1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
# Author: Daniel G Wakeman <dwakeman@nmr.mgh.harvard.edu>
# Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
import os.path as op
from pathlib import Path
from copy import deepcopy
from functools import partial
import hashlib
import pytest
import numpy as np
from scipy.io import savemat
from numpy.testing import assert_array_equal, assert_equal, assert_allclose
from mne.channels import (rename_channels, read_ch_adjacency, combine_channels,
find_ch_adjacency, make_1020_channel_selections,
read_custom_montage, equalize_channels,
get_builtin_ch_adjacencies)
from mne.channels.channels import (
_ch_neighbor_adjacency, _compute_ch_adjacency,
_BUILTIN_CHANNEL_ADJACENCIES, _BuiltinChannelAdjacency
)
from mne.io import (read_info, read_raw_fif, read_raw_ctf, read_raw_bti,
read_raw_eeglab, read_raw_kit, RawArray)
from mne.io.constants import FIFF
from mne import (pick_types, pick_channels, EpochsArray, EvokedArray,
make_ad_hoc_cov, create_info, read_events, Epochs)
from mne.datasets import testing
from mne.utils import requires_pandas, requires_version
from mne.parallel import parallel_func
io_dir = op.join(op.dirname(__file__), '..', '..', 'io')
base_dir = op.join(io_dir, 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
eve_fname = op.join(base_dir, 'test-eve.fif')
fname_kit_157 = op.join(io_dir, 'kit', 'tests', 'data', 'test.sqd')
testing_path = testing.data_path(download=False)
@pytest.mark.parametrize('preload', (True, False))
@pytest.mark.parametrize('proj', (True, False))
def test_reorder_channels(preload, proj):
"""Test reordering of channels."""
raw = read_raw_fif(raw_fname).crop(0, 0.1).del_proj()
if proj: # a no-op but should test it
raw._projector = np.eye(len(raw.ch_names))
if preload:
raw.load_data()
# with .reorder_channels
if proj and not preload:
with pytest.raises(RuntimeError, match='load data'):
raw.copy().reorder_channels(raw.ch_names[::-1])
return
raw_new = raw.copy().reorder_channels(raw.ch_names[::-1])
assert raw_new.ch_names == raw.ch_names[::-1]
if proj:
assert_allclose(raw_new._projector, raw._projector, atol=1e-12)
else:
assert raw._projector is None
assert raw_new._projector is None
assert_array_equal(raw[:][0], raw_new[:][0][::-1])
raw_new.reorder_channels(raw_new.ch_names[::-1][1:-1])
raw.drop_channels(raw.ch_names[:1] + raw.ch_names[-1:])
assert_array_equal(raw[:][0], raw_new[:][0])
with pytest.raises(ValueError, match='repeated'):
raw.reorder_channels(raw.ch_names[:1] + raw.ch_names[:1])
# and with .pick
reord = [1, 0] + list(range(2, len(raw.ch_names)))
rev = np.argsort(reord)
raw_new = raw.copy().pick(reord)
assert_array_equal(raw[:][0], raw_new[rev][0])
def test_rename_channels():
"""Test rename channels."""
info = read_info(raw_fname)
# Error Tests
# Test channel name exists in ch_names
mapping = {'EEG 160': 'EEG060'}
pytest.raises(ValueError, rename_channels, info, mapping)
# Test improper mapping configuration
mapping = {'MEG 2641': 1.0}
pytest.raises(TypeError, rename_channels, info, mapping)
# Test non-unique mapping configuration
mapping = {'MEG 2641': 'MEG 2642'}
pytest.raises(ValueError, rename_channels, info, mapping)
# Test bad input
pytest.raises(ValueError, rename_channels, info, 1.)
pytest.raises(ValueError, rename_channels, info, 1.)
