1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
# -*- coding: utf-8 -*-
"""
.. _tut-freesurfer-mne:
=================================
How MNE uses FreeSurfer's outputs
=================================
This tutorial explains how MRI coordinate frames are handled in MNE-Python,
and how MNE-Python integrates with FreeSurfer for handling MRI data and source
space data in general.
As usual we'll start by importing the necessary packages; for this tutorial
that includes :mod:`nibabel` to handle loading the MRI images (MNE-Python also
uses :mod:`nibabel` under the hood). We'll also use a special :mod:`Matplotlib
<matplotlib.patheffects>` function for adding outlines to text, so that text is
readable on top of an MRI image.
"""
# %%
import numpy as np
import nibabel
import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects
import mne
from mne.transforms import apply_trans
from mne.io.constants import FIFF
# %%
# MRI coordinate frames
# =====================
#
# Let's start out by looking at the ``sample`` subject MRI. Following standard
# FreeSurfer convention, we look at :file:`T1.mgz`, which gets created from the
# original MRI :file:`sample/mri/orig/001.mgz` when you run the FreeSurfer
# command `recon-all <https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all>`_.
# Here we use :mod:`nibabel` to load the T1 image, and the resulting object's
# :meth:`~nibabel.spatialimages.SpatialImage.orthoview` method to view it.
data_path = mne.datasets.sample.data_path()
subjects_dir = data_path / 'subjects'
subject = 'sample'
t1_fname = subjects_dir / subject / 'mri' / 'T1.mgz'
t1 = nibabel.load(t1_fname)
t1.orthoview()
# %%
# Notice that the axes in the
# :meth:`~nibabel.spatialimages.SpatialImage.orthoview` figure are labeled
# L-R, S-I, and P-A. These reflect the standard RAS (right-anterior-superior)
# coordinate system that is widely used in MRI imaging. If you are unfamiliar
# with RAS coordinates, see the excellent nibabel tutorial
# :doc:`nibabel:coordinate_systems`.
#
# Nibabel already takes care of some coordinate frame transformations under the
# hood, so let's do it manually so we understand what is happening. First let's
# get our data as a 3D array and note that it's already a standard size:
data = np.asarray(t1.dataobj)
print(data.shape)
