File: test_channels.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (635 lines) | stat: -rw-r--r-- 26,371 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
# Author: Daniel G Wakeman <dwakeman@nmr.mgh.harvard.edu>
#         Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause

import os.path as op
from pathlib import Path
from copy import deepcopy
from functools import partial
import hashlib

import pytest
import numpy as np
from scipy.io import savemat
from numpy.testing import assert_array_equal, assert_equal, assert_allclose

from mne.channels import (rename_channels, read_ch_adjacency, combine_channels,
                          find_ch_adjacency, make_1020_channel_selections,
                          read_custom_montage, equalize_channels,
                          get_builtin_ch_adjacencies)
from mne.channels.channels import (
    _ch_neighbor_adjacency, _compute_ch_adjacency,
    _BUILTIN_CHANNEL_ADJACENCIES, _BuiltinChannelAdjacency
)
from mne.io import (read_info, read_raw_fif, read_raw_ctf, read_raw_bti,
                    read_raw_eeglab, read_raw_kit, RawArray)
from mne.io.constants import FIFF
from mne import (pick_types, pick_channels, EpochsArray, EvokedArray,
                 make_ad_hoc_cov, create_info, read_events, Epochs)
from mne.datasets import testing
from mne.utils import requires_pandas, requires_version
from mne.parallel import parallel_func

io_dir = op.join(op.dirname(__file__), '..', '..', 'io')
base_dir = op.join(io_dir, 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
eve_fname = op.join(base_dir, 'test-eve.fif')
fname_kit_157 = op.join(io_dir, 'kit', 'tests', 'data', 'test.sqd')

testing_path = testing.data_path(download=False)


@pytest.mark.parametrize('preload', (True, False))
@pytest.mark.parametrize('proj', (True, False))
def test_reorder_channels(preload, proj):
    """Test reordering of channels."""
    raw = read_raw_fif(raw_fname).crop(0, 0.1).del_proj()
    if proj:  # a no-op but should test it
        raw._projector = np.eye(len(raw.ch_names))
    if preload:
        raw.load_data()
    # with .reorder_channels
    if proj and not preload:
        with pytest.raises(RuntimeError, match='load data'):
            raw.copy().reorder_channels(raw.ch_names[::-1])
        return
    raw_new = raw.copy().reorder_channels(raw.ch_names[::-1])
    assert raw_new.ch_names == raw.ch_names[::-1]
    if proj:
        assert_allclose(raw_new._projector, raw._projector, atol=1e-12)
    else:
        assert raw._projector is None
        assert raw_new._projector is None
    assert_array_equal(raw[:][0], raw_new[:][0][::-1])
    raw_new.reorder_channels(raw_new.ch_names[::-1][1:-1])
    raw.drop_channels(raw.ch_names[:1] + raw.ch_names[-1:])
    assert_array_equal(raw[:][0], raw_new[:][0])
    with pytest.raises(ValueError, match='repeated'):
        raw.reorder_channels(raw.ch_names[:1] + raw.ch_names[:1])
    # and with .pick
    reord = [1, 0] + list(range(2, len(raw.ch_names)))
    rev = np.argsort(reord)
    raw_new = raw.copy().pick(reord)
    assert_array_equal(raw[:][0], raw_new[rev][0])


def test_rename_channels():
    """Test rename channels."""
    info = read_info(raw_fname)
    # Error Tests
    # Test channel name exists in ch_names
    mapping = {'EEG 160': 'EEG060'}
    pytest.raises(ValueError, rename_channels, info, mapping)
    # Test improper mapping configuration
    mapping = {'MEG 2641': 1.0}
    pytest.raises(TypeError, rename_channels, info, mapping)
    # Test non-unique mapping configuration
    mapping = {'MEG 2641': 'MEG 2642'}
    pytest.raises(ValueError, rename_channels, info, mapping)
    # Test bad input
    pytest.raises(ValueError, rename_channels, info, 1.)
    pytest.raises(ValueError, rename_channels, info, 1.)

