1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# -*- coding: utf-8 -*-
"""
.. _tut-working-with-ecog:
======================
Working with ECoG data
======================
MNE supports working with more than just MEG and EEG data. Here we show some
of the functions that can be used to facilitate working with
electrocorticography (ECoG) data.
This example shows how to use:
- ECoG data (`available here <https://openneuro.org/datasets/ds003029>`__) from
an epilepsy patient during a seizure
- channel locations in FreeSurfer's ``fsaverage`` MRI space
- projection onto a pial surface
For a complementary example that involves sEEG data, channel locations in MNI
space, or projection into a volume, see :ref:`tut-working-with-seeg`.
Please note that this tutorial requires 3D plotting dependencies (see
:ref:`manual-install`) as well as ``mne-bids`` which can be installed using
``pip``.
"""
# Authors: Eric Larson <larson.eric.d@gmail.com>
# Chris Holdgraf <choldgraf@gmail.com>
# Adam Li <adam2392@gmail.com>
# Alex Rockhill <aprockhill@mailbox.org>
# Liberty Hamilton <libertyhamilton@gmail.com>
#
# License: BSD-3-Clause
# %%
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mne_bids import BIDSPath, read_raw_bids
import mne
from mne.viz import plot_alignment, snapshot_brain_montage
print(__doc__)
# paths to mne datasets - sample ECoG and FreeSurfer subject
bids_root = mne.datasets.epilepsy_ecog.data_path()
sample_path = mne.datasets.sample.data_path()
subjects_dir = sample_path / 'subjects'
# %%
# Load in data and perform basic preprocessing
# --------------------------------------------
#
# Let's load some ECoG electrode data with `mne-bids
# <https://mne.tools/mne-bids/>`_.
#
# .. note::
# Downsampling is just to save execution time in this example, you should
# not need to do this in general!
# first define the bids path
bids_path = BIDSPath(root=bids_root, subject='pt1', session='presurgery',
task='ictal', datatype='ieeg', extension='.vhdr')
# Then we'll use it to load in the sample dataset. This function changes the
# units of some channels, so we suppress a related warning here by using
# verbose='error'.
raw = read_raw_bids(bids_path=bids_path, verbose='error')
# Pick only the ECoG channels, removing the EKG channels
raw.pick_types(ecog=True)
# Load the data
raw.load_data()
# Then we remove line frequency interference
raw.notch_filter([60], trans_bandwidth=3)
# drop bad channels
raw.drop_channels(raw.info['bads'])
# the coordinate frame of the montage
montage = raw.get_montage()
print(montage.get_positions()['coord_frame'])
# add fiducials to montage
montage.add_mni_fiducials(subjects_dir)
# now with fiducials assigned, the montage will be properly converted
# to "head" which is what MNE requires internally (this is the coordinate
# system with the origin between LPA and RPA whereas MNI has the origin
# at the posterior commissure)
raw.set_montage(montage)
# Find the annotated events
events, event_id = mne.events_from_annotations(raw)
# Make a 25 second epoch that spans before and after the seizure onset
epoch_length = 25 # seconds
epochs = mne.Epochs(raw, events, event_id=event_id['onset'],
tmin=13, tmax=13 + epoch_length, baseline=None)
# Make evoked from the one epoch and resample
evoked = epochs.average().resample(200)
del epochs
# %%
# Explore the electrodes on a template brain
# ------------------------------------------
#
# Our electrodes are shown after being morphed to fsaverage brain so we'll use
# this fsaverage brain to plot the locations of our electrodes. We'll use
# :func:`~mne.viz.snapshot_brain_montage` to save the plot as image data
# (along with xy positions of each electrode in the image), so that later
# we can plot frequency band power on top of it.
fig = plot_alignment(raw.info, trans='fsaverage',
subject='fsaverage', subjects_dir=subjects_dir,
surfaces=['pial'], coord_frame='head', sensor_colors=None)
mne.viz.set_3d_view(fig, azimuth=0, elevation=70)
xy, im = snapshot_brain_montage(fig, raw.info)
# %%
# Compute frequency features of the data
# --------------------------------------
#
# Next, we'll compute the signal power in the gamma (30-90 Hz) band,
# downsampling the result to 10 Hz (to save time).
sfreq = 10
gamma_power_t = evoked.copy().filter(30, 90).apply_hilbert(
envelope=True).resample(sfreq)
