1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
# -*- coding: utf-8 -*-
"""
.. _tut-raw-class:
=======================================
The Raw data structure: continuous data
=======================================
This tutorial covers the basics of working with raw EEG/MEG data in Python. It
introduces the :class:`~mne.io.Raw` data structure in detail, including how to
load, query, subselect, export, and plot data from a :class:`~mne.io.Raw`
object. For more info on visualization of :class:`~mne.io.Raw` objects, see
:ref:`tut-visualize-raw`. For info on creating a :class:`~mne.io.Raw` object
from simulated data in a :class:`NumPy array <numpy.ndarray>`, see
:ref:`tut-creating-data-structures`.
As usual we'll start by importing the modules we need:
"""
# %%
import os
import numpy as np
import matplotlib.pyplot as plt
import mne
# %%
# Loading continuous data
# ^^^^^^^^^^^^^^^^^^^^^^^
#
# .. admonition:: Datasets in MNE-Python
# :class: sidebar note
#
# There are ``data_path`` functions for several example datasets in
# MNE-Python (e.g., :func:`mne.datasets.kiloword.data_path`,
# :func:`mne.datasets.spm_face.data_path`, etc). All of them will check the
# default download location first to see if the dataset is already on your
# computer, and only download it if necessary. The default download
# location is also configurable; see the documentation of any of the
# ``data_path`` functions for more information.
#
# As mentioned in :ref:`the introductory tutorial <tut-overview>`,
# MNE-Python data structures are based around
# the :file:`.fif` file format from Neuromag. This tutorial uses an
# :ref:`example dataset <sample-dataset>` in :file:`.fif` format, so here we'll
# use the function :func:`mne.io.read_raw_fif` to load the raw data; there are
# reader functions for :ref:`a wide variety of other data formats
# <data-formats>` as well.
#
# There are also :ref:`several other example datasets
# <datasets>` that can be downloaded with just a few lines
# of code. Functions for downloading example datasets are in the
# :mod:`mne.datasets` submodule; here we'll use
# :func:`mne.datasets.sample.data_path` to download the ":ref:`sample-dataset`"
# dataset, which contains EEG, MEG, and structural MRI data from one subject
# performing an audiovisual experiment. When it's done downloading,
# :func:`~mne.datasets.sample.data_path` will return the folder location where
# it put the files; you can navigate there with your file browser if you want
# to examine the files yourself. Once we have the file path, we can load the
# data with :func:`~mne.io.read_raw_fif`. This will return a
# :class:`~mne.io.Raw` object, which we'll store in a variable called ``raw``.
sample_data_folder = mne.datasets.sample.data_path()
sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample',
'sample_audvis_raw.fif')
raw = mne.io.read_raw_fif(sample_data_raw_file)
# %%
# As you can see above, :func:`~mne.io.read_raw_fif` automatically displays
# some information about the file it's loading. For example, here it tells us
# that there are three "projection items" in the file along with the recorded
# data; those are :term:`SSP projectors <projector>` calculated to remove
# environmental noise from the MEG signals, and are discussed in a the tutorial
# :ref:`tut-projectors-background`.
# In addition to the information displayed during loading, you can
# get a glimpse of the basic details of a :class:`~mne.io.Raw` object by
# printing it:
print(raw)
# %%
# By default, the :samp:`mne.io.read_raw_{*}` family of functions will *not*
# load the data into memory (instead the data on disk are `memory-mapped`_,
# meaning the data are only read from disk as-needed). Some operations (such as
# filtering) require that the data be copied into RAM; to do that we could have
# passed the ``preload=True`` parameter to :func:`~mne.io.read_raw_fif`, but we
# can also copy the data into RAM at any time using the
# :meth:`~mne.io.Raw.load_data` method. However, since this particular tutorial
# doesn't do any serious analysis of the data, we'll first
# :meth:`~mne.io.Raw.crop` the :class:`~mne.io.Raw` object to 60 seconds so it
# uses less memory and runs more smoothly on our documentation server.
raw.crop(tmax=60)
