_(picks[::2], time_idx)] |
                     mask[np.ix_(picks[1::2], time_idx)])
        else:  # mag, eeg, planar1, planar2
            mask_ = mask[np.ix_(picks, time_idx)]
    # set up colormap
    _vlim = [_setup_vmin_vmax(data[:, i], *vlim, norm=merge_channels)
             for i in range(n_times)]
    _vlim = (np.min(_vlim), np.max(_vlim))
    cmap = _setup_cmap(cmap, n_axes=n_times, norm=_vlim[0] >= 0)
    # set up contours
    if not isinstance(contours, (list, np.ndarray)):
        _, contours = _set_contour_locator(*_vlim, contours)
    # prepare for main loop over times
    kwargs = dict(sensors=sensors, res=res, names=names,
                  cmap=cmap[0], cnorm=cnorm, mask_params=mask_params,
                  outlines=outlines, contours=contours,
                  image_interp=image_interp, show=False,
                  extrapolate=extrapolate, sphere=sphere,
                  border=border, ch_type=ch_type)
    images, contours_ = [], []
    # loop over times
    for average_idx, (time, this_average) in enumerate(
        zip(times, average)
    ):
        adjust_for_cbar = (colorbar and
                           ncols is not None and
                           average_idx >= ncols - 1)
        ax_idx = average_idx + 1 if adjust_for_cbar else average_idx
        tp, cn, interp = _plot_topomap(
            data[:, average_idx], pos, axes=axes[ax_idx],
            mask=mask_[:, average_idx] if mask is not None else None,
            vmin=_vlim[0], vmax=_vlim[1], **kwargs)

        images.append(tp)
        if cn is not None:
            contours_.append(cn)
        if time_format != '':
            if this_average is None:
                axes_title = time_format % (time * scaling_time)
            else:
                tmin_ = averaged_times[average_idx][0]
                tmax_ = averaged_times[average_idx][-1]
                from_time = time_format % (tmin_ * scaling_time)
                from_time = from_time.split(' ')[0]  # Remove unit
                to_time = time_format % (tmax_ * scaling_time)
                axes_title = f'{from_time} – {to_time}'
                del from_time, to_time, tmin_, tmax_
            axes[ax_idx].set_title(axes_title)

    if interactive:
        kwargs.update(vlim=_vlim)
        axes.append(plt.subplot(gs[1, :-1]))
        slider = Slider(axes[-1], 'Time', evoked.times[0], evoked.times[-1],
                        times[0], valfmt='%1.2fs')
        slider.vline.remove()  # remove initial point indicator
        func = _merge_ch_data if merge_channels else lambda x: x
        changed_callback = partial(_slider_changed, ax=axes[0],
                                   data=evoked.data, times=evoked.times,
                                   pos=pos, scaling=scaling, func=func,
                                   time_format=time_format,
                                   scaling_time=scaling_time, kwargs=kwargs)
        slider.on_changed(changed_callback)
        ts = np.tile(evoked.times, len(evoked.data)).reshape(evoked.data.shape)
        axes[-1].plot(ts, evoked.data, color='k')
        axes[-1].slider = slider

    if colorbar:
        if interactive:
            cax = plt.subplot(gs[0, -1])
            _resize_cbar(cax, ncols, size)
        elif nrows is None or ncols is None:
            # axes were given by the user, so don't resize the colorbar
            cax = axes[-1]
        else:  # use the entire last column
            cax = axes[ncols - 1]
            _resize_cbar(cax, ncols, size)

        if unit is not None:
            cax.set_title(unit)
        cbar = fig.colorbar(images[-1], ax=cax, cax=cax, format=cbar_fmt)
        if cn is not None:
            cbar.set_ticks(contours)
        cbar.ax.tick_params(labelsize=7)
        if cmap[1]:
            for im in images:
                im.axes.CB = DraggableColorbar(cbar, im)

    if proj == 'interactive':
        _check_delayed_ssp(evoked)
        params = dict(
            evoked=evoked, fig=fig, projs=evoked.info['projs'], picks=picks,
            images=images, contours_=contours_, pos=pos, time_idx=time_idx,
            res=res, plot_update_proj_callback=_plot_update_evoked_topomap,
            merge_channels=merge_channels, scale=scaling, axes=axes,
            contours=contours, interp=interp, extrapolate=extrapolate)
        _draw_proj_checkbox(None, params)

    plt_show(show, block=False)
    if axes_given:
        fig.canvas.draw()
    return fig


def _resize_cbar(cax, n_fig_axes, size=1):
    """Resize colorbar."""
    cpos = cax.get_position()
    if size <= 1:
        cpos.x0 = 1 - (0.7 + 0.1 / size) / n_fig_axes
    cpos.x1 = cpos.x0 + 0.1 / n_fig_axes
    cpos.y0 = 0.2
    cpos.y1 = 0.7
    cax.set_position(cpos)


def _slider_changed(val, ax, data, times, pos, scaling, func, time_format,
                    scaling_time, kwargs):
    """Handle selection in interactive topomap."""
    idx = np.argmin(np.abs(times - val))
    data = func(data[:, idx]).ravel() * scaling
    ax.clear()
    im, _ = plot_topomap(data, pos, axes=ax, **kwargs)
    if hasattr(ax, 'CB'):
        ax.CB.mappable = im
        _resize_cbar(ax.CB.cbar.ax, 2)
    if time_format is not None:
        ax.set_title(time_format % (val * scaling_time))


def _plot_topomap_multi_cbar(data, pos, ax, *, vlim, title, unit,
                             cmap, outlines, colorbar, cbar_fmt,
                             sphere, ch_type, sensors, names, mask,
                             mask_params, contours, image_interp,
                             extrapolate, border, res, size, cnorm):
    _hide_frame(ax)
    _vlim = (np.min(data) if vlim[0] is None else vlim[0],
             np.max(data) if vlim[1] is None else vlim[1])
    # this definition of "norm" allows non-diverging colormap for cases
    # where min & vmax are both negative (e.g., when they are power in dB)
    signs = np.sign(_vlim)
    norm = len(set(signs)) == 1 or np.any(signs == 0)

    _cmap = _setup_cmap(cmap, norm=norm)
    if title is not None:
        ax.set_title(title, fontsize=10)
    im, _ = plot_topomap(
        data, pos, ch_type=ch_type, sensors=sensors, names=names,
        mask=mask, mask_params=mask_params, contours=contours,
        outlines=outlines, sphere=sphere, image_interp=image_interp,
        extrapolate=extrapolate, border=border, res=res, size=size,
        cmap=_cmap[0], vlim=_vlim, cnorm=cnorm, axes=ax,
        show=False, onselect=None)

    if colorbar:
        cbar, cax = _add_colorbar(ax, im, cmap, pad=0.25, title=None,
                                  size="10%", format=cbar_fmt)
        cbar.set_ticks(_vlim)
        if unit is not None:
            cbar.ax.set_ylabel(unit, fontsize=8)
        cbar.ax.tick_params(labelsize=8)