# %%
# These data are voxel intensity values. Here they are unsigned integers in the
# range 0-255, though in general they can be floating point values. A value
# ``data[i, j, k]`` at a given index triplet ``(i, j, k)`` corresponds to some
# real-world physical location ``(x, y, z)`` in space. To get its physical
# location, first we have to choose what coordinate frame we're going to use.
#
# For example, we could choose a geographical coordinate
# frame, with origin is at the center of the earth, Z axis through the north
# pole, X axis through the prime meridian (zero degrees longitude), and Y axis
# orthogonal to these forming a right-handed coordinate system. This would not
# be a very useful choice for defining the physical locations of the voxels
# during the MRI acquisition for analysis, but you could nonetheless figure out
# the transformation that related the ``(i, j, k)`` to this coordinate frame.
#
# Instead, each scanner defines a more practical, native coordinate system that
# it uses during acquisition, usually related to the physical orientation of
# the scanner itself and/or the subject within it. During acquisition the
# relationship between the voxel indices ``(i, j, k)`` and the physical
# location ``(x, y, z)`` in the *scanner's native coordinate frame* is saved in
# the image's *affine transformation*.
#
# .. admonition:: Under the hood
# :class: sidebar note
#
# ``mne.transforms.apply_trans`` effectively does a matrix multiplication
# (i.e., :func:`numpy.dot`), with a little extra work to handle the shape
# mismatch (the affine has shape ``(4, 4)`` because it includes a
# *translation*, which is applied separately).
#
# We can use :mod:`nibabel` to examine this transformation, keeping in mind
# that it processes everything in units of millimeters, unlike MNE where things
# are always in SI units (meters).
#
# This allows us to take an arbitrary voxel or slice of data and know where it
# is in the scanner's native physical space ``(x, y, z)`` (in mm) by applying
# the affine transformation to the voxel coordinates.
print(t1.affine)
vox = np.array([122, 119, 102])
xyz_ras = apply_trans(t1.affine, vox)
print('Our voxel has real-world coordinates {}, {}, {} (mm)'
.format(*np.round(xyz_ras, 3)))
# %%
# If you have a point ``(x, y, z)`` in scanner-native RAS space and you want
# the corresponding voxel number, you can get it using the inverse of the
# affine. This involves some rounding, so it's possible to end up off by one
# voxel if you're not careful:
ras_coords_mm = np.array([1, -17, -18])
inv_affine = np.linalg.inv(t1.affine)
i_, j_, k_ = np.round(apply_trans(inv_affine, ras_coords_mm)).astype(int)
print(f'Our real-world coordinates correspond to voxel ({i_}, {j_}, {k_})')
# %%
# Let's write a short function to visualize where our voxel lies in an
# image, and annotate it in RAS space (rounded to the nearest millimeter):
def imshow_mri(data, img, vox, xyz, suptitle):
"""Show an MRI slice with a voxel annotated."""
i, j, k = vox
fig, ax = plt.subplots(1, figsize=(6, 6))
codes = nibabel.orientations.aff2axcodes(img.affine)
# Figure out the title based on the code of this axis
ori_slice = dict(P='Coronal', A='Coronal',
I='Axial', S='Axial',
L='Sagittal', R='Saggital')
ori_names = dict(P='posterior', A='anterior',
I='inferior', S='superior',
L='left', R='right')
title = ori_slice[codes[0]]
ax.imshow(data[i], vmin=10, vmax=120, cmap='gray', origin='lower')
ax.axvline(k, color='y')
ax.axhline(j, color='y')
for kind, coords in xyz.items():
annotation = ('{}: {}, {}, {} mm'
.format(kind, *np.round(coords).astype(int)))
text = ax.text(k, j, annotation, va='baseline', ha='right',
color=(1, 1, 0.7))
text.set_path_effects([
path_effects.Stroke(linewidth=2, foreground='black'),
path_effects.Normal()])
# reorient view so that RAS is always rightward and upward
x_order = -1 if codes[2] in 'LIP' else 1
y_order = -1 if codes[1] in 'LIP' else 1
ax.set(xlim=[0, data.shape[2] - 1][::x_order],
ylim=[0, data.shape[1] - 1][::y_order],
xlabel=f'k ({ori_names[codes[2]]}+)',
ylabel=f'j ({ori_names[codes[1]]}+)',
title=f'{title} view: i={i} ({ori_names[codes[0]]}+)')
fig.suptitle(suptitle)
fig.subplots_adjust(0.1, 0.1, 0.95, 0.85)
return fig
imshow_mri(data, t1, vox, {'Scanner RAS': xyz_ras}, 'MRI slice')