# %%
# Querying the Raw object
# ^^^^^^^^^^^^^^^^^^^^^^^
#
# .. admonition:: Attributes vs. Methods
# :class: sidebar hint
#
# **Attributes** are usually static properties of Python objects — things
# that are pre-computed and stored as part of the object's representation
# in memory. Attributes are accessed with the ``.`` operator and do not
# require parentheses after the attribute name (example: ``raw.ch_names``).
#
# **Methods** are like specialized functions attached to an object.
# Usually they require additional user input and/or need some computation
# to yield a result. Methods always have parentheses at the end; additional
# arguments (if any) go inside those parentheses (examples:
# ``raw.estimate_rank()``, ``raw.drop_channels(['EEG 030', 'MEG 2242'])``).
#
# We saw above that printing the :class:`~mne.io.Raw` object displays some
# basic information like the total number of channels, the number of time
# points at which the data were sampled, total duration, and the approximate
# size in memory. Much more information is available through the various
# *attributes* and *methods* of the :class:`~mne.io.Raw` class. Some useful
# attributes of :class:`~mne.io.Raw` objects include a list of the channel
# names (:attr:`~mne.io.Raw.ch_names`), an array of the sample times in seconds
# (:attr:`~mne.io.Raw.times`), and the total number of samples
# (:attr:`~mne.io.Raw.n_times`); a list of all attributes and methods is given
# in the documentation of the :class:`~mne.io.Raw` class.
#
#
# The ``Raw.info`` attribute
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# There is also quite a lot of information stored in the ``raw.info``
# attribute, which stores an :class:`~mne.Info` object that is similar to a
# :class:`Python dictionary <dict>` (in that it has fields accessed via named
# keys). Like Python dictionaries, ``raw.info`` has a ``.keys()`` method that
# shows all the available field names; unlike Python dictionaries, printing
# ``raw.info`` will print a nicely-formatted glimpse of each field's data. See
# :ref:`tut-info-class` for more on what is stored in :class:`~mne.Info`
# objects, and how to interact with them.
n_time_samps = raw.n_times
time_secs = raw.times
ch_names = raw.ch_names
n_chan = len(ch_names) # note: there is no raw.n_channels attribute
print('the (cropped) sample data object has {} time samples and {} channels.'
''.format(n_time_samps, n_chan))
print('The last time sample is at {} seconds.'.format(time_secs[-1]))
print('The first few channel names are {}.'.format(', '.join(ch_names[:3])))
print() # insert a blank line in the output
# some examples of raw.info:
print('bad channels:', raw.info['bads']) # chs marked "bad" during acquisition
print(raw.info['sfreq'], 'Hz') # sampling frequency
print(raw.info['description'], '\n') # miscellaneous acquisition info
print(raw.info)
# %%
# .. note::
#
# Most of the fields of ``raw.info`` reflect metadata recorded at
# acquisition time, and should not be changed by the user. There are a few
# exceptions (such as ``raw.info['bads']`` and ``raw.info['projs']``), but
# in most cases there are dedicated MNE-Python functions or methods to
# update the :class:`~mne.Info` object safely (such as
# :meth:`~mne.io.Raw.add_proj` to update ``raw.info['projs']``).
#
# .. _`time-as-index`:
#
# Time, sample number, and sample index
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# .. admonition:: Sample numbering in VectorView data
# :class: sidebar warning
#
# For data from VectorView systems, it is important to distinguish *sample
# number* from *sample index*. See :term:`first_samp` for more information.
#
# One method of :class:`~mne.io.Raw` objects that is frequently useful is
# :meth:`~mne.io.Raw.time_as_index`, which converts a time (in seconds) into
# the integer index of the sample occurring closest to that time. The method
# can also take a list or array of times, and will return an array of indices.
#
# It is important to remember that there may not be a data sample at *exactly*
# the time requested, so the number of samples between ``time = 1`` second and
# ``time = 2`` seconds may be different than the number of samples between
# ``time = 2`` and ``time = 3``:
print(raw.time_as_index(20))
print(raw.time_as_index([20, 30, 40]), '\n')
print(np.diff(raw.time_as_index([1, 2, 3])))
