1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
# -*- coding: utf-8 -*-
"""
.. _tut-working-with-seeg:
======================
Working with sEEG data
======================
MNE-Python supports working with more than just MEG and EEG data. Here we show
some of the functions that can be used to facilitate working with
stereoelectroencephalography (sEEG) data.
This example shows how to use:
- sEEG data
- channel locations in MNI space
- projection into a volume
Note that our sample sEEG electrodes are already assumed to be in MNI
space. If you want to map positions from your subject MRI space to MNI
fsaverage space, you must apply the FreeSurfer's talairach.xfm transform
for your dataset. You can take a look at :ref:`tut-freesurfer-mne` for more
information.
For an example that involves ECoG data, channel locations in a
subject-specific MRI, or projection into a surface, see
:ref:`tut-working-with-ecog`. In the ECoG example, we show
how to visualize surface grid channels on the brain.
Please note that this tutorial requires 3D plotting dependencies,
see :ref:`manual-install`.
"""
# Authors: Eric Larson <larson.eric.d@gmail.com>
# Adam Li <adam2392@gmail.com>
# Alex Rockhill <aprockhill@mailbox.org>
#
# License: BSD-3-Clause
# %%
import numpy as np
import mne
from mne.datasets import fetch_fsaverage
# paths to mne datasets - sample sEEG and FreeSurfer's fsaverage subject
# which is in MNI space
misc_path = mne.datasets.misc.data_path()
sample_path = mne.datasets.sample.data_path()
subjects_dir = sample_path / 'subjects'
# use mne-python's fsaverage data
fetch_fsaverage(subjects_dir=subjects_dir, verbose=True) # downloads if needed
# %%
# Let's load some sEEG data with channel locations and make epochs.
raw = mne.io.read_raw(misc_path / 'seeg' / 'sample_seeg_ieeg.fif')
events, event_id = mne.events_from_annotations(raw)
epochs = mne.Epochs(raw, events, event_id, detrend=1, baseline=None)
epochs = epochs['Response'][0] # just process one epoch of data for speed
# %%
# Let use the Talairach transform computed in the Freesurfer recon-all
# to apply the Freesurfer surface RAS ('mri') to MNI ('mni_tal') transform.
montage = epochs.get_montage()
# first we need a head to mri transform since the data is stored in "head"
# coordinates, let's load the mri to head transform and invert it
this_subject_dir = misc_path / 'seeg'
head_mri_t = mne.coreg.estimate_head_mri_t('sample_seeg', this_subject_dir)
# apply the transform to our montage
montage.apply_trans(head_mri_t)
# now let's load our Talairach transform and apply it
mri_mni_t = mne.read_talxfm('sample_seeg', misc_path / 'seeg')
montage.apply_trans(mri_mni_t) # mri to mni_tal (MNI Taliarach)
# for fsaverage, "mri" and "mni_tal" are equivalent and, since
# we want to plot in fsaverage "mri" space, we need use an identity
# transform to equate these coordinate frames
montage.apply_trans(
mne.transforms.Transform(fro='mni_tal', to='mri', trans=np.eye(4)))
epochs.set_montage(montage)
# %%
# Let's check to make sure everything is aligned.
#
# .. note::
# The most rostral electrode in the temporal lobe is outside the
# fsaverage template brain. This is not ideal but it is the best that
# the linear Talairach transform can accomplish. A more complex
# transform is necessary for more accurate warping, see
# :ref:`tut-ieeg-localize`.
# compute the transform to head for plotting
trans = mne.channels.compute_native_head_t(montage)
# note that this is the same as:
# ``mne.transforms.invert_transform(
# mne.transforms.combine_transforms(head_mri_t, mri_mni_t))``
fig = mne.viz.plot_alignment(epochs.info, trans, 'fsaverage',
subjects_dir=subjects_dir, show_axes=True,
surfaces=['pial', 'head'], coord_frame='mri')