@legacy(alt='Epochs.compute_psd().plot_topomap()')
@verbose
def plot_epochs_psd_topomap(epochs, bands=None, tmin=None, tmax=None,
                            proj=False, *, bandwidth=None, adaptive=False,
                            low_bias=True, normalization='length',
                            ch_type=None, normalize=False, agg_fun=None,
                            dB=False, sensors=True, names=None,
                            mask=None, mask_params=None, contours=0,
                            outlines='head', sphere=None,
                            image_interp=_INTERPOLATION_DEFAULT,
                            extrapolate=_EXTRAPOLATE_DEFAULT,
                            border=_BORDER_DEFAULT, res=64, size=1,
                            cmap=None, vlim=(None, None), cnorm=None,
                            colorbar=True, cbar_fmt='auto', units=None,
                            axes=None, show=True, n_jobs=None, verbose=None):
    """Plot the topomap of the power spectral density across epochs.

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs object.
    %(bands_psd_topo)s
    %(tmin_tmax_psd)s
    %(proj_psd)s
    bandwidth : float
        The bandwidth of the multi taper windowing function in Hz. The default
        value is a window half-bandwidth of 4 Hz.
    adaptive : bool
        Use adaptive weights to combine the tapered spectra into PSD
        (slow, use n_jobs >> 1 to speed up computation).
    low_bias : bool
        Only use tapers with more than 90%% spectral concentration within
        bandwidth.
    %(normalization)s
    %(ch_type_topomap_psd)s
    %(normalize_psd_topo)s
    %(agg_fun_psd_topo)s
    %(dB_plot_topomap)s
    %(sensors_topomap)s
    %(names_topomap)s
    %(mask_evoked_topomap)s
    %(mask_params_topomap)s
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s
    %(border_topomap)s
    %(res_topomap)s
    %(size_topomap)s
    %(cmap_topomap)s
    %(vlim_plot_topomap_psd)s

        .. versionadded:: 0.21
    %(cnorm)s

        .. versionadded:: 1.2
    %(colorbar_topomap)s
    %(cbar_fmt_topomap_psd)s
    %(units_topomap)s
    %(axes_spectrum_plot_topomap)s
    %(show)s
    %(n_jobs)s
    %(verbose)s

    Returns
    -------
    fig : instance of Figure
        Figure showing one scalp topography per frequency band.
    """
    return epochs.plot_psd_topomap(
        bands=bands, tmin=tmin, tmax=tmax, proj=proj, method='multitaper',
        ch_type=ch_type, normalize=normalize, agg_fun=agg_fun, dB=dB,
        sensors=sensors, names=names, mask=mask, mask_params=mask_params,
        contours=contours, outlines=outlines, sphere=sphere,
        image_interp=image_interp, extrapolate=extrapolate, border=border,
        res=res, size=size, cmap=cmap, vlim=vlim, cnorm=cnorm,
        colorbar=colorbar, cbar_fmt=cbar_fmt, units=units, axes=None,
        show=True, n_jobs=None, verbose=None, bandwidth=bandwidth,
        low_bias=low_bias, adaptive=adaptive, normalization=normalization)


@fill_doc
def plot_psds_topomap(
        psds, freqs, pos, *, bands=None, ch_type='eeg', normalize=False,
        agg_fun=None, dB=True, sensors=True, names=None, mask=None,
        mask_params=None, contours=0, outlines='head', sphere=None,
        image_interp=_INTERPOLATION_DEFAULT, extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT, res=64, size=1, cmap=None, vlim=(None, None),
        cnorm=None, colorbar=True, cbar_fmt='auto', unit=None, axes=None,
        show=True):
    """Plot spatial maps of PSDs.

    Parameters
    ----------
    psds : array of float, shape (n_channels, n_freqs)
        Power spectral densities.
    freqs : array of float, shape (n_freqs,)
        Frequencies used to compute psds.
    %(pos_topomap_psd)s
    %(bands_psd_topo)s
    %(ch_type_topomap)s
    %(normalize_psd_topo)s
    %(agg_fun_psd_topo)s
    %(dB_plot_topomap)s
    %(sensors_topomap)s
    %(names_topomap)s
    %(mask_evoked_topomap)s
    %(mask_params_topomap)s
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s
    %(border_topomap)s
    %(res_topomap)s
    %(size_topomap)s
    %(cmap_topomap)s
    %(vlim_plot_topomap_psd)s

        .. versionadded:: 0.21
    %(cnorm)s

        .. versionadded:: 1.2
    %(colorbar_topomap)s
    %(cbar_fmt_topomap_psd)s
    unit : str | None
        Measurement unit to be displayed with the colorbar. If ``None``, no
        unit is displayed (only "power" or "dB" as appropriate).
    %(axes_spectrum_plot_topomap)s
    %(show)s

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Figure with a topomap subplot for each band.
    """
    import matplotlib.pyplot as plt
    from matplotlib.axes import Axes