# %%
# Modifying ``Raw`` objects
# ^^^^^^^^^^^^^^^^^^^^^^^^^
#
# .. admonition:: ``len(raw)``
# :class: sidebar warning
#
# Although the :class:`~mne.io.Raw` object underlyingly stores data samples
# in a :class:`NumPy array <numpy.ndarray>` of shape (n_channels,
# n_timepoints), the :class:`~mne.io.Raw` object behaves differently from
# :class:`NumPy arrays <numpy.ndarray>` with respect to the :func:`len`
# function. ``len(raw)`` will return the number of timepoints (length along
# data axis 1), not the number of channels (length along data axis 0).
# Hence in this section you'll see ``len(raw.ch_names)`` to get the number
# of channels.
#
# :class:`~mne.io.Raw` objects have a number of methods that modify the
# :class:`~mne.io.Raw` instance in-place and return a reference to the modified
# instance. This can be useful for `method chaining`_
# (e.g., ``raw.crop(...).pick_channels(...).filter(...).plot()``)
# but it also poses a problem during interactive analysis: if you modify your
# :class:`~mne.io.Raw` object for an exploratory plot or analysis (say, by
# dropping some channels), you will then need to re-load the data (and repeat
# any earlier processing steps) to undo the channel-dropping and try something
# else. For that reason, the examples in this section frequently use the
# :meth:`~mne.io.Raw.copy` method before the other methods being demonstrated,
# so that the original :class:`~mne.io.Raw` object is still available in the
# variable ``raw`` for use in later examples.
#
#
# Selecting, dropping, and reordering channels
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Altering the channels of a :class:`~mne.io.Raw` object can be done in several
# ways. As a first example, we'll use the :meth:`~mne.io.Raw.pick_types` method
# to restrict the :class:`~mne.io.Raw` object to just the EEG and EOG channels:
eeg_and_eog = raw.copy().pick_types(meg=False, eeg=True, eog=True)
print(len(raw.ch_names), '→', len(eeg_and_eog.ch_names))
# %%
# Similar to the :meth:`~mne.io.Raw.pick_types` method, there is also the
# :meth:`~mne.io.Raw.pick_channels` method to pick channels by name, and a
# corresponding :meth:`~mne.io.Raw.drop_channels` method to remove channels by
# name:
raw_temp = raw.copy()
print('Number of channels in raw_temp:')
print(len(raw_temp.ch_names), end=' → drop two → ')
raw_temp.drop_channels(['EEG 037', 'EEG 059'])
print(len(raw_temp.ch_names), end=' → pick three → ')
raw_temp.pick_channels(['MEG 1811', 'EEG 017', 'EOG 061'])
print(len(raw_temp.ch_names))
# %%
# If you want the channels in a specific order (e.g., for plotting),
# :meth:`~mne.io.Raw.reorder_channels` works just like
# :meth:`~mne.io.Raw.pick_channels` but also reorders the channels; for
# example, here we pick the EOG and frontal EEG channels, putting the EOG
# first and the EEG in reverse order:
channel_names = ['EOG 061', 'EEG 003', 'EEG 002', 'EEG 001']
eog_and_frontal_eeg = raw.copy().reorder_channels(channel_names)
print(eog_and_frontal_eeg.ch_names)
# %%
# Changing channel name and type
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# .. admonition:: Long channel names
