File: 30_ecog.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (224 lines) | stat: -rw-r--r-- 8,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# -*- coding: utf-8 -*-
"""
.. _tut-working-with-ecog:

======================
Working with ECoG data
======================

MNE supports working with more than just MEG and EEG data. Here we show some
of the functions that can be used to facilitate working with
electrocorticography (ECoG) data.

This example shows how to use:

- ECoG data (`available here <https://openneuro.org/datasets/ds003029>`__) from
  an epilepsy patient during a seizure
- channel locations in FreeSurfer's ``fsaverage`` MRI space
- projection onto a pial surface

For a complementary example that involves sEEG data, channel locations in MNI
space, or projection into a volume, see :ref:`tut-working-with-seeg`.

Please note that this tutorial requires 3D plotting dependencies (see
:ref:`manual-install`) as well as ``mne-bids`` which can be installed using
``pip``.
"""
# Authors: Eric Larson <larson.eric.d@gmail.com>
#          Chris Holdgraf <choldgraf@gmail.com>
#          Adam Li <adam2392@gmail.com>
#          Alex Rockhill <aprockhill@mailbox.org>
#          Liberty Hamilton <libertyhamilton@gmail.com>
#
# License: BSD-3-Clause

# %%

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mne_bids import BIDSPath, read_raw_bids

import mne
from mne.viz import plot_alignment, snapshot_brain_montage

print(__doc__)

# paths to mne datasets - sample ECoG and FreeSurfer subject
bids_root = mne.datasets.epilepsy_ecog.data_path()
sample_path = mne.datasets.sample.data_path()
subjects_dir = sample_path / 'subjects'

# %%
# Load in data and perform basic preprocessing
# --------------------------------------------
#
# Let's load some ECoG electrode data with `mne-bids
# <https://mne.tools/mne-bids/>`_.
#
# .. note::
#     Downsampling is just to save execution time in this example, you should
#     not need to do this in general!

# first define the bids path
bids_path = BIDSPath(root=bids_root, subject='pt1', session='presurgery',
                     task='ictal', datatype='ieeg', extension='.vhdr')

# Then we'll use it to load in the sample dataset. This function changes the
# units of some channels, so we suppress a related warning here by using
# verbose='error'.
raw = read_raw_bids(bids_path=bids_path, verbose='error')

# Pick only the ECoG channels, removing the EKG channels
raw.pick_types(ecog=True)

# Load the data
raw.load_data()

# Then we remove line frequency interference
raw.notch_filter([60], trans_bandwidth=3)

# drop bad channels
raw.drop_channels(raw.info['bads'])

# the coordinate frame of the montage
montage = raw.get_montage()
print(montage.get_positions()['coord_frame'])

# add fiducials to montage
montage.add_mni_fiducials(subjects_dir)

# now with fiducials assigned, the montage will be properly converted
# to "head" which is what MNE requires internally (this is the coordinate
# system with the origin between LPA and RPA whereas MNI has the origin
# at the posterior commissure)
raw.set_montage(montage)

# Find the annotated events
events, event_id = mne.events_from_annotations(raw)

# Make a 25 second epoch that spans before and after the seizure onset
epoch_length = 25  # seconds
epochs = mne.Epochs(raw, events, event_id=event_id['onset'],
                    tmin=13, tmax=13 + epoch_length, baseline=None)
# Make evoked from the one epoch and resample
evoked = epochs.average().resample(200)
del epochs


# %%
# Explore the electrodes on a template brain
# ------------------------------------------
#
# Our electrodes are shown after being morphed to fsaverage brain so we'll use
# this fsaverage brain to plot the locations of our electrodes. We'll use
# :func:`~mne.viz.snapshot_brain_montage` to save the plot as image data
# (along with xy positions of each electrode in the image), so that later
# we can plot frequency band power on top of it.

fig = plot_alignment(raw.info, trans='fsaverage',
                     subject='fsaverage', subjects_dir=subjects_dir,
                     surfaces=['pial'], coord_frame='head', sensor_colors=None)
mne.viz.set_3d_view(fig, azimuth=0, elevation=70)

xy, im = snapshot_brain_montage(fig, raw.info)