# Test successful changes
# Test ch_name and ch_names are changed
info2 = deepcopy(info) # for consistency at the start of each test
info2['bads'] = ['EEG 060', 'EOG 061']
mapping = {'EEG 060': 'EEG060', 'EOG 061': 'EOG061'}
rename_channels(info2, mapping)
assert info2['chs'][374]['ch_name'] == 'EEG060'
assert info2['ch_names'][374] == 'EEG060'
assert info2['chs'][375]['ch_name'] == 'EOG061'
assert info2['ch_names'][375] == 'EOG061'
assert_array_equal(['EEG060', 'EOG061'], info2['bads'])
info2 = deepcopy(info)
rename_channels(info2, lambda x: x.replace(' ', ''))
assert info2['chs'][373]['ch_name'] == 'EEG059'
info2 = deepcopy(info)
info2['bads'] = ['EEG 060', 'EEG 060']
rename_channels(info2, mapping)
assert_array_equal(['EEG060', 'EEG060'], info2['bads'])
# test that keys in Raw._orig_units will be renamed, too
raw = read_raw_fif(raw_fname).crop(0, 0.1)
old, new = 'EEG 060', 'New'
raw._orig_units = {old: 'V'}
raw.rename_channels({old: new})
assert old not in raw._orig_units
assert new in raw._orig_units
def test_set_channel_types():
"""Test set_channel_types."""
raw = read_raw_fif(raw_fname)
# Error Tests
# Test channel name exists in ch_names
mapping = {'EEG 160': 'EEG060'}
with pytest.raises(ValueError, match=r"name \(EEG 160\) doesn't exist"):
raw.set_channel_types(mapping)
# Test change to illegal channel type
mapping = {'EOG 061': 'xxx'}
with pytest.raises(ValueError, match='cannot change to this channel type'):
raw.set_channel_types(mapping)
# Test changing type if in proj
mapping = {'EEG 057': 'dbs', 'EEG 058': 'ecog', 'EEG 059': 'ecg',
'EEG 060': 'eog', 'EOG 061': 'seeg', 'MEG 2441': 'eeg',
'MEG 2443': 'eeg', 'MEG 2442': 'hbo', 'EEG 001': 'resp'}
raw2 = read_raw_fif(raw_fname)
raw2.info['bads'] = ['EEG 059', 'EEG 060', 'EOG 061']
with pytest.raises(RuntimeError, match='type .* in projector "PCA-v1"'):
raw2.set_channel_types(mapping) # has prj
raw2.add_proj([], remove_existing=True)
with pytest.warns(RuntimeWarning, match='unit for channel.* has changed'):
raw2 = raw2.set_channel_types(mapping)
info = raw2.info
assert info['chs'][371]['ch_name'] == 'EEG 057'
assert info['chs'][371]['kind'] == FIFF.FIFFV_DBS_CH
assert info['chs'][371]['unit'] == FIFF.FIFF_UNIT_V
assert info['chs'][371]['coil_type'] == FIFF.FIFFV_COIL_EEG
assert info['chs'][372]['ch_name'] == 'EEG 058'
assert info['chs'][372]['kind'] == FIFF.FIFFV_ECOG_CH
assert info['chs'][372]['unit'] == FIFF.FIFF_UNIT_V
assert info['chs'][372]['coil_type'] == FIFF.FIFFV_COIL_EEG
assert info['chs'][373]['ch_name'] == 'EEG 059'
assert info['chs'][373]['kind'] == FIFF.FIFFV_ECG_CH
assert info['chs'][373]['unit'] == FIFF.FIFF_UNIT_V
assert info['chs'][373]['coil_type'] == FIFF.FIFFV_COIL_NONE
assert info['chs'][374]['ch_name'] == 'EEG 060'
assert info['chs'][374]['kind'] == FIFF.FIFFV_EOG_CH
assert info['chs'][374]['unit'] == FIFF.FIFF_UNIT_V
assert info['chs'][374]['coil_type'] == FIFF.FIFFV_COIL_NONE
assert info['chs'][375]['ch_name'] == 'EOG 061'
assert info['chs'][375]['kind'] == FIFF.FIFFV_SEEG_CH
assert info['chs'][375]['unit'] == FIFF.FIFF_UNIT_V
assert info['chs'][375]['coil_type'] == FIFF.FIFFV_COIL_EEG
for idx in pick_channels(raw.ch_names, ['MEG 2441', 'MEG 2443']):
assert info['chs'][idx]['kind'] == FIFF.FIFFV_EEG_CH
assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_V
assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_EEG
idx = pick_channels(raw.ch_names, ['MEG 2442'])[0]
assert info['chs'][idx]['kind'] == FIFF.FIFFV_FNIRS_CH
assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_MOL
assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBO
# resp channel type
idx = pick_channels(raw.ch_names, ['EEG 001'])[0]
assert info['chs'][idx]['kind'] == FIFF.FIFFV_RESP_CH
assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_V
assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_NONE
# Test meaningful error when setting channel type with unknown unit
raw.info['chs'][0]['unit'] = 0.