# %%
# Let's also look at which regions of interest are nearby our electrode
# contacts.
aseg = 'aparc+aseg' # parcellation/anatomical segmentation atlas
labels, colors = mne.get_montage_volume_labels(
montage, 'fsaverage', subjects_dir=subjects_dir, aseg=aseg)
# separate by electrodes which have names like LAMY 1
electrodes = set([''.join([lttr for lttr in ch_name
if not lttr.isdigit() and lttr != ' '])
for ch_name in montage.ch_names])
print(f'Electrodes in the dataset: {electrodes}')
electrodes = ('LPM', 'LSMA') # choose two for this example
for elec in electrodes:
picks = [ch_name for ch_name in epochs.ch_names if elec in ch_name]
fig, ax = mne.viz.plot_channel_labels_circle(labels, colors, picks=picks)
fig.text(0.3, 0.9, 'Anatomical Labels', color='white')
# %%
# Now, let's the electrodes and a few regions of interest that the contacts
# of the electrode are proximal to.
picks = [ii for ii, ch_name in enumerate(epochs.ch_names) if
any([elec in ch_name for elec in electrodes])]
labels = ('ctx-lh-caudalmiddlefrontal', 'ctx-lh-precentral',
'ctx-lh-superiorfrontal', 'Left-Putamen')
fig = mne.viz.plot_alignment(mne.pick_info(epochs.info, picks), trans,
'fsaverage', subjects_dir=subjects_dir,
surfaces=[], coord_frame='mri')
brain = mne.viz.Brain('fsaverage', alpha=0.1, cortex='low_contrast',
subjects_dir=subjects_dir, units='m', figure=fig)
brain.add_volume_labels(aseg='aparc+aseg', labels=labels)
brain.show_view(azimuth=120, elevation=90, distance=0.25)
# %%
# Next, we'll get the epoch data and plot its amplitude over time.
epochs.plot()
# %%
# We can visualize this raw data on the ``fsaverage`` brain (in MNI space) as
# a heatmap. This works by first creating an ``Evoked`` data structure
# from the data of interest (in this example, it is just the raw LFP).
# Then one should generate a ``stc`` data structure, which will be able
# to visualize source activity on the brain in various different formats.
# get standard fsaverage volume (5mm grid) source space
fname_src = (subjects_dir / 'fsaverage' / 'bem' /
'fsaverage-vol-5-src.fif')
vol_src = mne.read_source_spaces(fname_src)
evoked = epochs.average()
stc = mne.stc_near_sensors(
evoked, trans, 'fsaverage', subjects_dir=subjects_dir, src=vol_src,
verbose='error') # ignore missing electrode warnings
stc = abs(stc) # just look at magnitude
clim = dict(kind='value', lims=np.percentile(abs(evoked.data), [10, 50, 75]))
# %%
# Plot 3D source (brain region) visualization:
#
# By default, `stc.plot_3d() <mne.VolSourceEstimate.plot_3d>` will show a time
# course of the source with the largest absolute value across any time point.
# In this example, it is simply the source with the largest raw signal value.
# Its location is marked on the brain by a small blue sphere.
# sphinx_gallery_thumbnail_number = 6
brain = stc.plot_3d(
src=vol_src, subjects_dir=subjects_dir,
view_layout='horizontal', views=['axial', 'coronal', 'sagittal'],
size=(800, 300), show_traces=0.4, clim=clim,
add_data_kwargs=dict(colorbar_kwargs=dict(label_font_size=8)))
# You can save a movie like the one on our documentation website with:
# brain.save_movie(time_dilation=3, interpolation='linear', framerate=5,
# time_viewer=True, filename='./mne-test-seeg.m4')
# %%
# In this tutorial, we used a BEM surface for the ``fsaverage`` subject from
# FreeSurfer.
#
# For additional common analyses of interest, see the following:
#
# - For volumetric plotting options, including limiting to a specific area of
# the volume specified by say an atlas, or plotting different types of
# source visualizations see:
# :ref:`tut-viz-stcs`.
# - For extracting activation within a specific FreeSurfer volume and using
# different FreeSurfer volumes, see: :ref:`tut-freesurfer-mne`.
# - For working with BEM surfaces and using FreeSurfer, or MNE to generate
# them, see: :ref:`tut-forward`.
|