# %%
# Compute frequency features of the data
# --------------------------------------
#
# Next, we'll compute the signal power in the gamma (30-90 Hz) band,
# downsampling the result to 10 Hz (to save time).

sfreq = 10
gamma_power_t = evoked.copy().filter(30, 90).apply_hilbert(
    envelope=True).resample(sfreq)
gamma_info = gamma_power_t.info

# %%
# Plot Gamma Power on cortical sensors
# --------------------------------------
#
# We will now use evoked gamma power to plot on the cortical surface.
# Therefore we extract the evoked time sample at 15s and normalize
# it in a range of 0 to 1 in order to map it using a matplotlib colormap.

gamma_power_at_15s = gamma_power_t.to_data_frame(index='time').loc[15]
# scale values to be between 0 and 1, then map to colors
gamma_power_at_15s -= gamma_power_at_15s.min()
gamma_power_at_15s /= gamma_power_at_15s.max()
rgba = cm.get_cmap("viridis")
sensor_colors = gamma_power_at_15s.map(rgba).tolist()

fig = plot_alignment(raw.info, trans='fsaverage',
                     subject='fsaverage', subjects_dir=subjects_dir,
                     surfaces=['pial'], coord_frame='head',
                     sensor_colors=sensor_colors)

mne.viz.set_3d_view(fig, azimuth=0, elevation=70)

xy, im = snapshot_brain_montage(fig, raw.info)


# %%
# Visualize the time-evolution of the gamma power on the brain
# ------------------------------------------------------------
#
# Say we want to visualize the evolution of the power in the gamma band,
# instead of just plotting the average. We can use
# `matplotlib.animation.FuncAnimation` to create an animation and apply this
# to the brain figure.

# convert from a dictionary to array to plot
xy_pts = np.vstack([xy[ch] for ch in raw.info['ch_names']])

# get a colormap to color nearby points similar colors
cmap = plt.colormaps['viridis']

# create the figure of the brain with the electrode positions
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_title('Gamma power over time', size='large')
ax.imshow(im)
ax.set_axis_off()

# normalize gamma power for plotting
gamma_power = -100 * gamma_power_t.data / gamma_power_t.data.max()
# add the time course overlaid on the positions
x_line = np.linspace(-0.025 * im.shape[0], 0.025 * im.shape[0],
                     gamma_power_t.data.shape[1])
for i, pos in enumerate(xy_pts):
    x, y = pos
    color = cmap(i / xy_pts.shape[0])
    ax.plot(x_line + x, gamma_power[i] + y, linewidth=0.5, color=color)

# %%
# We can project gamma power from the sensor data to the nearest locations on
# the pial surface and visualize that:
#
# As shown in the plot, the epileptiform activity starts in the temporal lobe,
# progressing posteriorly. The seizure becomes generalized eventually, after
# this example short time section. This dataset is available using
# :func:`mne.datasets.epilepsy_ecog.data_path` for you to examine.

# sphinx_gallery_thumbnail_number = 3

xyz_pts = np.array([dig['r'] for dig in evoked.info['dig']])

src = mne.read_source_spaces(subjects_dir / 'fsaverage' / 'bem' /
                             'fsaverage-ico-5-src.fif')
stc = mne.stc_near_sensors(gamma_power_t, trans='fsaverage',
                           subject='fsaverage', subjects_dir=subjects_dir,
                           src=src, surface='pial', mode='nearest',
                           distance=0.02)
vmin, vmid, vmax = np.percentile(gamma_power_t.data, [10, 25, 90])
clim = dict(kind='value', lims=[vmin, vmid, vmax])
brain = stc.plot(surface='pial', hemi='rh', colormap='inferno', colorbar=False,
                 clim=clim, views=['lat', 'med'], subjects_dir=subjects_dir,
                 size=(250, 250), smoothing_steps='nearest',
                 time_viewer=False)
brain.add_sensors(raw.info, trans='fsaverage')
del brain

# You can save a movie like the one on our documentation website with:
# brain.save_movie(time_dilation=1, interpolation='linear', framerate=3,
#                  time_viewer=True)