# :class: sidebar note
#
# Due to limitations in the :file:`.fif` file format (which MNE-Python uses
# to save :class:`~mne.io.Raw` objects), channel names are limited to a
# maximum of 15 characters.
#
# You may have noticed that the EEG channel names in the sample data are
# numbered rather than labelled according to a standard nomenclature such as
# the `10-20 <ten_twenty_>`_ or `10-05 <ten_oh_five_>`_ systems, or perhaps it
# bothers you that the channel names contain spaces. It is possible to rename
# channels using the :meth:`~mne.io.Raw.rename_channels` method, which takes a
# Python dictionary to map old names to new names. You need not rename all
# channels at once; provide only the dictionary entries for the channels you
# want to rename. Here's a frivolous example:
raw.rename_channels({'EOG 061': 'blink detector'})
# %%
# This next example replaces spaces in the channel names with underscores,
# using a Python `dict comprehension`_:
print(raw.ch_names[-3:])
channel_renaming_dict = {name: name.replace(' ', '_') for name in raw.ch_names}
raw.rename_channels(channel_renaming_dict)
print(raw.ch_names[-3:])
# %%
# If for some reason the channel types in your :class:`~mne.io.Raw` object are
# inaccurate, you can change the type of any channel with the
# :meth:`~mne.io.Raw.set_channel_types` method. The method takes a
# :class:`dictionary <dict>` mapping channel names to types; allowed types are
# ``ecg, eeg, emg, eog, exci, ias, misc, resp, seeg, dbs, stim, syst, ecog,
# hbo, hbr``. A common use case for changing channel type is when using frontal
# EEG electrodes as makeshift EOG channels:
raw.set_channel_types({'EEG_001': 'eog'})
print(raw.copy().pick_types(meg=False, eog=True).ch_names)
# %%
# Selection in the time domain
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# If you want to limit the time domain of a :class:`~mne.io.Raw` object, you
# can use the :meth:`~mne.io.Raw.crop` method, which modifies the
# :class:`~mne.io.Raw` object in place (we've seen this already at the start of
# this tutorial, when we cropped the :class:`~mne.io.Raw` object to 60 seconds
# to reduce memory demands). :meth:`~mne.io.Raw.crop` takes parameters ``tmin``
# and ``tmax``, both in seconds (here we'll again use :meth:`~mne.io.Raw.copy`
# first to avoid changing the original :class:`~mne.io.Raw` object):
raw_selection = raw.copy().crop(tmin=10, tmax=12.5)
print(raw_selection)
# %%
# :meth:`~mne.io.Raw.crop` also modifies the :attr:`~mne.io.Raw.first_samp` and
# :attr:`~mne.io.Raw.times` attributes, so that the first sample of the cropped
# object now corresponds to ``time = 0``. Accordingly, if you wanted to re-crop
# ``raw_selection`` from 11 to 12.5 seconds (instead of 10 to 12.5 as above)
# then the subsequent call to :meth:`~mne.io.Raw.crop` should get ``tmin=1``
# (not ``tmin=11``), and leave ``tmax`` unspecified to keep everything from
# ``tmin`` up to the end of the object:
print(raw_selection.times.min(), raw_selection.times.max())
raw_selection.crop(tmin=1)
print(raw_selection.times.min(), raw_selection.times.max())
# %%
# Remember that sample times don't always align exactly with requested ``tmin``
# or ``tmax`` values (due to sampling), which is why the ``max`` values of the
# cropped files don't exactly match the requested ``tmax`` (see
# :ref:`time-as-index` for further details).
#
# If you need to select discontinuous spans of a :class:`~mne.io.Raw` object —
# or combine two or more separate :class:`~mne.io.Raw` objects — you can use
# the :meth:`~mne.io.Raw.append` method:
raw_selection1 = raw.copy().crop(tmin=30, tmax=30.1) # 0.1 seconds
raw_selection2 = raw.copy().crop(tmin=40, tmax=41.1) # 1.1 seconds
raw_selection3 = raw.copy().crop(tmin=50, tmax=51.3) # 1.3 seconds
raw_selection1.append([raw_selection2, raw_selection3]) # 2.5 seconds total
print(raw_selection1.times.min(), raw_selection1.times.max())
# %%
# .. warning::
#
# Be careful when concatenating :class:`~mne.io.Raw` objects from different
# recordings, especially when saving: :meth:`~mne.io.Raw.append` only
# preserves the ``info`` attribute of the initial :class:`~mne.io.Raw`
# object (the one outside the :meth:`~mne.io.Raw.append` method call).
#
#
# Extracting data from ``Raw`` objects
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# So far we've been looking at ways to modify a :class:`~mne.io.Raw` object.