# %%
# Notice that the axis scales (``i``, ``j``, and ``k``) are still in voxels
# (ranging from 0-255); it's only the annotation text that we've translated
# into real-world RAS in millimeters.
#
#
# "MRI coordinates" in MNE-Python: FreeSurfer surface RAS
# -------------------------------------------------------
#
# While :mod:`nibabel` uses **scanner RAS** ``(x, y, z)`` coordinates,
# FreeSurfer uses a slightly different coordinate frame: **MRI surface RAS**.
# The transform from voxels to the FreeSurfer MRI surface RAS coordinate frame
# is known in the `FreeSurfer documentation
# <https://surfer.nmr.mgh.harvard.edu/fswiki/CoordinateSystems>`_ as ``Torig``,
# and in nibabel as :meth:`vox2ras_tkr
# <nibabel.freesurfer.mghformat.MGHHeader.get_vox2ras_tkr>`. This
# transformation sets the center of its coordinate frame in the middle of the
# conformed volume dimensions (``N / 2.``) with the axes oriented along the
# axes of the volume itself. For more information, see
# :ref:`coordinate_systems`.
#
# .. note:: In general, you should assume that the MRI coordinate system for
# a given subject is specific to that subject, i.e., it is not the
# same coordinate MRI coordinate system that is used for any other
# FreeSurfer subject. Even though during processing FreeSurfer will
# align each subject's MRI to ``fsaverage`` to do reconstruction,
# all data (surfaces, MRIs, etc.) get stored in the coordinate frame
# specific to that subject. This is why it's important for group
# analyses to transform data to a common coordinate frame for example
# by :ref:`surface <ex-morph-surface>` or
# :ref:`volumetric <ex-morph-volume>` morphing, or even by just
# applying :ref:`mni-affine-transformation` to points.
#
# Since MNE-Python uses FreeSurfer extensively for surface computations (e.g.,
# white matter, inner/outer skull meshes), internally MNE-Python uses the
# Freeurfer surface RAS coordinate system (not the :mod:`nibabel` scanner RAS
# system) for as many computations as possible, such as all source space
# and BEM mesh vertex definitions.
#
# Whenever you see "MRI coordinates" or "MRI coords" in MNE-Python's
# documentation, you should assume that we are talking about the
# "FreeSurfer MRI surface RAS" coordinate frame!
#
# We can do similar computations as before to convert the given voxel indices
# into FreeSurfer MRI coordinates (i.e., what we call "MRI coordinates" or
# "surface RAS" everywhere else in MNE), just like we did above to convert
# voxel indices to *scanner* RAS:
Torig = t1.header.get_vox2ras_tkr()
print(t1.affine)
print(Torig)
xyz_mri = apply_trans(Torig, vox)
imshow_mri(data, t1, vox, dict(MRI=xyz_mri), 'MRI slice')
# %%
# Knowing these relationships and being mindful about transformations, we
# can get from a point in any given space to any other space. Let's start out
# by plotting the Nasion on a sagittal MRI slice:
fiducials = mne.coreg.get_mni_fiducials(subject, subjects_dir=subjects_dir)
nasion_mri = [d for d in fiducials if d['ident'] == FIFF.FIFFV_POINT_NASION][0]
print(nasion_mri) # note it's in Freesurfer MRI coords
# %%
# When we print the nasion, it displays as a ``DigPoint`` and shows its
# coordinates in millimeters, but beware that the underlying data is
# :ref:`actually stored in meters <units>`,
# so before transforming and plotting we'll convert to millimeters:
nasion_mri = nasion_mri['r'] * 1000 # meters → millimeters
nasion_vox = np.round(
apply_trans(np.linalg.inv(Torig), nasion_mri)).astype(int)
imshow_mri(data, t1, nasion_vox, dict(MRI=nasion_mri),
'Nasion estimated from MRI transform')
# %%
# We can also take the digitization point from the MEG data, which is in the
# "head" coordinate frame.
#
# Let's look at the nasion in the head coordinate frame:
info = mne.io.read_info(data_path / 'MEG' / 'sample' /
'sample_audvis_raw.fif')
nasion_head = [d for d in info['dig'] if
d['kind'] == FIFF.FIFFV_POINT_CARDINAL and
d['ident'] == FIFF.FIFFV_POINT_NASION][0]
print(nasion_head) # note it's in "head" coordinates
# %%
# .. admonition:: Head coordinate frame
# :class: sidebar note
#
# The head coordinate frame in MNE is the "Neuromag" head coordinate
# frame. The origin is given by the intersection between a line connecting
# the LPA and RPA and the line orthogonal to it that runs through the
# nasion. It is also in RAS orientation, meaning that +X runs through
# the RPA, +Y goes through the nasion, and +Z is orthogonal to these
# pointing upward. See :ref:`coordinate_systems` for more information.
#
# Notice that in "head" coordinate frame the nasion has values of 0 for the
# ``x`` and ``z`` directions (which makes sense given that the nasion is used
# to define the ``y`` axis in that system).
# To convert from head coordinate frame to voxels, we first apply the head →
# MRI (surface RAS) transform
# from a :file:`trans` file (typically created with the MNE-Python
# coregistration GUI), then convert meters → millimeters, and finally apply the
# inverse of ``Torig`` to get to voxels.
#
# Under the hood, functions like :func:`mne.setup_source_space`,
# :func:`mne.setup_volume_source_space`, and :func:`mne.compute_source_morph`
# make extensive use of these coordinate frames.
trans = mne.read_trans(data_path / 'MEG' / 'sample' /
'sample_audvis_raw-trans.fif')
# first we transform from head to MRI, and *then* convert to millimeters
nasion_dig_mri = apply_trans(trans, nasion_head['r']) * 1000
# ...then we can use Torig to convert MRI to voxels:
nasion_dig_vox = np.round(
apply_trans(np.linalg.inv(Torig), nasion_dig_mri)).astype(int)
imshow_mri(data, t1, nasion_dig_vox, dict(MRI=nasion_dig_mri),
'Nasion transformed from digitization')