ch_types = {raw.ch_names[0]: 'misc'}
pytest.raises(ValueError, raw.set_channel_types, ch_types)
def test_get_builtin_ch_adjacencies():
"""Test retrieving the names of all built-in FieldTrip neighbors."""
names = get_builtin_ch_adjacencies()
assert names
assert len(names) == len(set(names)) # no duplicates
assert len(names) == len(_BUILTIN_CHANNEL_ADJACENCIES)
names_and_descriptions = get_builtin_ch_adjacencies(descriptions=True)
for name_and_description in names_and_descriptions:
assert len(name_and_description) == 2
def test_read_ch_adjacency(tmp_path):
"""Test reading channel adjacency templates."""
tempdir = str(tmp_path)
a = partial(np.array, dtype='<U7')
# no pep8
nbh = np.array([[(['MEG0111'], [[a(['MEG0131'])]]),
(['MEG0121'], [[a(['MEG0111'])],
[a(['MEG0131'])]]),
(['MEG0131'], [[a(['MEG0111'])],
[a(['MEG0121'])]])]],
dtype=[('label', 'O'), ('neighblabel', 'O')])
mat = dict(neighbours=nbh)
mat_fname = op.join(tempdir, 'test_mat.mat')
savemat(mat_fname, mat, oned_as='row')
ch_adjacency, ch_names = read_ch_adjacency(mat_fname)
x = ch_adjacency
assert_equal(x.shape[0], len(ch_names))
assert_equal(x.shape, (3, 3))
assert_equal(x[0, 1], False)
assert_equal(x[0, 2], True)
assert np.all(x.diagonal())
pytest.raises(ValueError, read_ch_adjacency, mat_fname, [0, 3])
ch_adjacency, ch_names = read_ch_adjacency(mat_fname, picks=[0, 2])
assert_equal(ch_adjacency.shape[0], 2)
assert_equal(len(ch_names), 2)
ch_names = ['EEG01', 'EEG02', 'EEG03']
neighbors = [['EEG02'], ['EEG04'], ['EEG02']]
pytest.raises(ValueError, _ch_neighbor_adjacency, ch_names, neighbors)
neighbors = [['EEG02'], ['EEG01', 'EEG03'], ['EEG 02']]
pytest.raises(ValueError, _ch_neighbor_adjacency, ch_names[:2],
neighbors)
neighbors = [['EEG02'], 'EEG01', ['EEG 02']]
pytest.raises(ValueError, _ch_neighbor_adjacency, ch_names, neighbors)
adjacency, ch_names = read_ch_adjacency('neuromag306mag')
assert_equal(adjacency.shape, (102, 102))
assert_equal(len(ch_names), 102)
pytest.raises(ValueError, read_ch_adjacency, 'bananas!')
# In EGI 256, E31 sensor has no neighbour
a = partial(np.array)
nbh = np.array([[(['E31'], []),
(['E1'], [[a(['E2'])],
[a(['E3'])]]),
(['E2'], [[a(['E1'])],
[a(['E3'])]]),
(['E3'], [[a(['E1'])],
[a(['E2'])]])]],
dtype=[('label', 'O'), ('neighblabel', 'O')])
mat = dict(neighbours=nbh)
mat_fname = op.join(tempdir, 'test_isolated_mat.mat')
savemat(mat_fname, mat, oned_as='row')
ch_adjacency, ch_names = read_ch_adjacency(mat_fname)
x = ch_adjacency.todense()
assert_equal(x.shape[0], len(ch_names))
assert_equal(x.shape, (4, 4))
assert np.all(x.diagonal())
assert not np.any(x[0, 1:])
assert not np.any(x[1:, 0])