    # Test successful changes
    # Test ch_name and ch_names are changed
    info2 = deepcopy(info)  # for consistency at the start of each test
    info2['bads'] = ['EEG 060', 'EOG 061']
    mapping = {'EEG 060': 'EEG060', 'EOG 061': 'EOG061'}
    rename_channels(info2, mapping)
    assert info2['chs'][374]['ch_name'] == 'EEG060'
    assert info2['ch_names'][374] == 'EEG060'
    assert info2['chs'][375]['ch_name'] == 'EOG061'
    assert info2['ch_names'][375] == 'EOG061'
    assert_array_equal(['EEG060', 'EOG061'], info2['bads'])
    info2 = deepcopy(info)
    rename_channels(info2, lambda x: x.replace(' ', ''))
    assert info2['chs'][373]['ch_name'] == 'EEG059'
    info2 = deepcopy(info)
    info2['bads'] = ['EEG 060', 'EEG 060']
    rename_channels(info2, mapping)
    assert_array_equal(['EEG060', 'EEG060'], info2['bads'])

    # test that keys in Raw._orig_units will be renamed, too
    raw = read_raw_fif(raw_fname).crop(0, 0.1)
    old, new = 'EEG 060', 'New'
    raw._orig_units = {old: 'V'}

    raw.rename_channels({old: new})
    assert old not in raw._orig_units
    assert new in raw._orig_units


def test_set_channel_types():
    """Test set_channel_types."""
    raw = read_raw_fif(raw_fname)
    # Error Tests
    # Test channel name exists in ch_names
    mapping = {'EEG 160': 'EEG060'}
    with pytest.raises(ValueError, match=r"name \(EEG 160\) doesn't exist"):
        raw.set_channel_types(mapping)
    # Test change to illegal channel type
    mapping = {'EOG 061': 'xxx'}
    with pytest.raises(ValueError, match='cannot change to this channel type'):
        raw.set_channel_types(mapping)
    # Test changing type if in proj
    mapping = {'EEG 057': 'dbs', 'EEG 058': 'ecog', 'EEG 059': 'ecg',
               'EEG 060': 'eog', 'EOG 061': 'seeg', 'MEG 2441': 'eeg',
               'MEG 2443': 'eeg', 'MEG 2442': 'hbo', 'EEG 001': 'resp'}
    raw2 = read_raw_fif(raw_fname)
    raw2.info['bads'] = ['EEG 059', 'EEG 060', 'EOG 061']
    with pytest.raises(RuntimeError, match='type .* in projector "PCA-v1"'):
        raw2.set_channel_types(mapping)  # has prj
    raw2.add_proj([], remove_existing=True)
    with pytest.warns(RuntimeWarning, match='unit for channel.* has changed'):
        raw2 = raw2.set_channel_types(mapping)
    info = raw2.info
    assert info['chs'][371]['ch_name'] == 'EEG 057'
    assert info['chs'][371]['kind'] == FIFF.FIFFV_DBS_CH
    assert info['chs'][371]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][371]['coil_type'] == FIFF.FIFFV_COIL_EEG
    assert info['chs'][372]['ch_name'] == 'EEG 058'
    assert info['chs'][372]['kind'] == FIFF.FIFFV_ECOG_CH
    assert info['chs'][372]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][372]['coil_type'] == FIFF.FIFFV_COIL_EEG
    assert info['chs'][373]['ch_name'] == 'EEG 059'
    assert info['chs'][373]['kind'] == FIFF.FIFFV_ECG_CH
    assert info['chs'][373]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][373]['coil_type'] == FIFF.FIFFV_COIL_NONE
    assert info['chs'][374]['ch_name'] == 'EEG 060'
    assert info['chs'][374]['kind'] == FIFF.FIFFV_EOG_CH
    assert info['chs'][374]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][374]['coil_type'] == FIFF.FIFFV_COIL_NONE
    assert info['chs'][375]['ch_name'] == 'EOG 061'
    assert info['chs'][375]['kind'] == FIFF.FIFFV_SEEG_CH
    assert info['chs'][375]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][375]['coil_type'] == FIFF.FIFFV_COIL_EEG
    for idx in pick_channels(raw.ch_names, ['MEG 2441', 'MEG 2443']):
        assert info['chs'][idx]['kind'] == FIFF.FIFFV_EEG_CH
        assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_V
        assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_EEG
    idx = pick_channels(raw.ch_names, ['MEG 2442'])[0]
    assert info['chs'][idx]['kind'] == FIFF.FIFFV_FNIRS_CH
    assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_MOL
    assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBO

    # resp channel type
    idx = pick_channels(raw.ch_names, ['EEG 001'])[0]
    assert info['chs'][idx]['kind'] == FIFF.FIFFV_RESP_CH
    assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_NONE

    # Test meaningful error when setting channel type with unknown unit
    raw.info['chs'][0]['unit'] = 0.
    ch_types = {raw.ch_names[0]: 'misc'}
    pytest.raises(ValueError, raw.set_channel_types, ch_types)


def test_get_builtin_ch_adjacencies():
    """Test retrieving the names of all built-in FieldTrip neighbors."""
    names = get_builtin_ch_adjacencies()
    assert names
    assert len(names) == len(set(names))  # no duplicates
    assert len(names) == len(_BUILTIN_CHANNEL_ADJACENCIES)

    names_and_descriptions = get_builtin_ch_adjacencies(descriptions=True)
    for name_and_description in names_and_descriptions:
        assert len(name_and_description) == 2


def test_read_ch_adjacency(tmp_path):
    """Test reading channel adjacency templates."""
    tempdir = str(tmp_path)
    a = partial(np.array, dtype='<U7')
    # no pep8
    nbh = np.array([[(['MEG0111'], [[a(['MEG0131'])]]),
                     (['MEG0121'], [[a(['MEG0111'])],
                                    [a(['MEG0131'])]]),
                     (['MEG0131'], [[a(['MEG0111'])],
                                    [a(['MEG0121'])]])]],
                   dtype=[('label', 'O'), ('neighblabel', 'O')])
    mat = dict(neighbours=nbh)
    mat_fname = op.join(tempdir, 'test_mat.mat')
    savemat(mat_fname, mat, oned_as='row')

    ch_adjacency, ch_names = read_ch_adjacency(mat_fname)
    x = ch_adjacency
    assert_equal(x.shape[0], len(ch_names))
    assert_equal(x.shape, (3, 3))
    assert_equal(x[0, 1], False)
    assert_equal(x[0, 2], True)
    assert np.all(x.diagonal())
    pytest.raises(ValueError, read_ch_adjacency, mat_fname, [0, 3])
    ch_adjacency, ch_names = read_ch_adjacency(mat_fname, picks=[0, 2])
    assert_equal(ch_adjacency.shape[0], 2)
    assert_equal(len(ch_names), 2)

    ch_names = ['EEG01', 'EEG02', 'EEG03']
    neighbors = [['EEG02'], ['EEG04'], ['EEG02']]
    pytest.raises(ValueError, _ch_neighbor_adjacency, ch_names, neighbors)
    neighbors = [['EEG02'], ['EEG01', 'EEG03'], ['EEG 02']]
    pytest.raises(ValueError, _ch_neighbor_adjacency, ch_names[:2],
                  neighbors)
    neighbors = [['EEG02'], 'EEG01', ['EEG 02']]
    pytest.raises(ValueError, _ch_neighbor_adjacency, ch_names, neighbors)
    adjacency, ch_names = read_ch_adjacency('neuromag306mag')
    assert_equal(adjacency.shape, (102, 102))
    assert_equal(len(ch_names), 102)
    pytest.raises(ValueError, read_ch_adjacency, 'bananas!')

    # In EGI 256, E31 sensor has no neighbour
    a = partial(np.array)
    nbh = np.array([[(['E31'], []),
                     (['E1'], [[a(['E2'])],
                               [a(['E3'])]]),
                     (['E2'], [[a(['E1'])],
                               [a(['E3'])]]),
                     (['E3'], [[a(['E1'])],
                               [a(['E2'])]])]],
                   dtype=[('label', 'O'), ('neighblabel', 'O')])
    mat = dict(neighbours=nbh)
    mat_fname = op.join(tempdir, 'test_isolated_mat.mat')
    savemat(mat_fname, mat, oned_as='row')
    ch_adjacency, ch_names = read_ch_adjacency(mat_fname)
    x = ch_adjacency.todense()
    assert_equal(x.shape[0], len(ch_names))
    assert_equal(x.shape, (4, 4))
    assert np.all(x.diagonal())
    assert not np.any(x[0, 1:])
    assert not np.any(x[1:, 0])