# This section shows how to extract the data from a :class:`~mne.io.Raw` object
# into a :class:`NumPy array <numpy.ndarray>`, for analysis or plotting using
# functions outside of MNE-Python. To select portions of the data,
# :class:`~mne.io.Raw` objects can be indexed using square brackets. However,
# indexing :class:`~mne.io.Raw` works differently than indexing a :class:`NumPy
# array <numpy.ndarray>` in two ways:
#
# 1. Along with the requested sample value(s) MNE-Python also returns an array
# of times (in seconds) corresponding to the requested samples. The data
# array and the times array are returned together as elements of a tuple.
#
# 2. The data array will always be 2-dimensional even if you request only a
# single time sample or a single channel.
#
#
# Extracting data by index
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# To illustrate the above two points, let's select a couple seconds of data
# from the first channel:
sampling_freq = raw.info['sfreq']
start_stop_seconds = np.array([11, 13])
start_sample, stop_sample = (start_stop_seconds * sampling_freq).astype(int)
channel_index = 0
raw_selection = raw[channel_index, start_sample:stop_sample]
print(raw_selection)
# %%
# You can see that it contains 2 arrays. This combination of data and times
# makes it easy to plot selections of raw data (although note that we're
# transposing the data array so that each channel is a column instead of a row,
# to match what matplotlib expects when plotting 2-dimensional ``y`` against
# 1-dimensional ``x``):
x = raw_selection[1]
y = raw_selection[0].T
plt.plot(x, y)
# %%
# Extracting channels by name
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The :class:`~mne.io.Raw` object can also be indexed with the names of
# channels instead of their index numbers. You can pass a single string to get
# just one channel, or a list of strings to select multiple channels. As with
# integer indexing, this will return a tuple of ``(data_array, times_array)``
# that can be easily plotted. Since we're plotting 2 channels this time, we'll
# add a vertical offset to one channel so it's not plotted right on top
# of the other one:
# sphinx_gallery_thumbnail_number = 2
channel_names = ['MEG_0712', 'MEG_1022']
two_meg_chans = raw[channel_names, start_sample:stop_sample]
y_offset = np.array([5e-11, 0]) # just enough to separate the channel traces
x = two_meg_chans[1]
y = two_meg_chans[0].T + y_offset
lines = plt.plot(x, y)
plt.legend(lines, channel_names)
# %%
# Extracting channels by type
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# There are several ways to select all channels of a given type from a
# :class:`~mne.io.Raw` object. The safest method is to use
# :func:`mne.pick_types` to obtain the integer indices of the channels you
# want, then use those indices with the square-bracket indexing method shown
# above. The :func:`~mne.pick_types` function uses the :class:`~mne.Info`
# attribute of the :class:`~mne.io.Raw` object to determine channel types, and
# takes boolean or string parameters to indicate which type(s) to retain. The
# ``meg`` parameter defaults to ``True``, and all others default to ``False``,
# so to get just the EEG channels, we pass ``eeg=True`` and ``meg=False``:
eeg_channel_indices = mne.pick_types(raw.info, meg=False, eeg=True)
eeg_data, times = raw[eeg_channel_indices]
print(eeg_data.shape)
# %%
# Some of the parameters of :func:`mne.pick_types` accept string arguments as
# well as booleans. For example, the ``meg`` parameter can take values
# ``'mag'``, ``'grad'``, ``'planar1'``, or ``'planar2'`` to select only
# magnetometers, all gradiometers, or a specific type of gradiometer. See the
# docstring of :meth:`mne.pick_types` for full details.
#
#
# The ``Raw.get_data()`` method
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# If you only want the data (not the corresponding array of times),
# :class:`~mne.io.Raw` objects have a :meth:`~mne.io.Raw.get_data` method. Used
# with no parameters specified, it will extract all data from all channels, in
# a (n_channels, n_timepoints) :class:`NumPy array <numpy.ndarray>`:
data = raw.get_data()
print(data.shape)
# %%
# If you want the array of times, :meth:`~mne.io.Raw.get_data` has an optional
# ``return_times`` parameter:
data, times = raw.get_data(return_times=True)
print(data.shape)
print(times.shape)
# %%
# The :meth:`~mne.io.Raw.get_data` method can also be used to extract specific
# channel(s) and sample ranges, via its ``picks``, ``start``, and ``stop``
# parameters. The ``picks`` parameter accepts integer channel indices, channel
# names, or channel types, and preserves the requested channel order given as
# its ``picks`` parameter.
first_channel_data = raw.get_data(picks=0)
eeg_and_eog_data = raw.get_data(picks=['eeg', 'eog'])
two_meg_chans_data = raw.get_data(picks=['MEG_0712', 'MEG_1022'],
start=1000, stop=2000)
print(first_channel_data.shape)
print(eeg_and_eog_data.shape)
print(two_meg_chans_data.shape)
# %%
# Summary of ways to extract data from ``Raw`` objects
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The following table summarizes the various ways of extracting data from a