# Check for neighbours consistency. If a sensor is marked as a neighbour,
# then it should also have its neighbours defined.
a = partial(np.array)
nbh = np.array([[(['E31'], []),
(['E1'], [[a(['E8'])],
[a(['E3'])]]),
(['E2'], [[a(['E1'])],
[a(['E3'])]]),
(['E3'], [[a(['E1'])],
[a(['E2'])]])]],
dtype=[('label', 'O'), ('neighblabel', 'O')])
mat = dict(neighbours=nbh)
mat_fname = op.join(tempdir, 'test_error_mat.mat')
savemat(mat_fname, mat, oned_as='row')
pytest.raises(ValueError, read_ch_adjacency, mat_fname)
# Try reading all built-in FieldTrip neighbors
for name in get_builtin_ch_adjacencies():
ch_adjacency, ch_names = read_ch_adjacency(name)
assert_equal(ch_adjacency.shape[0], len(ch_names))
def _download_ft_neighbors(target_dir):
"""Download the known neighbors from FieldTrip."""
# The entire FT repository is larger than a GB, so we'll just download
# the few files we need.
def _download_one_ft_neighbor(
neighbor: _BuiltinChannelAdjacency
):
# Log level setting must happen inside the job to work properly
import pooch
pooch.get_logger().setLevel('ERROR') # reduce verbosity
fname = neighbor.fname
url = neighbor.source_url
pooch.retrieve(
url=url,
known_hash=None,
fname=fname,
path=target_dir,
)
parallel, p_fun, _ = parallel_func(
func=_download_one_ft_neighbor, n_jobs=-1
)
parallel(
p_fun(neighbor)
for neighbor in _BUILTIN_CHANNEL_ADJACENCIES
if neighbor.source_url is not None
)
@pytest.mark.slowtest
def test_adjacency_matches_ft(tmp_path):
"""Test correspondence of built-in adjacency matrices with FT repo."""
builtin_neighbors_dir = Path(__file__).parents[1] / 'data' / 'neighbors'
ft_neighbors_dir = tmp_path
del tmp_path
_download_ft_neighbors(target_dir=ft_neighbors_dir)
for adj in _BUILTIN_CHANNEL_ADJACENCIES:
fname = adj.fname
if not (ft_neighbors_dir / fname).exists():
continue # only exists in MNE, not FT
hash_mne = hashlib.sha256()
hash_ft = hashlib.sha256()
with open(builtin_neighbors_dir / fname, 'rb') as f:
data = f.read()
hash_mne.update(data)
with open(ft_neighbors_dir / fname, 'rb') as f:
data = f.read()
hash_ft.update(data)
if hash_mne.hexdigest() != hash_ft.hexdigest():
raise ValueError(
f'Hash mismatch between built-in and FieldTrip neighbors '
f'for {fname}'
)
def test_get_set_sensor_positions():
"""Test get/set functions for sensor positions."""
raw1 = read_raw_fif(raw_fname)
picks = pick_types(raw1.info, meg=False, eeg=True)
pos = np.array([ch['loc'][:3] for ch in raw1.info['chs']])[picks]
raw_pos = raw1._get_channel_positions(picks=picks)
assert_array_equal(raw_pos, pos)
ch_name = raw1.info['ch_names'][13]
pytest.raises(ValueError, raw1._set_channel_positions, [1, 2], ['name'])
raw2 = read_raw_fif(raw_fname)
raw2.info['chs'][13]['loc'][:3] = np.array([1, 2, 3])
raw1._set_channel_positions([[1, 2, 3]], [ch_name])
assert_array_equal(raw1.info['chs'][13]['loc'],
raw2.info['chs'][13]['loc'])
@requires_version('pymatreader')
@testing.requires_testing_data
def test_1020_selection():
"""Test making a 10/20 selection dict."""