# %%
# Using FreeSurfer's surface reconstructions
# ==========================================
# An important part of what FreeSurfer does is provide cortical surface
# reconstructions. For example, let's load and view the ``white`` surface
# of the brain. This is a 3D mesh defined by a set of vertices (conventionally
# called ``rr``) with shape ``(n_vertices, 3)`` and a set of triangles
# (``tris``) with shape ``(n_tris, 3)`` defining which vertices in ``rr`` form
# each triangular facet of the mesh.
fname = subjects_dir / subject / 'surf' / 'rh.white'
rr_mm, tris = mne.read_surface(fname)
print(f'rr_mm.shape == {rr_mm.shape}')
print(f'tris.shape == {tris.shape}')
print(f'rr_mm.max() = {rr_mm.max()}') # just to show that we are in mm
# %%
# Let's actually plot it:
renderer = mne.viz.backends.renderer.create_3d_figure(
size=(600, 600), bgcolor='w', scene=False)
gray = (0.5, 0.5, 0.5)
renderer.mesh(*rr_mm.T, triangles=tris, color=gray)
view_kwargs = dict(elevation=90, azimuth=0) # camera at +X with +Z up
mne.viz.set_3d_view(
figure=renderer.figure, distance=350, focalpoint=(0., 0., 40.),
**view_kwargs)
renderer.show()
# %%
# We can also plot the mesh on top of an MRI slice. The mesh surfaces are
# defined in millimeters in the MRI (FreeSurfer surface RAS) coordinate frame,
# so we can convert them to voxels by applying the inverse of the ``Torig``
# transform:
rr_vox = apply_trans(np.linalg.inv(Torig), rr_mm)
fig = imshow_mri(data, t1, vox, {'Scanner RAS': xyz_ras}, 'MRI slice')
# Based on how imshow_mri works, the "X" here is the last dim of the MRI vol,
# the "Y" is the middle dim, and the "Z" is the first dim, so now that our
# points are in the correct coordinate frame, we need to ask matplotlib to
# do a tricontour slice like:
fig.axes[0].tricontour(rr_vox[:, 2], rr_vox[:, 1], tris, rr_vox[:, 0],
levels=[vox[0]], colors='r', linewidths=1.0,
zorder=1)
# %%
# This is the method used by :func:`mne.viz.plot_bem` to show the BEM surfaces.
#
# Cortical alignment (spherical)
# ------------------------------
# A critical function provided by FreeSurfer is spherical surface alignment
# of cortical surfaces, maximizing sulcal-gyral alignment. FreeSurfer first
# expands the cortical surface to a sphere, then aligns it optimally with
# fsaverage. Because the vertex ordering is preserved when expanding to a
# sphere, a given vertex in the source (sample) mesh can be mapped easily
# to the same location in the destination (fsaverage) mesh, and vice-versa.
renderer_kwargs = dict(bgcolor='w')
renderer = mne.viz.backends.renderer.create_3d_figure(
size=(800, 400), scene=False, **renderer_kwargs)
curvs = [
(mne.surface.read_curvature(subjects_dir / subj / 'surf' / 'rh.curv',
binary=False) > 0).astype(float)
for subj in ('sample', 'fsaverage') for _ in range(2)]
fnames = [subjects_dir / subj / 'surf' / surf
for subj in ('sample', 'fsaverage')
for surf in ('rh.white', 'rh.sphere')]
y_shifts = [-450, -150, 450, 150]
z_shifts = [-40, 0, -30, 0]
for name, y_shift, z_shift, curv in zip(fnames, y_shifts, z_shifts, curvs):
this_rr, this_tri = mne.read_surface(name)
this_rr += [0, y_shift, z_shift]
renderer.mesh(*this_rr.T, triangles=this_tri, color=None, scalars=curv,
colormap='copper_r', vmin=-0.2, vmax=1.2)
zero = [0., 0., 0.]
width = 50.
y = np.sort(y_shifts)
y = (y[1:] + y[:-1]) / 2. - width / 2.
renderer.quiver3d(zero, y, zero,
zero, [1] * 3, zero, 'k', width, 'arrow')
view_kwargs['focalpoint'] = (0., 0., 0.)