    # Check for neighbours consistency. If a sensor is marked as a neighbour,
    # then it should also have its neighbours defined.
    a = partial(np.array)
    nbh = np.array([[(['E31'], []),
                     (['E1'], [[a(['E8'])],
                               [a(['E3'])]]),
                     (['E2'], [[a(['E1'])],
                               [a(['E3'])]]),
                     (['E3'], [[a(['E1'])],
                               [a(['E2'])]])]],
                   dtype=[('label', 'O'), ('neighblabel', 'O')])
    mat = dict(neighbours=nbh)
    mat_fname = op.join(tempdir, 'test_error_mat.mat')
    savemat(mat_fname, mat, oned_as='row')
    pytest.raises(ValueError, read_ch_adjacency, mat_fname)

    # Try reading all built-in FieldTrip neighbors
    for name in get_builtin_ch_adjacencies():
        ch_adjacency, ch_names = read_ch_adjacency(name)
        assert_equal(ch_adjacency.shape[0], len(ch_names))


def _download_ft_neighbors(target_dir):
    """Download the known neighbors from FieldTrip."""
    # The entire FT repository is larger than a GB, so we'll just download
    # the few files we need.
    def _download_one_ft_neighbor(
        neighbor: _BuiltinChannelAdjacency
    ):
        # Log level setting must happen inside the job to work properly
        import pooch
        pooch.get_logger().setLevel('ERROR')  # reduce verbosity
        fname = neighbor.fname
        url = neighbor.source_url

        pooch.retrieve(
            url=url,
            known_hash=None,
            fname=fname,
            path=target_dir,
        )

    parallel, p_fun, _ = parallel_func(
        func=_download_one_ft_neighbor, n_jobs=-1
    )
    parallel(
        p_fun(neighbor)
        for neighbor in _BUILTIN_CHANNEL_ADJACENCIES
        if neighbor.source_url is not None
    )


@pytest.mark.slowtest
def test_adjacency_matches_ft(tmp_path):
    """Test correspondence of built-in adjacency matrices with FT repo."""
    builtin_neighbors_dir = Path(__file__).parents[1] / 'data' / 'neighbors'
    ft_neighbors_dir = tmp_path
    del tmp_path

    _download_ft_neighbors(target_dir=ft_neighbors_dir)

    for adj in _BUILTIN_CHANNEL_ADJACENCIES:
        fname = adj.fname
        if not (ft_neighbors_dir / fname).exists():
            continue  # only exists in MNE, not FT

        hash_mne = hashlib.sha256()
        hash_ft = hashlib.sha256()

        with open(builtin_neighbors_dir / fname, 'rb') as f:
            data = f.read()
            hash_mne.update(data)

        with open(ft_neighbors_dir / fname, 'rb') as f:
            data = f.read()
            hash_ft.update(data)

        if hash_mne.hexdigest() != hash_ft.hexdigest():
            raise ValueError(
                f'Hash mismatch between built-in and FieldTrip neighbors '
                f'for {fname}'
            )


def test_get_set_sensor_positions():
    """Test get/set functions for sensor positions."""
    raw1 = read_raw_fif(raw_fname)
    picks = pick_types(raw1.info, meg=False, eeg=True)
    pos = np.array([ch['loc'][:3] for ch in raw1.info['chs']])[picks]
    raw_pos = raw1._get_channel_positions(picks=picks)
    assert_array_equal(raw_pos, pos)

    ch_name = raw1.info['ch_names'][13]
    pytest.raises(ValueError, raw1._set_channel_positions, [1, 2], ['name'])
    raw2 = read_raw_fif(raw_fname)
    raw2.info['chs'][13]['loc'][:3] = np.array([1, 2, 3])
    raw1._set_channel_positions([[1, 2, 3]], [ch_name])
    assert_array_equal(raw1.info['chs'][13]['loc'],
                       raw2.info['chs'][13]['loc'])