raw_fname = op.join(testing_path, 'EEGLAB', 'test_raw.set')
loc_fname = op.join(testing_path, 'EEGLAB', 'test_chans.locs')
raw = read_raw_eeglab(raw_fname, preload=True)
montage = read_custom_montage(loc_fname)
raw = raw.rename_channels(dict(zip(raw.ch_names, montage.ch_names)))
raw.set_montage(montage)
for input in ("a_string", 100, raw, [1, 2]):
pytest.raises(TypeError, make_1020_channel_selections, input)
sels = make_1020_channel_selections(raw.info)
# are all frontal channels placed before all occipital channels?
for name, picks in sels.items():
fs = min([ii for ii, pick in enumerate(picks)
if raw.ch_names[pick].startswith("F")])
ps = max([ii for ii, pick in enumerate(picks)
if raw.ch_names[pick].startswith("O")])
assert fs > ps
# are channels in the correct selection?
fz_c3_c4 = [raw.ch_names.index(ch) for ch in ("Fz", "C3", "C4")]
for channel, roi in zip(fz_c3_c4, ("Midline", "Left", "Right")):
assert channel in sels[roi]
@testing.requires_testing_data
def test_find_ch_adjacency():
"""Test computing the adjacency matrix."""
raw = read_raw_fif(raw_fname, preload=True)
sizes = {'mag': 828, 'grad': 1700, 'eeg': 384}
nchans = {'mag': 102, 'grad': 204, 'eeg': 60}
for ch_type in ['mag', 'grad', 'eeg']:
conn, ch_names = find_ch_adjacency(raw.info, ch_type)
# Silly test for checking the number of neighbors.
assert_equal(conn.getnnz(), sizes[ch_type])
assert_equal(len(ch_names), nchans[ch_type])
pytest.raises(ValueError, find_ch_adjacency, raw.info, None)
# Test computing the conn matrix with gradiometers.
conn, ch_names = _compute_ch_adjacency(raw.info, 'grad')
assert_equal(conn.getnnz(), 2680)
# Test ch_type=None.
raw.pick_types(meg='mag')
find_ch_adjacency(raw.info, None)
bti_fname = op.join(testing_path, 'BTi', 'erm_HFH', 'c,rfDC')
bti_config_name = op.join(testing_path, 'BTi', 'erm_HFH', 'config')
raw = read_raw_bti(bti_fname, bti_config_name, None)
_, ch_names = find_ch_adjacency(raw.info, 'mag')
assert 'A1' in ch_names
ctf_fname = op.join(testing_path, 'CTF', 'testdata_ctf_short.ds')
raw = read_raw_ctf(ctf_fname)
_, ch_names = find_ch_adjacency(raw.info, 'mag')
assert 'MLC11' in ch_names
pytest.raises(ValueError, find_ch_adjacency, raw.info, 'eog')
raw_kit = read_raw_kit(fname_kit_157)
neighb, ch_names = find_ch_adjacency(raw_kit.info, 'mag')
assert neighb.data.size == 1329
assert ch_names[0] == 'MEG 001'
@testing.requires_testing_data
def test_neuromag122_adjacency():
"""Test computing the adjacency matrix of Neuromag122-Data."""
nm122_fname = op.join(testing_path, 'misc',
'neuromag122_test_file-raw.fif')
raw = read_raw_fif(nm122_fname, preload=True)
conn, ch_names = find_ch_adjacency(raw.info, 'grad')
assert conn.getnnz() == 1564
assert len(ch_names) == 122
assert conn.shape == (122, 122)
def test_drop_channels():
"""Test if dropping channels works with various arguments."""
raw = read_raw_fif(raw_fname, preload=True).crop(0, 0.1)
raw.drop_channels(["MEG 0111"]) # list argument
raw.drop_channels("MEG 0112") # str argument
raw.drop_channels({"MEG 0132", "MEG 0133"}) # set argument
pytest.raises(ValueError, raw.drop_channels, ["MEG 0111", 5])
pytest.raises(ValueError, raw.drop_channels, 5) # must be list or str
# by default, drop channels raises a ValueError if a channel can't be found
m_chs = ["MEG 0111", "MEG blahblah"]
with pytest.raises(ValueError, match='not found, nothing dropped'):
raw.drop_channels(m_chs)
# ...but this can be turned to a warning
with pytest.warns(RuntimeWarning, match='not found, nothing dropped'):
raw.drop_channels(m_chs, on_missing='warn')
# ...or ignored altogether
raw.drop_channels(m_chs, on_missing='ignore')
def test_pick_channels():
"""Test if picking channels works with various arguments."""