# :class:`~mne.io.Raw` object.
#
# .. cssclass:: table-bordered
# .. rst-class:: midvalign
#
# +-------------------------------------+-------------------------+
# | Python code | Result |
# | | |
# | | |
# +=====================================+=========================+
# | ``raw.get_data()`` | :class:`NumPy array |
# | | <numpy.ndarray>` |
# | | (n_chans × n_samps) |
# +-------------------------------------+-------------------------+
# | ``raw[:]`` | :class:`tuple` of (data |
# +-------------------------------------+ (n_chans × n_samps), |
# | ``raw.get_data(return_times=True)`` | times (1 × n_samps)) |
# +-------------------------------------+-------------------------+
# | ``raw[0, 1000:2000]`` | |
# +-------------------------------------+ |
# | ``raw['MEG 0113', 1000:2000]`` | |
# +-------------------------------------+ |
# | ``raw.get_data(picks=0, | :class:`tuple` of |
# | start=1000, stop=2000, | (data (1 × 1000), |
# | return_times=True)`` | times (1 × 1000)) |
# +-------------------------------------+ |
# | ``raw.get_data(picks='MEG 0113', | |
# | start=1000, stop=2000, | |
# | return_times=True)`` | |
# +-------------------------------------+-------------------------+
# | ``raw[7:9, 1000:2000]`` | |
# +-------------------------------------+ |
# | ``raw[[2, 5], 1000:2000]`` | :class:`tuple` of |
# +-------------------------------------+ (data (2 × 1000), |
# | ``raw[['EEG 030', 'EOG 061'], | times (1 × 1000)) |
# | 1000:2000]`` | |
# +-------------------------------------+-------------------------+
#
#
# Exporting and saving Raw objects
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# :class:`~mne.io.Raw` objects have a built-in :meth:`~mne.io.Raw.save` method,
# which can be used to write a partially processed :class:`~mne.io.Raw` object
# to disk as a :file:`.fif` file, such that it can be re-loaded later with its
# various attributes intact (but see :ref:`precision` for an important
# note about numerical precision when saving).
#
# There are a few other ways to export just the sensor data from a
# :class:`~mne.io.Raw` object. One is to use indexing or the
# :meth:`~mne.io.Raw.get_data` method to extract the data, and use
# :func:`numpy.save` to save the data array:
data = raw.get_data()
np.save(file='my_data.npy', arr=data)
# %%
# It is also possible to export the data to a :class:`Pandas DataFrame
# <pandas.DataFrame>` object, and use the saving methods that :mod:`Pandas
# <pandas>` affords. The :class:`~mne.io.Raw` object's
# :meth:`~mne.io.Raw.to_data_frame` method is similar to
# :meth:`~mne.io.Raw.get_data` in that it has a ``picks`` parameter for
# restricting which channels are exported, and ``start`` and ``stop``
# parameters for restricting the time domain. Note that, by default, times will
# be converted to milliseconds, rounded to the nearest millisecond, and used as
# the DataFrame index; see the ``scaling_time`` parameter in the documentation
# of :meth:`~mne.io.Raw.to_data_frame` for more details.
sampling_freq = raw.info['sfreq']
start_end_secs = np.array([10, 13])
start_sample, stop_sample = (start_end_secs * sampling_freq).astype(int)
df = raw.to_data_frame(picks=['eeg'], start=start_sample, stop=stop_sample)
# then save using df.to_csv(...), df.to_hdf(...), etc
print(df.head())
# %%
# .. note::
# When exporting data as a :class:`NumPy array <numpy.ndarray>` or
# :class:`Pandas DataFrame <pandas.DataFrame>`, be sure to properly account
# for the :ref:`unit of representation <units>` in your subsequent
# analyses.
#
#
# .. LINKS
#
# .. _`method chaining`: https://en.wikipedia.org/wiki/Method_chaining
# .. _`memory-mapped`: https://en.wikipedia.org/wiki/Memory-mapped_file
# .. _ten_twenty: https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG)
# .. _ten_oh_five: https://doi.org/10.1016%2FS1388-2457%2800%2900527-7
# .. _`dict comprehension`:
# https://docs.python.org/3/tutorial/datastructures.html#dictionaries
|