@requires_version('pymatreader')
@testing.requires_testing_data
def test_1020_selection():
    """Test making a 10/20 selection dict."""
    raw_fname = op.join(testing_path, 'EEGLAB', 'test_raw.set')
    loc_fname = op.join(testing_path, 'EEGLAB', 'test_chans.locs')
    raw = read_raw_eeglab(raw_fname, preload=True)
    montage = read_custom_montage(loc_fname)
    raw = raw.rename_channels(dict(zip(raw.ch_names, montage.ch_names)))
    raw.set_montage(montage)

    for input in ("a_string", 100, raw, [1, 2]):
        pytest.raises(TypeError, make_1020_channel_selections, input)

    sels = make_1020_channel_selections(raw.info)
    # are all frontal channels placed before all occipital channels?
    for name, picks in sels.items():
        fs = min([ii for ii, pick in enumerate(picks)
                  if raw.ch_names[pick].startswith("F")])
        ps = max([ii for ii, pick in enumerate(picks)
                  if raw.ch_names[pick].startswith("O")])
        assert fs > ps

    # are channels in the correct selection?
    fz_c3_c4 = [raw.ch_names.index(ch) for ch in ("Fz", "C3", "C4")]
    for channel, roi in zip(fz_c3_c4, ("Midline", "Left", "Right")):
        assert channel in sels[roi]


@testing.requires_testing_data
def test_find_ch_adjacency():
    """Test computing the adjacency matrix."""
    raw = read_raw_fif(raw_fname, preload=True)
    sizes = {'mag': 828, 'grad': 1700, 'eeg': 384}
    nchans = {'mag': 102, 'grad': 204, 'eeg': 60}
    for ch_type in ['mag', 'grad', 'eeg']:
        conn, ch_names = find_ch_adjacency(raw.info, ch_type)
        # Silly test for checking the number of neighbors.
        assert_equal(conn.getnnz(), sizes[ch_type])
        assert_equal(len(ch_names), nchans[ch_type])
    pytest.raises(ValueError, find_ch_adjacency, raw.info, None)

    # Test computing the conn matrix with gradiometers.
    conn, ch_names = _compute_ch_adjacency(raw.info, 'grad')
    assert_equal(conn.getnnz(), 2680)

    # Test ch_type=None.
    raw.pick_types(meg='mag')
    find_ch_adjacency(raw.info, None)

    bti_fname = op.join(testing_path, 'BTi', 'erm_HFH', 'c,rfDC')
    bti_config_name = op.join(testing_path, 'BTi', 'erm_HFH', 'config')
    raw = read_raw_bti(bti_fname, bti_config_name, None)
    _, ch_names = find_ch_adjacency(raw.info, 'mag')
    assert 'A1' in ch_names

    ctf_fname = op.join(testing_path, 'CTF', 'testdata_ctf_short.ds')
    raw = read_raw_ctf(ctf_fname)
    _, ch_names = find_ch_adjacency(raw.info, 'mag')
    assert 'MLC11' in ch_names

    pytest.raises(ValueError, find_ch_adjacency, raw.info, 'eog')

    raw_kit = read_raw_kit(fname_kit_157)
    neighb, ch_names = find_ch_adjacency(raw_kit.info, 'mag')
    assert neighb.data.size == 1329
    assert ch_names[0] == 'MEG 001'


@testing.requires_testing_data
def test_neuromag122_adjacency():
    """Test computing the adjacency matrix of Neuromag122-Data."""
    nm122_fname = op.join(testing_path, 'misc',
                          'neuromag122_test_file-raw.fif')
    raw = read_raw_fif(nm122_fname, preload=True)
    conn, ch_names = find_ch_adjacency(raw.info, 'grad')
    assert conn.getnnz() == 1564
    assert len(ch_names) == 122
    assert conn.shape == (122, 122)


def test_drop_channels():
    """Test if dropping channels works with various arguments."""
    raw = read_raw_fif(raw_fname, preload=True).crop(0, 0.1)
    raw.drop_channels(["MEG 0111"])  # list argument
    raw.drop_channels("MEG 0112")  # str argument
    raw.drop_channels({"MEG 0132", "MEG 0133"})  # set argument
    pytest.raises(ValueError, raw.drop_channels, ["MEG 0111", 5])
    pytest.raises(ValueError, raw.drop_channels, 5)  # must be list or str