raw = read_raw_fif(raw_fname, preload=True).crop(0, 0.1)
# selected correctly 3 channels
raw.pick(['MEG 0113', 'MEG 0112', 'MEG 0111'])
assert len(raw.ch_names) == 3
# selected correctly 3 channels and ignored 'meg', and emit warning
with pytest.warns(RuntimeWarning, match='not present in the info'):
raw.pick(['MEG 0113', "meg", 'MEG 0112', 'MEG 0111'])
assert len(raw.ch_names) == 3
names_len = len(raw.ch_names)
raw.pick(['all']) # selected correctly all channels
assert len(raw.ch_names) == names_len
raw.pick('all') # selected correctly all channels
assert len(raw.ch_names) == names_len
def test_add_reference_channels():
"""Test if there is a new reference channel that consist of all zeros."""
raw = read_raw_fif(raw_fname, preload=True)
n_raw_original_channels = len(raw.ch_names)
epochs = Epochs(raw, read_events(eve_fname))
epochs.load_data()
epochs_original_shape = epochs._data.shape[1]
evoked = epochs.average()
n_evoked_original_channels = len(evoked.ch_names)
# Raw object
raw.add_reference_channels(['REF 123'])
assert len(raw.ch_names) == n_raw_original_channels + 1
assert np.all(raw.get_data()[-1] == 0)
# Epochs object
epochs.add_reference_channels(['REF 123'])
assert epochs._data.shape[1] == epochs_original_shape + 1
# Evoked object
evoked.add_reference_channels(['REF 123'])
assert len(evoked.ch_names) == n_evoked_original_channels + 1
assert np.all(evoked._data[-1] == 0)
def test_equalize_channels():
"""Test equalizing channels and their ordering."""
# This function only tests the generic functionality of equalize_channels.
# Additional tests for each instance type are included in the accompanying
# test suite for each type.
pytest.raises(TypeError, equalize_channels, ['foo', 'bar'],
match='Instances to be modified must be an instance of')
raw = RawArray([[1.], [2.], [3.], [4.]],
create_info(['CH1', 'CH2', 'CH3', 'CH4'], sfreq=1.))
epochs = EpochsArray([[[1.], [2.], [3.]]],
create_info(['CH5', 'CH2', 'CH1'], sfreq=1.))
cov = make_ad_hoc_cov(create_info(['CH2', 'CH1', 'CH8'], sfreq=1.,
ch_types='eeg'))
cov['bads'] = ['CH1']
ave = EvokedArray([[1.], [2.]], create_info(['CH1', 'CH2'], sfreq=1.))
raw2, epochs2, cov2, ave2 = equalize_channels([raw, epochs, cov, ave],
copy=True)
# The Raw object was the first in the list, so should have been used as
# template for the ordering of the channels. No bad channels should have
# been dropped.
assert raw2.ch_names == ['CH1', 'CH2']
assert_array_equal(raw2.get_data(), [[1.], [2.]])
assert epochs2.ch_names == ['CH1', 'CH2']
assert_array_equal(epochs2.get_data(), [[[3.], [2.]]])
assert cov2.ch_names == ['CH1', 'CH2']
assert cov2['bads'] == cov['bads']
assert ave2.ch_names == ave.ch_names
assert_array_equal(ave2.data, ave.data)
# All objects should have been copied, except for the Evoked object which
# did not have to be touched.
assert raw is not raw2
assert epochs is not epochs2
assert cov is not cov2
assert ave is ave2
# Test in-place operation
raw2, epochs2 = equalize_channels([raw, epochs], copy=False)
assert raw is raw2
assert epochs is epochs2
def test_combine_channels():
"""Test channel combination on Raw, Epochs, and Evoked."""