mne.viz.set_3d_view(figure=renderer.figure, distance=1050, **view_kwargs)
renderer.show()
# %%
# Let's look a bit more closely at the spherical alignment by overlaying the
# two spherical meshes as wireframes and zooming way in (the vertices of the
# black mesh are separated by about 1 mm):
cyan = '#66CCEE'
black = 'k'
renderer = mne.viz.backends.renderer.create_3d_figure(
size=(800, 800), scene=False, **renderer_kwargs)
surfs = [mne.read_surface(subjects_dir / subj / 'surf' / 'rh.sphere')
for subj in ('fsaverage', 'sample')]
colors = [black, cyan]
line_widths = [2, 3]
for surf, color, line_width in zip(surfs, colors, line_widths):
this_rr, this_tri = surf
# cull to the subset of tris with all positive X (toward camera)
this_tri = this_tri[(this_rr[this_tri, 0] > 0).all(axis=1)]
renderer.mesh(*this_rr.T, triangles=this_tri, color=color,
representation='wireframe', line_width=line_width,
render_lines_as_tubes=True)
mne.viz.set_3d_view(figure=renderer.figure, distance=150, **view_kwargs)
renderer.show()
# %%
# You can see that the fsaverage (black) mesh is uniformly spaced, and the
# mesh for subject "sample" (in cyan) has been deformed along the spherical
# surface by
# FreeSurfer. This deformation is designed to optimize the sulcal-gyral
# alignment.
#
# Surface decimation
# ------------------
# These surfaces have a lot of vertices, and in general we only need to use
# a subset of these vertices for creating source spaces. A uniform sampling can
# easily be achieved by subsampling in the spherical space. To do this, we
# use a recursively subdivided icosahedron or octahedron. For example, let's
# load a standard oct-6 source space, and at the same zoom level as before
# visualize how it subsampled (in red) the dense mesh:
src = mne.read_source_spaces(subjects_dir / 'sample' / 'bem' /
'sample-oct-6-src.fif')
print(src)
# sphinx_gallery_thumbnail_number = 10
red = '#EE6677'
renderer = mne.viz.backends.renderer.create_3d_figure(
size=(800, 800), scene=False, **renderer_kwargs)
rr_sph, _ = mne.read_surface(fnames[1])
for tris, color in [(src[1]['tris'], cyan), (src[1]['use_tris'], red)]:
# cull to the subset of tris with all positive X (toward camera)
tris = tris[(rr_sph[tris, 0] > 0).all(axis=1)]
renderer.mesh(*rr_sph.T, triangles=tris, color=color,
representation='wireframe', line_width=3,
render_lines_as_tubes=True)
mne.viz.set_3d_view(figure=renderer.figure, distance=150, **view_kwargs)
renderer.show()
# %%
# We can also then look at how these two meshes compare by plotting the
# original, high-density mesh as well as our decimated mesh white surfaces.
renderer = mne.viz.backends.renderer.create_3d_figure(
size=(800, 400), scene=False, **renderer_kwargs)
y_shifts = [-125, 125]
tris = [src[1]['tris'], src[1]['use_tris']]
for y_shift, tris in zip(y_shifts, tris):
this_rr = src[1]['rr'] * 1000. + [0, y_shift, -40]
renderer.mesh(*this_rr.T, triangles=tris, color=None, scalars=curvs[0],
colormap='copper_r', vmin=-0.2, vmax=1.2)
renderer.quiver3d([0], [-width / 2.], [0], [0], [1], [0], 'k', width, 'arrow')
mne.viz.set_3d_view(figure=renderer.figure, distance=450, **view_kwargs)
renderer.show()
# %%
# .. warning::
# Some source space vertices can be removed during forward computation.
# See :ref:`tut-forward` for more information.
#
# .. _mni-affine-transformation:
#
# FreeSurfer's MNI affine transformation
# --------------------------------------
# In addition to surface-based approaches, FreeSurfer also provides a simple
# affine coregistration of each subject's data to the ``fsaverage`` subject.
# Let's pick a point for ``sample`` and plot it on the brain:
brain = mne.viz.Brain('sample', 'lh', 'white', subjects_dir=subjects_dir,
background='w')
xyz = np.array([[-55, -10, 35]])
brain.add_foci(xyz, hemi='lh', color='k')
brain.show_view('lat')
# %%
# We can take this point and transform it to MNI space:
mri_mni_trans = mne.read_talxfm(subject, subjects_dir)
print(mri_mni_trans)
xyz_mni = apply_trans(mri_mni_trans, xyz / 1000.) * 1000.
print(np.round(xyz_mni, 1))
# %%
# And because ``fsaverage`` is special in that it's already in MNI space
# (its MRI-to-MNI transform is identity), it should land in the equivalent
# anatomical location:
brain = mne.viz.Brain('fsaverage', 'lh', 'white', subjects_dir=subjects_dir,
background='w')
brain.add_foci(xyz_mni, hemi='lh', color='k')
brain.show_view('lat')
|