    # by default, drop channels raises a ValueError if a channel can't be found
    m_chs = ["MEG 0111", "MEG blahblah"]
    with pytest.raises(ValueError, match='not found, nothing dropped'):
        raw.drop_channels(m_chs)
    # ...but this can be turned to a warning
    with pytest.warns(RuntimeWarning, match='not found, nothing dropped'):
        raw.drop_channels(m_chs, on_missing='warn')
    # ...or ignored altogether
    raw.drop_channels(m_chs, on_missing='ignore')


def test_pick_channels():
    """Test if picking channels works with various arguments."""
    raw = read_raw_fif(raw_fname, preload=True).crop(0, 0.1)

    # selected correctly 3 channels
    raw.pick(['MEG 0113', 'MEG 0112', 'MEG 0111'])
    assert len(raw.ch_names) == 3

    # selected correctly 3 channels and ignored 'meg', and emit warning
    with pytest.warns(RuntimeWarning, match='not present in the info'):
        raw.pick(['MEG 0113', "meg", 'MEG 0112', 'MEG 0111'])
        assert len(raw.ch_names) == 3

    names_len = len(raw.ch_names)
    raw.pick(['all'])  # selected correctly all channels
    assert len(raw.ch_names) == names_len
    raw.pick('all')  # selected correctly all channels
    assert len(raw.ch_names) == names_len


def test_add_reference_channels():
    """Test if there is a new reference channel that consist of all zeros."""
    raw = read_raw_fif(raw_fname, preload=True)
    n_raw_original_channels = len(raw.ch_names)
    epochs = Epochs(raw, read_events(eve_fname))
    epochs.load_data()
    epochs_original_shape = epochs._data.shape[1]
    evoked = epochs.average()
    n_evoked_original_channels = len(evoked.ch_names)

    # Raw object
    raw.add_reference_channels(['REF 123'])
    assert len(raw.ch_names) == n_raw_original_channels + 1
    assert np.all(raw.get_data()[-1] == 0)

    # Epochs object
    epochs.add_reference_channels(['REF 123'])
    assert epochs._data.shape[1] == epochs_original_shape + 1

    # Evoked object
    evoked.add_reference_channels(['REF 123'])
    assert len(evoked.ch_names) == n_evoked_original_channels + 1
    assert np.all(evoked._data[-1] == 0)


def test_equalize_channels():
    """Test equalizing channels and their ordering."""
    # This function only tests the generic functionality of equalize_channels.
    # Additional tests for each instance type are included in the accompanying
    # test suite for each type.
    pytest.raises(TypeError, equalize_channels, ['foo', 'bar'],
                  match='Instances to be modified must be an instance of')

    raw = RawArray([[1.], [2.], [3.], [4.]],
                   create_info(['CH1', 'CH2', 'CH3', 'CH4'], sfreq=1.))
    epochs = EpochsArray([[[1.], [2.], [3.]]],
                         create_info(['CH5', 'CH2', 'CH1'], sfreq=1.))
    cov = make_ad_hoc_cov(create_info(['CH2', 'CH1', 'CH8'], sfreq=1.,
                                      ch_types='eeg'))
    cov['bads'] = ['CH1']
    ave = EvokedArray([[1.], [2.]], create_info(['CH1', 'CH2'], sfreq=1.))

    raw2, epochs2, cov2, ave2 = equalize_channels([raw, epochs, cov, ave],
                                                  copy=True)

    # The Raw object was the first in the list, so should have been used as
    # template for the ordering of the channels. No bad channels should have
    # been dropped.
    assert raw2.ch_names == ['CH1', 'CH2']
    assert_array_equal(raw2.get_data(), [[1.], [2.]])
    assert epochs2.ch_names == ['CH1', 'CH2']
    assert_array_equal(epochs2.get_data(), [[[3.], [2.]]])
    assert cov2.ch_names == ['CH1', 'CH2']
    assert cov2['bads'] == cov['bads']
    assert ave2.ch_names == ave.ch_names
    assert_array_equal(ave2.data, ave.data)

    # All objects should have been copied, except for the Evoked object which
    # did not have to be touched.
    assert raw is not raw2
    assert epochs is not epochs2
    assert cov is not cov2
    assert ave is ave2