    # handle some defaults
    sphere = _check_sphere(sphere)
    if cbar_fmt == 'auto':
        cbar_fmt = '%0.1f' if dB else '%0.3f'
    # make sure `bands` is a dict
    if bands is None:
        bands = {'Delta (0-4 Hz)': (0, 4), 'Theta (4-8 Hz)': (4, 8),
                 'Alpha (8-12 Hz)': (8, 12), 'Beta (12-30 Hz)': (12, 30),
                 'Gamma (30-45 Hz)': (30, 45)}
    elif not hasattr(bands, 'keys'):
        # convert legacy list-of-tuple input to a dict
        bands = {band[-1]: band[:-1] for band in bands}
        logger.info('converting legacy list-of-tuples input to a dict for the '
                    '`bands` parameter')
    # upconvert single freqs to band upper/lower edges as needed
    bin_spacing = np.diff(freqs)[0]
    bin_edges = np.array([0, bin_spacing]) - bin_spacing / 2
    for band, _edges in bands.items():
        if not hasattr(_edges, '__len__'):
            _edges = (_edges,)
        if len(_edges) == 1:
            bands[band] = tuple(bin_edges
                                + freqs[np.argmin(np.abs(freqs - _edges[0]))])
    # normalize data (if requested)
    if normalize:
        psds /= psds.sum(axis=-1, keepdims=True)
        assert np.allclose(psds.sum(axis=-1), 1.)
    # aggregate within bands
    if agg_fun is None:
        agg_fun = np.sum if normalize else np.mean
    freq_masks = list()
    for band, (fmin, fmax) in bands.items():
        _mask = (fmin < freqs) & (freqs < fmax)
        # make sure no bands are empty
        if _mask.sum() == 0:
            raise RuntimeError(
                f'No frequencies in band "{band}" ({fmin}, {fmax})')
        freq_masks.append(_mask)
    band_data = [agg_fun(psds[:, _mask], axis=1) for _mask in freq_masks]
    if dB and not normalize:
        band_data = [10 * np.log10(_d) for _d in band_data]
    # handle vmin/vmax
    if vlim == 'joint':
        vlim = (np.array(band_data).min(),
                np.array(band_data).max())
    # unit label
    if unit is None:
        unit = 'dB' if dB and not normalize else 'power'
    else:
        _dB = dB and not normalize
        unit = _format_units_psd(unit, dB=_dB)
    # set up figure / axes
    n_axes = len(bands)
    if axes is not None:
        if isinstance(axes, Axes):
            axes = [axes]
        _validate_if_list_of_axes(axes, n_axes)
        fig = axes[0].figure
    else:
        fig, axes = plt.subplots(1, n_axes, figsize=(2 * n_axes, 1.5))
        if n_axes == 1:
            axes = [axes]
    # loop over subplots/frequency bands
    for ax, _mask, _data, (title, (fmin, fmax)) in zip(
            axes, freq_masks, band_data, bands.items()):
        colorbar = vlim != 'joint' or ax == axes[-1]
        _plot_topomap_multi_cbar(
            _data, pos, ax, title=title, vlim=vlim, cmap=cmap,
            outlines=outlines, colorbar=colorbar, unit=unit, cbar_fmt=cbar_fmt,
            sphere=sphere, ch_type=ch_type, sensors=sensors, names=names,
            mask=mask, mask_params=mask_params, contours=contours,
            image_interp=image_interp, extrapolate=extrapolate, border=border,
            res=res, size=size, cnorm=cnorm)

    # TODO avoid tight_layout and draw() if possible
    tight_layout(fig=fig)
    fig.canvas.draw()
    plt_show(show)
    return fig


@fill_doc
def plot_layout(layout, picks=None, show_axes=False, show=True):
    """Plot the sensor positions.

    Parameters
    ----------
    layout : None | Layout
        Layout instance specifying sensor positions.
    %(picks_nostr)s
    show_axes : bool
            Show layout axes if True. Defaults to False.
    show : bool
        Show figure if True. Defaults to True.

    Returns
    -------
    fig : instance of Figure
        Figure containing the sensor topography.

    Notes
    -----
    .. versionadded:: 0.12.0
    """
    import matplotlib.pyplot as plt
    fig = plt.figure(figsize=(max(plt.rcParams['figure.figsize']),) * 2)
    ax = fig.add_subplot(111)
    fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None,
                        hspace=None)
    ax.set(xticks=[], yticks=[], aspect='equal')
    outlines = dict(border=([0, 1, 1, 0, 0], [0, 0, 1, 1, 0]))
    _draw_outlines(ax, outlines)
    picks = _picks_to_idx(len(layout.names), picks)
    pos = layout.pos[picks]
    names = np.array(layout.names)[picks]
    for ii, (p, ch_id) in enumerate(zip(pos, names)):
        center_pos = np.array((p[0] + p[2] / 2., p[1] + p[3] / 2.))
        ax.annotate(ch_id, xy=center_pos, horizontalalignment='center',
                    verticalalignment='center', size='x-small')
        if show_axes:
            x1, x2, y1, y2 = p[0], p[0] + p[2], p[1], p[1] + p[3]
            ax.plot([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1], color='k')
    ax.axis('off')
    tight_layout(fig=fig, pad=0, w_pad=0, h_pad=0)
    plt_show(show)
    return fig


def _onselect(eclick, erelease, tfr, pos, ch_type, itmin, itmax, ifmin, ifmax,
              cmap, fig, layout=None):
    """Handle drawing average tfr over channels called from topomap."""
    import matplotlib.pyplot as plt
    from matplotlib.collections import PathCollection
    ax = eclick.inaxes
    xmin = min(eclick.xdata, erelease.xdata)
    xmax = max(eclick.xdata, erelease.xdata)
    ymin = min(eclick.ydata, erelease.ydata)
    ymax = max(eclick.ydata, erelease.ydata)
    indices = ((pos[:, 0] < xmax) & (pos[:, 0] > xmin) &
               (pos[:, 1] < ymax) & (pos[:, 1] > ymin))
    colors = ['r' if ii else 'k' for ii in indices]
    indices = np.where(indices)[0]
    for collection in ax.collections:
        if isinstance(collection, PathCollection):  # this is our "scatter"
            collection.set_color(colors)
    ax.figure.canvas.draw()
    if len(indices) == 0:
        return
    data = tfr.data
    if ch_type == 'mag':
        picks = pick_types(tfr.info, meg=ch_type, ref_meg=False)
        data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0)
        chs = [tfr.ch_names[picks[x]] for x in indices]
    elif ch_type == 'grad':
        grads = _pair_grad_sensors(tfr.info, layout=layout,
                                   topomap_coords=False)
        idxs = list()
        for idx in indices:
            idxs.append(grads[idx * 2])
            idxs.append(grads[idx * 2 + 1])  # pair of grads
        data = np.mean(data[idxs, ifmin:ifmax, itmin:itmax], axis=0)
        chs = [tfr.ch_names[x] for x in idxs]
    elif ch_type == 'eeg':
        picks = pick_types(tfr.info, meg=False, eeg=True, ref_meg=False)
        data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0)
        chs = [tfr.ch_names[picks[x]] for x in indices]
    logger.info('Averaging TFR over channels ' + str(chs))
    if len(fig) == 0:
        fig.append(figure_nobar())
    if not plt.fignum_exists(fig[0].number):
        fig[0] = figure_nobar()
    ax = fig[0].add_subplot(111)
    itmax = len(tfr.times) - 1 if itmax is None else min(itmax,
                                                         len(tfr.times) - 1)
    ifmax = len(tfr.freqs) - 1 if ifmax is None else min(ifmax,
                                                         len(tfr.freqs) - 1)
    if itmin is None:
        itmin = 0
    if ifmin is None:
        ifmin = 0
    extent = (tfr.times[itmin] * 1e3, tfr.times[itmax] * 1e3, tfr.freqs[ifmin],
              tfr.freqs[ifmax])

    title = 'Average over %d %s channels.' % (len(chs), ch_type)
    ax.set_title(title)
    ax.set_xlabel('Time (ms)')
    ax.set_ylabel('Frequency (Hz)')
    img = ax.imshow(data, extent=extent, aspect="auto", origin="lower",
                    cmap=cmap)
    if len(fig[0].get_axes()) < 2:
        fig[0].get_axes()[1].cbar = fig[0].colorbar(mappable=img)
    else:
        fig[0].get_axes()[1].cbar.on_mappable_changed(mappable=img)
    fig[0].canvas.draw()
    plt.figure(fig[0].number)
    plt_show(True)


def _prepare_topomap(pos, ax, check_nonzero=True):
    """Prepare the topomap axis and check positions.