gamma_info = gamma_power_t.info
# %%
# Plot Gamma Power on cortical sensors
# --------------------------------------
#
# We will now use evoked gamma power to plot on the cortical surface.
# Therefore we extract the evoked time sample at 15s and normalize
# it in a range of 0 to 1 in order to map it using a matplotlib colormap.
gamma_power_at_15s = gamma_power_t.to_data_frame(index='time').loc[15]
# scale values to be between 0 and 1, then map to colors
gamma_power_at_15s -= gamma_power_at_15s.min()
gamma_power_at_15s /= gamma_power_at_15s.max()
rgba = cm.get_cmap("viridis")
sensor_colors = gamma_power_at_15s.map(rgba).tolist()
fig = plot_alignment(raw.info, trans='fsaverage',
subject='fsaverage', subjects_dir=subjects_dir,
surfaces=['pial'], coord_frame='head',
sensor_colors=sensor_colors)
mne.viz.set_3d_view(fig, azimuth=0, elevation=70)
xy, im = snapshot_brain_montage(fig, raw.info)
# %%
# Visualize the time-evolution of the gamma power on the brain
# ------------------------------------------------------------
#
# Say we want to visualize the evolution of the power in the gamma band,
# instead of just plotting the average. We can use
# `matplotlib.animation.FuncAnimation` to create an animation and apply this
# to the brain figure.
# convert from a dictionary to array to plot
xy_pts = np.vstack([xy[ch] for ch in raw.info['ch_names']])
# get a colormap to color nearby points similar colors
cmap = plt.colormaps['viridis']
# create the figure of the brain with the electrode positions
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_title('Gamma power over time', size='large')
ax.imshow(im)
ax.set_axis_off()
# normalize gamma power for plotting
gamma_power = -100 * gamma_power_t.data / gamma_power_t.data.max()
# add the time course overlaid on the positions
x_line = np.linspace(-0.025 * im.shape[0], 0.025 * im.shape[0],
gamma_power_t.data.shape[1])
for i, pos in enumerate(xy_pts):
x, y = pos
color = cmap(i / xy_pts.shape[0])
ax.plot(x_line + x, gamma_power[i] + y, linewidth=0.5, color=color)
# %%
# We can project gamma power from the sensor data to the nearest locations on
# the pial surface and visualize that:
#
# As shown in the plot, the epileptiform activity starts in the temporal lobe,
# progressing posteriorly. The seizure becomes generalized eventually, after
# this example short time section. This dataset is available using
# :func:`mne.datasets.epilepsy_ecog.data_path` for you to examine.
# sphinx_gallery_thumbnail_number = 3
xyz_pts = np.array([dig['r'] for dig in evoked.info['dig']])
src = mne.read_source_spaces(subjects_dir / 'fsaverage' / 'bem' /
'fsaverage-ico-5-src.fif')
stc = mne.stc_near_sensors(gamma_power_t, trans='fsaverage',
subject='fsaverage', subjects_dir=subjects_dir,
src=src, surface='pial', mode='nearest',
distance=0.02)
vmin, vmid, vmax = np.percentile(gamma_power_t.data, [10, 25, 90])
clim = dict(kind='value', lims=[vmin, vmid, vmax])
brain = stc.plot(surface='pial', hemi='rh', colormap='inferno', colorbar=False,
clim=clim, views=['lat', 'med'], subjects_dir=subjects_dir,
size=(250, 250), smoothing_steps='nearest',
time_viewer=False)
brain.add_sensors(raw.info, trans='fsaverage')
del brain
# You can save a movie like the one on our documentation website with:
# brain.save_movie(time_dilation=1, interpolation='linear', framerate=3,
# time_viewer=True)
|