    # Test in-place operation
    raw2, epochs2 = equalize_channels([raw, epochs], copy=False)
    assert raw is raw2
    assert epochs is epochs2


def test_combine_channels():
    """Test channel combination on Raw, Epochs, and Evoked."""
    raw = read_raw_fif(raw_fname, preload=True)
    raw_ch_bad = read_raw_fif(raw_fname, preload=True)
    raw_ch_bad.info['bads'] = ['MEG 0113', 'MEG 0112']
    epochs = Epochs(raw, read_events(eve_fname))
    evoked = epochs.average()
    good = dict(foo=[0, 1, 3, 4], bar=[5, 2])  # good grad and mag

    # Test good cases
    combine_channels(raw, good)
    combined_epochs = combine_channels(epochs, good)
    assert_array_equal(combined_epochs.events, epochs.events)
    assert epochs.baseline == combined_epochs.baseline
    combined_evoked = combine_channels(evoked, good)
    assert evoked.baseline == combined_evoked.baseline
    combine_channels(raw, good, drop_bad=True)
    combine_channels(raw_ch_bad, good, drop_bad=True)

    # Test with stimulus channels
    combine_stim = combine_channels(raw, good, keep_stim=True)
    target_nchan = len(good) + len(pick_types(raw.info, meg=False, stim=True))
    assert combine_stim.info['nchan'] == target_nchan

    # Test results with one ROI
    good_single = dict(foo=[0, 1, 3, 4])  # good grad
    combined_mean = combine_channels(raw, good_single, method='mean')
    combined_median = combine_channels(raw, good_single, method='median')
    combined_std = combine_channels(raw, good_single, method='std')
    foo_mean = np.mean(raw.get_data()[good_single['foo']], axis=0)
    foo_median = np.median(raw.get_data()[good_single['foo']], axis=0)
    foo_std = np.std(raw.get_data()[good_single['foo']], axis=0)
    assert_array_equal(combined_mean.get_data(),
                       np.expand_dims(foo_mean, axis=0))
    assert_array_equal(combined_median.get_data(),
                       np.expand_dims(foo_median, axis=0))
    assert_array_equal(combined_std.get_data(),
                       np.expand_dims(foo_std, axis=0))

    # Test bad cases
    bad1 = dict(foo=[0, 376], bar=[5, 2])  # out of bounds
    bad2 = dict(foo=[0, 2], bar=[5, 2])  # type mix in same group
    with pytest.raises(ValueError, match='"method" must be a callable, or'):
        combine_channels(raw, good, method='bad_method')
    with pytest.raises(TypeError, match='"keep_stim" must be of type bool'):
        combine_channels(raw, good, keep_stim='bad_type')
    with pytest.raises(TypeError, match='"drop_bad" must be of type bool'):
        combine_channels(raw, good, drop_bad='bad_type')
    with pytest.raises(ValueError, match='Some channel indices are out of'):
        combine_channels(raw, bad1)
    with pytest.raises(ValueError, match='Cannot combine sensors of diff'):
        combine_channels(raw, bad2)

    # Test warnings
    raw_no_stim = read_raw_fif(raw_fname, preload=True)
    raw_no_stim.pick_types(meg=True, stim=False)
    warn1 = dict(foo=[375, 375], bar=[5, 2])  # same channel in same group
    warn2 = dict(foo=[375], bar=[5, 2])  # one channel (last channel)
    warn3 = dict(foo=[0, 4], bar=[5, 2])  # one good channel left
    with pytest.warns(RuntimeWarning, match='Could not find stimulus'):
        combine_channels(raw_no_stim, good, keep_stim=True)
    with pytest.warns(RuntimeWarning, match='Less than 2 channels') as record:
        combine_channels(raw, warn1)
        combine_channels(raw, warn2)
        combine_channels(raw_ch_bad, warn3, drop_bad=True)
    assert len(record) == 3


@requires_pandas
def test_combine_channels_metadata():
    """Test if metadata is correctly retained in combined object."""
    import pandas as pd

    raw = read_raw_fif(raw_fname, preload=True)
    epochs = Epochs(raw, read_events(eve_fname), preload=True)

    metadata = pd.DataFrame({"A": np.arange(len(epochs)),
                             "B": np.ones(len(epochs))})
    epochs.metadata = metadata

    good = dict(foo=[0, 1, 3, 4], bar=[5, 2])  # good grad and mag
    combined_epochs = combine_channels(epochs, good)
    pd.testing.assert_frame_equal(epochs.metadata, combined_epochs.metadata)