    Hides axis frame and check that position information is present.
    """
    _hide_frame(ax)
    if check_nonzero and not pos.any():
        raise RuntimeError('No position information found, cannot compute '
                           'geometries for topomap.')


def _hide_frame(ax):
    """Hide axis frame for topomaps."""
    ax.get_yticks()
    ax.xaxis.set_ticks([])
    ax.yaxis.set_ticks([])
    ax.set_frame_on(False)


def _check_extrapolate(extrapolate, ch_type):
    _check_option('extrapolate', extrapolate, ('box', 'local', 'head', 'auto'))
    if extrapolate == 'auto':
        extrapolate = 'local' if ch_type in _MEG_CH_TYPES_SPLIT else 'head'
    return extrapolate


@verbose
def _init_anim(ax, ax_line, ax_cbar, params, merge_channels, sphere, ch_type,
               image_interp, extrapolate, verbose):
    """Initialize animated topomap."""
    logger.info('Initializing animation...')
    data = params['data']
    items = list()
    vmin = params['vmin'] if 'vmin' in params else None
    vmax = params['vmax'] if 'vmax' in params else None
    if params['butterfly']:
        all_times = params['all_times']
        for idx in range(len(data)):
            ax_line.plot(all_times, data[idx], color='k', lw=1)
        vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)
        ax_line.set(yticks=np.around(np.linspace(vmin, vmax, 5), -1),
                    xlim=all_times[[0, -1]])
        params['line'] = ax_line.axvline(all_times[0], color='r')
        items.append(params['line'])
    if merge_channels:
        from mne.channels.layout import _merge_ch_data
        data, _ = _merge_ch_data(data, 'grad', [])
    norm = True if np.min(data) > 0 else False
    cmap = 'Reds' if norm else 'RdBu_r'

    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)

    outlines = _make_head_outlines(sphere, params['pos'], 'head',
                                   params['clip_origin'])

    _hide_frame(ax)
    extent, Xi, Yi, interp = _setup_interp(
        pos=params['pos'], res=64, image_interp=image_interp,
        extrapolate=extrapolate, outlines=outlines, border=0)

    patch_ = _get_patch(outlines, extrapolate, interp, ax)

    params['Zis'] = list()
    for frame in params['frames']:
        params['Zis'].append(interp.set_values(data[:, frame])(Xi, Yi))
    Zi = params['Zis'][0]
    zi_min = np.nanmin(params['Zis'])
    zi_max = np.nanmax(params['Zis'])
    cont_lims = np.linspace(zi_min, zi_max, 7, endpoint=False)[1:]
    params.update({'vmin': vmin, 'vmax': vmax, 'Xi': Xi, 'Yi': Yi, 'Zi': Zi,
                   'extent': extent, 'cmap': cmap, 'cont_lims': cont_lims})
    # plot map and contour
    im = ax.imshow(Zi, cmap=cmap, vmin=vmin, vmax=vmax, origin='lower',
                   aspect='equal', extent=extent,
                   interpolation='bilinear')
    ax.autoscale(enable=True, tight=True)
    ax.figure.colorbar(im, cax=ax_cbar)
    cont = ax.contour(Xi, Yi, Zi, levels=cont_lims, colors='k', linewidths=1)

    im.set_clip_path(patch_)
    text = ax.text(0.55, 0.95, '', transform=ax.transAxes, va='center',
                   ha='right')
    params['text'] = text
    items.append(im)
    items.append(text)
    for col in cont.collections:
        col.set_clip_path(patch_)

    outlines_ = _draw_outlines(ax, outlines)

    params.update({'patch': patch_, 'outlines': outlines_})
    tight_layout(fig=ax.figure)
    return tuple(items) + tuple(cont.collections)


def _animate(frame, ax, ax_line, params):
    """Update animated topomap."""
    if params['pause']:
        frame = params['frame']
    time_idx = params['frames'][frame]

    if params['time_unit'] == 'ms':
        title = '%6.0f ms' % (params['times'][frame] * 1e3,)
    else:
        title = '%6.3f s' % (params['times'][frame],)
    if params['blit']:
        text = params['text']
    else:
        ax.cla()  # Clear old contours.
        text = ax.text(0.45, 1.15, '', transform=ax.transAxes)
        for k, (x, y) in params['outlines'].items():
            if 'mask' in k:
                continue
            ax.plot(x, y, color='k', linewidth=1, clip_on=False)

    _hide_frame(ax)
    text.set_text(title)

    vmin = params['vmin']
    vmax = params['vmax']
    Xi = params['Xi']
    Yi = params['Yi']
    Zi = params['Zis'][frame]
    extent = params['extent']
    cmap = params['cmap']
    patch = params['patch']

    im = ax.imshow(Zi, cmap=cmap, vmin=vmin, vmax=vmax, origin='lower',
                   aspect='equal', extent=extent,
                   interpolation='bilinear')
    cont_lims = params['cont_lims']
    with warnings.catch_warnings(record=True):
        warnings.simplefilter('ignore')
        cont = ax.contour(
            Xi, Yi, Zi, levels=cont_lims, colors='k', linewidths=1)

    im.set_clip_path(patch)
    for col in cont.collections:
        col.set_clip_path(patch)

    items = [im, text]
    if params['butterfly']:
        all_times = params['all_times']
        line = params['line']
        line.remove()
        ylim = ax_line.get_ylim()
        params['line'] = ax_line.axvline(all_times[time_idx], color='r')
        ax_line.set_ylim(ylim)
        items.append(params['line'])
    params['frame'] = frame
    return tuple(items) + tuple(cont.collections)


def _pause_anim(event, params):
    """Pause or continue the animation on mouse click."""
    params['pause'] = not params['pause']


def _key_press(event, params):
    """Handle key presses for the animation."""
    if event.key == 'left':
        params['pause'] = True
        params['frame'] = max(params['frame'] - 1, 0)
    elif event.key == 'right':
        params['pause'] = True
        params['frame'] = min(params['frame'] + 1, len(params['frames']) - 1)


def _topomap_animation(evoked, ch_type, times, frame_rate, butterfly, blit,
                       show, time_unit, sphere, image_interp,
                       extrapolate, *, vmin, vmax, verbose=None):
    """Make animation of evoked data as topomap timeseries.