raw = read_raw_fif(raw_fname, preload=True)
raw_ch_bad = read_raw_fif(raw_fname, preload=True)
raw_ch_bad.info['bads'] = ['MEG 0113', 'MEG 0112']
epochs = Epochs(raw, read_events(eve_fname))
evoked = epochs.average()
good = dict(foo=[0, 1, 3, 4], bar=[5, 2]) # good grad and mag
# Test good cases
combine_channels(raw, good)
combined_epochs = combine_channels(epochs, good)
assert_array_equal(combined_epochs.events, epochs.events)
assert epochs.baseline == combined_epochs.baseline
combined_evoked = combine_channels(evoked, good)
assert evoked.baseline == combined_evoked.baseline
combine_channels(raw, good, drop_bad=True)
combine_channels(raw_ch_bad, good, drop_bad=True)
# Test with stimulus channels
combine_stim = combine_channels(raw, good, keep_stim=True)
target_nchan = len(good) + len(pick_types(raw.info, meg=False, stim=True))
assert combine_stim.info['nchan'] == target_nchan
# Test results with one ROI
good_single = dict(foo=[0, 1, 3, 4]) # good grad
combined_mean = combine_channels(raw, good_single, method='mean')
combined_median = combine_channels(raw, good_single, method='median')
combined_std = combine_channels(raw, good_single, method='std')
foo_mean = np.mean(raw.get_data()[good_single['foo']], axis=0)
foo_median = np.median(raw.get_data()[good_single['foo']], axis=0)
foo_std = np.std(raw.get_data()[good_single['foo']], axis=0)
assert_array_equal(combined_mean.get_data(),
np.expand_dims(foo_mean, axis=0))
assert_array_equal(combined_median.get_data(),
np.expand_dims(foo_median, axis=0))
assert_array_equal(combined_std.get_data(),
np.expand_dims(foo_std, axis=0))
# Test bad cases
bad1 = dict(foo=[0, 376], bar=[5, 2]) # out of bounds
bad2 = dict(foo=[0, 2], bar=[5, 2]) # type mix in same group
with pytest.raises(ValueError, match='"method" must be a callable, or'):
combine_channels(raw, good, method='bad_method')
with pytest.raises(TypeError, match='"keep_stim" must be of type bool'):
combine_channels(raw, good, keep_stim='bad_type')
with pytest.raises(TypeError, match='"drop_bad" must be of type bool'):
combine_channels(raw, good, drop_bad='bad_type')
with pytest.raises(ValueError, match='Some channel indices are out of'):
combine_channels(raw, bad1)
with pytest.raises(ValueError, match='Cannot combine sensors of diff'):
combine_channels(raw, bad2)
# Test warnings
raw_no_stim = read_raw_fif(raw_fname, preload=True)
raw_no_stim.pick_types(meg=True, stim=False)
warn1 = dict(foo=[375, 375], bar=[5, 2]) # same channel in same group
warn2 = dict(foo=[375], bar=[5, 2]) # one channel (last channel)
warn3 = dict(foo=[0, 4], bar=[5, 2]) # one good channel left
with pytest.warns(RuntimeWarning, match='Could not find stimulus'):
combine_channels(raw_no_stim, good, keep_stim=True)
with pytest.warns(RuntimeWarning, match='Less than 2 channels') as record:
combine_channels(raw, warn1)
combine_channels(raw, warn2)
combine_channels(raw_ch_bad, warn3, drop_bad=True)
assert len(record) == 3
@requires_pandas
def test_combine_channels_metadata():
"""Test if metadata is correctly retained in combined object."""
import pandas as pd
raw = read_raw_fif(raw_fname, preload=True)
epochs = Epochs(raw, read_events(eve_fname), preload=True)
metadata = pd.DataFrame({"A": np.arange(len(epochs)),
"B": np.ones(len(epochs))})
epochs.metadata = metadata
good = dict(foo=[0, 1, 3, 4], bar=[5, 2]) # good grad and mag
combined_epochs = combine_channels(epochs, good)
pd.testing.assert_frame_equal(epochs.metadata, combined_epochs.metadata)
|