    See mne.evoked.Evoked.animate_topomap.
    """
    from matplotlib import pyplot as plt, animation
    if ch_type is None:
        ch_type = _picks_by_type(evoked.info)[0][0]
    if ch_type not in ('mag', 'grad', 'eeg',
                       'hbo', 'hbr', 'fnirs_od', 'fnirs_cw_amplitude'):
        raise ValueError("Channel type not supported. Supported channel "
                         "types include 'mag', 'grad', 'eeg'. 'hbo', 'hbr', "
                         "'fnirs_cw_amplitude', and 'fnirs_od'.")
    time_unit, _ = _check_time_unit(time_unit, evoked.times)
    if times is None:
        times = np.linspace(evoked.times[0], evoked.times[-1], 10)
    times = np.array(times)

    if times.ndim != 1:
        raise ValueError('times must be 1D, got %d dimensions' % times.ndim)
    if max(times) > evoked.times[-1] or min(times) < evoked.times[0]:
        raise ValueError('All times must be inside the evoked time series.')
    frames = [np.abs(evoked.times - time).argmin() for time in times]

    picks, pos, merge_channels, _, ch_type, sphere, clip_origin = \
        _prepare_topomap_plot(evoked, ch_type, sphere=sphere)
    data = evoked.data[picks, :]
    data *= _handle_default('scalings')[ch_type]

    norm = np.min(data) >= 0
    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)

    fig = plt.figure(figsize=(6, 5))
    shape = (8, 12)
    colspan = shape[1] - 1
    rowspan = shape[0] - bool(butterfly)
    ax = plt.subplot2grid(shape, (0, 0), rowspan=rowspan, colspan=colspan)
    if butterfly:
        ax_line = plt.subplot2grid(shape, (rowspan, 0), colspan=colspan)
    else:
        ax_line = None
    if isinstance(frames, Integral):
        frames = np.linspace(0, len(evoked.times) - 1, frames).astype(int)
    ax_cbar = plt.subplot2grid(shape, (0, colspan), rowspan=rowspan)
    ax_cbar.set_title(_handle_default('units')[ch_type], fontsize=10)
    extrapolate = _check_extrapolate(extrapolate, ch_type)

    params = dict(data=data, pos=pos, all_times=evoked.times, frame=0,
                  frames=frames, butterfly=butterfly, blit=blit,
                  pause=False, times=times, time_unit=time_unit,
                  clip_origin=clip_origin, vmin=vmin, vmax=vmax)
    init_func = partial(_init_anim, ax=ax, ax_cbar=ax_cbar, ax_line=ax_line,
                        params=params, merge_channels=merge_channels,
                        sphere=sphere, ch_type=ch_type,
                        image_interp=image_interp,
                        extrapolate=extrapolate, verbose=verbose)
    animate_func = partial(_animate, ax=ax, ax_line=ax_line, params=params)
    pause_func = partial(_pause_anim, params=params)
    fig.canvas.mpl_connect('button_press_event', pause_func)
    key_press_func = partial(_key_press, params=params)
    fig.canvas.mpl_connect('key_press_event', key_press_func)
    if frame_rate is None:
        frame_rate = evoked.info['sfreq'] / 10.
    interval = 1000 / frame_rate  # interval is in ms
    anim = animation.FuncAnimation(fig, animate_func, init_func=init_func,
                                   frames=len(frames), interval=interval,
                                   blit=blit)
    fig.mne_animation = anim  # to make sure anim is not garbage collected
    plt_show(show, block=False)
    if 'line' in params:
        # Finally remove the vertical line so it does not appear in saved fig.
        params['line'].remove()

    return fig, anim


def _set_contour_locator(vmin, vmax, contours):
    """Set correct contour levels."""
    locator = None
    if isinstance(contours, Integral) and contours > 0:
        from matplotlib import ticker
        # nbins = ticks - 1, since 2 of the ticks are vmin and vmax, the
        # correct number of bins is equal to contours + 1.
        locator = ticker.MaxNLocator(nbins=contours + 1)
        contours = locator.tick_values(vmin, vmax)
    return locator, contours


def _plot_corrmap(data, subjs, indices, ch_type, ica, label, *, show, outlines,
                  cmap, contours, sensors=False, template=False, sphere=None,
                  image_interp=_INTERPOLATION_DEFAULT,
                  extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT,
                  show_names=False):
    """Customize ica.plot_components for corrmap."""
    if not template:
        title = 'Detected components'
        if label is not None:
            title += ' of type ' + label
    else:
        title = "Supplied template"

    picks = list(range(len(data)))

    p = 20
    if len(picks) > p:  # plot components by sets of 20
        n_components = len(picks)
        figs = [_plot_corrmap(data[k:k + p], subjs[k:k + p],
                              indices[k:k + p], ch_type, ica, label, show=show,
                              outlines=outlines, cmap=cmap, contours=contours,
                              sensors=sensors, image_interp=image_interp,
                              extrapolate=extrapolate, border=border,
                              show_names=show_names)
                for k in range(0, n_components, p)]
        return figs
    elif np.isscalar(picks):
        picks = [picks]

    data_picks, pos, merge_channels, names, _, sphere, clip_origin = \
        _prepare_topomap_plot(ica, ch_type, sphere=sphere)
    names = _prepare_sensor_names(names, show_names)
    outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)

    data = np.atleast_2d(data)
    data = data[:, data_picks]

    # prepare data for iteration
    fig, axes, _, _ = _prepare_trellis(len(picks), ncols=5)
    fig.suptitle(title)

    for ii, data_, ax, subject, idx in zip(picks, data, axes, subjs, indices):
        if template:
            ttl = 'Subj. {}, {}'.format(subject, ica._ica_names[idx])
            ax.set_title(ttl, fontsize=12)
        else:
            ax.set_title('Subj. {}'.format(subject))
        if merge_channels:
            data_, _ = _merge_ch_data(data_, ch_type, [])
        _vlim = _setup_vmin_vmax(data_, None, None)
        plot_topomap(data_.flatten(), pos, vlim=_vlim, names=names,
                     res=64, axes=ax, cmap=cmap, outlines=outlines,
                     contours=contours, show=False, sensors=sensors,
                     image_interp=image_interp, extrapolate=extrapolate,
                     border=border)
        _hide_frame(ax)
    tight_layout(fig=fig)
    fig.subplots_adjust(top=0.8)
    fig.canvas.draw()
    plt_show(show)
    return fig


def _trigradient(x, y, z):
    """Take gradients of z on a mesh."""
    from matplotlib.tri import CubicTriInterpolator, Triangulation
    with warnings.catch_warnings():  # catch matplotlib warnings
        warnings.filterwarnings("ignore", category=DeprecationWarning)
        tri = Triangulation(x, y)
        tci = CubicTriInterpolator(tri, z)
        dx, dy = tci.gradient(tri.x, tri.y)
    return dx, dy


@fill_doc
def plot_arrowmap(data, info_from, info_to=None, scale=3e-10,
                  vlim=(None, None), cnorm=None, cmap=None, sensors=True,
                  res=64, axes=None, show_names=False, mask=None,
                  mask_params=None, outlines='head', contours=6,
                  image_interp=_INTERPOLATION_DEFAULT, show=True,
                  onselect=None, extrapolate=_EXTRAPOLATE_DEFAULT,
                  sphere=None):
    """Plot arrow map.

    Compute arrowmaps, based upon the Hosaka-Cohen transformation
    :footcite:`CohenHosaka1976`, these arrows represents an estimation of the
    current flow underneath the MEG sensors. They are a poor man's MNE.

    Since planar gradiometers takes gradients along latitude and longitude,
    they need to be projected to the flattened manifold span by magnetometer
    or radial gradiometers before taking the gradients in the 2D Cartesian
    coordinate system for visualization on the 2D topoplot. You can use the
    ``info_from`` and ``info_to`` parameters to interpolate from
    gradiometer data to magnetometer data.

    Parameters
    ----------
    data : array, shape (n_channels,)
        The data values to plot.
    info_from : instance of Info
        The measurement info from data to interpolate from.
    info_to : instance of Info | None
        The measurement info to interpolate to. If None, it is assumed
        to be the same as info_from.
    scale : float, default 3e-10
        To scale the arrows.
    %(vlim_plot_topomap)s

        .. versionadded:: 1.2
    %(cnorm)s

        .. versionadded:: 1.2
    %(cmap_topomap_simple)s
    %(sensors_topomap)s
    %(res_topomap)s
    %(axes_plot_topomap)s
    %(show_names_topomap)s
        If ``True``, a list of names must be provided (see ``names`` keyword).
    %(mask_topomap)s
    %(mask_params_topomap)s
    %(outlines_topomap)s
    %(contours_topomap)s
    %(image_interp_topomap)s
    %(show)s
    onselect : callable | None
        Handle for a function that is called when the user selects a set of
        channels by rectangle selection (matplotlib ``RectangleSelector``). If
        None interactive selection is disabled. Defaults to None.
    %(extrapolate_topomap)s

        .. versionadded:: 0.18
    %(sphere_topomap_auto)s

    Returns
    -------
    fig : matplotlib.figure.Figure
        The Figure of the plot.

    Notes
    -----
    .. versionadded:: 0.17

    References
    ----------
    .. footbibliography::
    """
    from matplotlib import pyplot as plt
    from ..forward import _map_meg_or_eeg_channels

    sphere = _check_sphere(sphere, info_from)
    ch_type = _picks_by_type(info_from)

    if len(ch_type) > 1:
        raise ValueError('Multiple channel types are not supported.'
                         'All channels must either be of type \'grad\' '
                         'or \'mag\'.')
    else:
        ch_type = ch_type[0][0]

    if ch_type not in ('mag', 'grad'):
        raise ValueError("Channel type '%s' not supported. Supported channel "
                         "types are 'mag' and 'grad'." % ch_type)

    if info_to is None and ch_type == 'mag':
        info_to = info_from
    else:
        ch_type = _picks_by_type(info_to)
        if len(ch_type) > 1:
            raise ValueError("Multiple channel types are not supported.")
        else:
            ch_type = ch_type[0][0]

        if ch_type != 'mag':
            raise ValueError("only 'mag' channel type is supported. "
                             "Got %s" % ch_type)

    if info_to is not info_from:
        info_to = pick_info(info_to, pick_types(info_to, meg=True))
        info_from = pick_info(info_from, pick_types(info_from, meg=True))
        # XXX should probably support the "origin" argument
        mapping = _map_meg_or_eeg_channels(
            info_from, info_to, origin=(0., 0., 0.04), mode='accurate')
        data = np.dot(mapping, data)

    _, pos, _, _, _, sphere, clip_origin = \
        _prepare_topomap_plot(info_to, 'mag', sphere=sphere)
    outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
    if axes is None:
        fig, axes = plt.subplots()
    else:
        fig = axes.figure
    plot_topomap(data, pos, axes=axes, vlim=vlim, cmap=cmap, cnorm=cnorm,
                 sensors=sensors, res=res, mask=mask, mask_params=mask_params,
                 outlines=outlines, contours=contours,
                 image_interp=image_interp, show=False, onselect=onselect,
                 extrapolate=extrapolate, sphere=sphere, ch_type=ch_type)
    x, y = tuple(pos.T)
    dx, dy = _trigradient(x, y, data)
    dxx = dy.data
    dyy = -dx.data
    axes.quiver(x, y, dxx, dyy, scale=scale, color='k', lw=1, clip_on=False)
    axes.figure.canvas.draw_idle()
    with warnings.catch_warnings(record=True):
        warnings.simplefilter('ignore')
        tight_layout(fig=fig)
    plt_show(show)

    return fig


@fill_doc
def plot_bridged_electrodes(info, bridged_idx, ed_matrix, title=None,
                            topomap_args=None):
    """Topoplot electrode distance matrix with bridged electrodes connected.

    Parameters
    ----------
    %(info_not_none)s
    bridged_idx : list of tuple
        The indices of channels marked as bridged with each bridged
        pair stored as a tuple.
        Can be generated via
        :func:`mne.preprocessing.compute_bridged_electrodes`.
    ed_matrix : array of float, shape (n_channels, n_channels)
        The electrical distance matrix for each pair of EEG electrodes.
        Can be generated via
        :func:`mne.preprocessing.compute_bridged_electrodes`.
    title : str
        A title to add to the plot.
    topomap_args : dict | None
        Arguments to pass to :func:`mne.viz.plot_topomap`.

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        The topoplot figure handle.

    See Also
    --------
    mne.preprocessing.compute_bridged_electrodes
    """
    import matplotlib.pyplot as plt
    if topomap_args is None:
        topomap_args = dict()
    else:
        topomap_args = topomap_args.copy()  # don't change original
    picks = pick_types(info, eeg=True)
    topomap_args.setdefault('image_interp', 'nearest')
    topomap_args.setdefault('cmap', 'summer_r')
    topomap_args.setdefault('names', pick_info(info, picks).ch_names)
    topomap_args.setdefault('contours', False)
    sphere = topomap_args.get('sphere', _check_sphere(None))
    if 'axes' not in topomap_args:
        fig, ax = plt.subplots()
        topomap_args['axes'] = ax
    else:
        fig = None
    # handle colorbar here instead of in plot_topomap
    colorbar = topomap_args.pop('colorbar', True)
    if ed_matrix.shape[1:] != (picks.size, picks.size):
        raise RuntimeError(
            f'Expected {(ed_matrix.shape[0], picks.size, picks.size)} '
            f'shaped `ed_matrix`, got {ed_matrix.shape}')
    # fill in lower triangular
    ed_matrix = ed_matrix.copy()
    tril_idx = np.tril_indices(picks.size)
    for epo_idx in range(ed_matrix.shape[0]):
        ed_matrix[epo_idx][tril_idx] = ed_matrix[epo_idx].T[tril_idx]
    elec_dists = np.median(np.nanmin(ed_matrix, axis=1), axis=0)

    im, cn = plot_topomap(elec_dists, pick_info(info, picks), **topomap_args)
    fig = im.figure if fig is None else fig
    # add bridged connections
    for idx0, idx1 in bridged_idx:
        pos = _find_topomap_coords(info, [idx0, idx1], sphere=sphere)
        im.axes.plot([pos[0, 0], pos[1, 0]],
                     [pos[0, 1], pos[1, 1]], color='r')
    if title is not None:
        im.axes.set_title(title)
    if colorbar:
        cax = fig.colorbar(im)
        cax.set_label(r'Electrical Distance ($\mu$$V^2$)')
    return fig


def plot_ch_adjacency(info, adjacency, ch_names, kind='2d', edit=False):
    """Plot channel adjacency.

    Parameters
    ----------
    info : instance of Info
        Info object with channel locations.
    adjacency : array
        Array of channels x channels shape. Defines which channels are adjacent
        to each other. Note that if you edit adjacencies
        (via ``edit=True``), this array will be modified in place.
    ch_names : list of str
        Names of successive channels in the ``adjacency`` matrix.
    kind : str
        How to plot the adjacency. Can be either ``'3d'`` or ``'2d'``.
    edit : bool
        Whether to allow interactive editing of the adjacency matrix via
        clicking respective channel pairs. Once clicked, the channel is
        "activated" and turns green. Clicking on another channel adds or
        removes adjacency relation between the activated and newly clicked
        channel (depending on whether the channels are already adjacent or
        not); the newly clicked channel now becomes activated. Clicking on
        an activated channel deactivates it. Editing is currently only
        supported for ``kind='2d'``.

    Returns
    -------
    fig : Figure
        The :class:`~matplotlib.figure.Figure` instance where the channel
        adjacency is plotted.

    See Also
    --------
    mne.channels.get_builtin_ch_adjacencies
    mne.channels.read_ch_adjacency
    mne.channels.find_ch_adjacency

    Notes
    -----
    .. versionadded:: 1.1
    """
    from scipy import sparse
    import matplotlib as mpl
    import matplotlib.pyplot as plt

    from . import plot_sensors

    _validate_type(info, Info, 'info')
    _validate_type(adjacency, (np.ndarray, sparse.csr_matrix), 'adjacency')
    has_sparse = isinstance(adjacency, sparse.csr_matrix)

    if edit and kind == '3d':
        raise ValueError('Editing a 3d adjacency plot is not supported.')

    # select relevant channels
    sel = pick_channels(info.ch_names, ch_names, ordered=True)
    info = pick_info(info, sel)

    # make sure adjacency is correct size wrt to inst:
    n_channels = len(info.ch_names)
    if adjacency.shape[0] != n_channels:
        raise ValueError('``adjacency`` must have the same number of rows '
                         'as the number of channels in ``info``. Found '
                         f'{adjacency.shape[0]} channels for ``adjacency`` and'
                         f' {n_channels} for ``inst``.')

    if kind == '3d':
        with plt.rc_context({'toolbar': 'None'}):
            fig = plot_sensors(info, kind=kind, show=False)
        _set_3d_axes_equal(fig.axes[0])
    elif kind == '2d':
        with plt.rc_context({'toolbar': 'None'}):
            fig = plot_sensors(info, kind='topomap', show=False)
        fig.axes[0].axis('equal')

    path_collection = fig.axes[0].findobj(mpl.collections.PathCollection)
    path_collection[0].set_linewidths(0.)

    if kind == '2d':
        path_collection[0].set_alpha(0.7)
        pos = path_collection[0].get_offsets()

        # make sure nodes are on top
        path_collection[0].set_zorder(10)

        # scale node size with number of connections
        n_connections = [np.sum(adjacency[i]) - 1
                         for i in range(adjacency.shape[0])]
        node_size = [max(x, 3) ** 2.5 for x in n_connections]
        path_collection[0].set_sizes(node_size)
    else:
        # plotting channel positions via mne.viz.plot_sensors(info) and using
        # the coordinates from info['chs'][ch_idx]['loc][:3] gives different
        # positions. Also .get_offsets gives 2d projections even for 3d points
        # so we use the private _offsets3d property...
        pos = path_collection[0]._offsets3d
        pos = np.stack([pos[0].data, pos[1].data, pos[2]], axis=1)

    ax = fig.axes[0]
    lines = dict()
    n_channels = adjacency.shape[0]
    for ch_idx in range(n_channels):
        # make sure we don't repeat channels
        row = adjacency[ch_idx, ch_idx + 1:]
        if has_sparse:
            ch_neighbours = row.nonzero()[1]
        else:
            ch_neighbours = np.where(row)[0]

        if len(ch_neighbours) == 0:
            continue

        ch_neighbours += ch_idx + 1

        for ngb_idx in ch_neighbours:
            this_pos = pos[[ch_idx, ngb_idx], :]
            ch_pair = tuple([ch_idx, ngb_idx])
            lines[ch_pair] = ax.plot(*this_pos.T, color=(0.55, 0.55, 0.55),
                                     lw=0.75)[0]

    if edit:
        # allow interactivity in 2d plots
        highlighted = dict()
        this_onpick = partial(_onpick_ch_adjacency, axes=ax, positions=pos,
                              highlighted=highlighted, line_dict=lines,
                              adjacency=adjacency, node_size=node_size,
                              path_collection=path_collection)
        fig.canvas.mpl_connect('pick_event', this_onpick)

    return fig


def _onpick_ch_adjacency(event, axes=None, positions=None, highlighted=None,
                         line_dict=None, adjacency=None, node_size=None,
                         path_collection=None):
    """Handle interactivity in plot_ch_adjacency."""
    node_ind = event.ind[0]

    if node_ind in highlighted:
        # de-select node, change its color back to normal
        highlighted[node_ind].remove()
        del highlighted[node_ind]
        axes.figure.canvas.draw()
    else:
        # new node selected
        if len(highlighted) == 0:
            # no highlighted nodes yet
            size = max(node_size[node_ind] * 2, 100)
            # add current node
            dots = axes.scatter(
                *positions[node_ind, :].T, color='tab:green', s=size,
                zorder=15)
            highlighted[node_ind] = dots
            axes.figure.canvas.draw()  # make sure it renders
        else:
            # one previously highlighted - add or remove line
            key = list(highlighted.keys())[0]
            both_nodes = [key, node_ind]
            both_nodes.sort()
            both_nodes = tuple(both_nodes)

            if both_nodes in line_dict.keys():
                # remove line
                n_conn_change = -1
                line_dict[both_nodes].remove()
                # remove line_dict entry
                del line_dict[both_nodes]

                # clear adjacency matrix entry
                _set_adjacency(adjacency, both_nodes, False)
            else:
                # add line
                n_conn_change = +1
                selected_pos = positions[both_nodes, :]
                line = axes.plot(*selected_pos.T, color='tab:green')[0]
                # add line to line_dict
                line_dict[both_nodes] = line

                # modify adjacency matrix
                _set_adjacency(adjacency, both_nodes, True)

            # de-highlight previous
            highlighted[key].remove()
            del highlighted[key]

            # update node sizes
            n_connections = [np.sum(adjacency[idx]) - 1 + n_conn_change
                             for idx in both_nodes]
            for idx, n_conn in zip(both_nodes, n_connections):
                node_size[idx] = max(n_conn, 3) ** 2.5
            path_collection[0].set_sizes(node_size)

            # highlight new node
            size = max(node_size[node_ind] * 2, 100)
            dots = axes.scatter(
                *positions[node_ind, :].T, color='tab:green', s=size,
                zorder=15)
            highlighted[node_ind] = dots
            axes.figure.canvas.draw()


def _set_adjacency(adjacency, both_nodes, value):
    """Set adjacency for given node pair, caching errors for sparse arrays."""
    import warnings

    with warnings.catch_warnings(record=True):
        adjacency[both_nodes, both_nodes[::-1]] = value


@fill_doc
def plot_regression_weights(
        model, *, ch_type=None, sensors=True, show_names=False,
        mask=None, mask_params=None, contours=6, outlines='head', sphere=None,
        image_interp=_INTERPOLATION_DEFAULT, extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT, res=64, size=1, cmap=None, vlim=(None, None),
        cnorm=None, axes=None, colorbar=True, cbar_fmt='%1.1e', title=None,
        show=True):
    """Plot the regression weights of a fitted EOGRegression model.

    Parameters
    ----------
    model : EOGRegression
        The fitted EOGRegression model whose weights will be plotted.
    %(ch_type_topomap)s
    %(sensors_topomap)s
    %(show_names_topomap)s
    %(mask_topomap)s
    %(mask_params_topomap)s
    %(contours_topomap)s
    %(outlines_topomap)s
    %(sphere_topomap_auto)s
    %(image_interp_topomap)s
    %(extrapolate_topomap)s
    %(border_topomap)s
    %(res_topomap)s
    %(size_topomap)s
    %(cmap_topomap)s
    %(vlim_plot_topomap)s
    %(cnorm)s
    %(axes_evoked_plot_topomap)s
    %(colorbar_topomap)s
    %(cbar_fmt_topomap)s
    %(title_none)s
    %(show)s

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Figure with a topomap subplot for each channel type.

    Notes
    -----
    .. versionadded:: 1.2
    """
    import matplotlib
    import matplotlib.pyplot as plt
    sphere = _check_sphere(sphere)
    if ch_type is None:
        ch_types = _get_channel_types(
            model.info_, unique=True, only_data_chs=True)
    else:
        ch_types = [ch_type]
    del ch_type

    nrows = model.coef_.shape[1]
    ncols = len(ch_types)

    axes_was_none = axes is None
    if axes_was_none:
        fig, axes = plt.subplots(nrows, ncols, squeeze=False,
                                 figsize=(ncols * 2, nrows * 1.5 + 1))
        axes = axes.T.ravel()
    else:
        if isinstance(axes, matplotlib.axes.Axes):
            axes = [axes]
        fig = axes[0].get_figure()
    if len(axes) != nrows * ncols:
        raise ValueError(f'axes must be a list of {nrows * ncols} axes, got '
                         f'length {len(axes)} ({axes}).')
    axes = iter(axes)

    data_picks = _picks_to_idx(model.info_, model.picks, exclude=model.exclude)
    data_info = pick_info(model.info_, data_picks)
    artifact_ch_names = [
        model.info_['chs'][idx]['ch_name']
        for idx in _picks_to_idx(model.info_, model.picks_artifact)]

    for ch_type in ch_types:
        data_picks, pos, merge_channels, names, ch_type, sphere, clip_origin =\
            _prepare_topomap_plot(data_info, ch_type=ch_type, sphere=sphere)
        outlines = _make_head_outlines(sphere, pos, outlines=outlines,
                                       clip_origin=clip_origin)
        coef = model.coef_[data_picks]
        for data, ch_name in zip(coef.T, artifact_ch_names):
            if merge_channels:
                data, names = _merge_ch_data(data, ch_type, names)
            ax = next(axes)
            names = _prepare_sensor_names(data_info.ch_names, show_names)

            _plot_topomap_multi_cbar(
                data, pos, ax, title=f'{ch_type}/{ch_name}', vlim=vlim,
                cmap=cmap, outlines=outlines, colorbar=colorbar,
                unit='', cbar_fmt=cbar_fmt, sphere=sphere, ch_type=ch_type,
                sensors=sensors, names=names, mask=mask,
                mask_params=mask_params, contours=contours,
                image_interp=image_interp, extrapolate=extrapolate,
                border=border, res=res, size=size, cnorm=cnorm)
    if axes_was_none:
        fig.suptitle(title)
        fig.subplots_adjust(top=0.88, bottom=0.06, left=0.025, right=0.911,
                            hspace=0.2, wspace=0.5)
    plt_show(show)
    return fig