1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
.. _manual-install:
.. _standard-instructions:
Install via :code:`pip` or :code:`conda`
========================================
.. hint::
If you're unfamiliar with Python, we recommend using our :ref:`installers`
instead.
MNE-Python requires Python version |min_python_version| or higher. If you
need help installing Python, please refer to our :ref:`install-python` guide.
Installing MNE-Python with all dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you use Anaconda, we suggest installing MNE-Python into its own ``conda`` environment.
First, please ensure you're using a recent version of ``conda``. Run in your terminal:
.. code-block:: console
$ conda update --name=base conda # update conda
$ conda --version
The installed ``conda`` version should be ``23.10.0`` or newer.
Now, you can install MNE-Python:
.. code-block:: console
$ conda create --channel=conda-forge --strict-channel-priority --name=mne mne
This will create a new ``conda`` environment called ``mne`` (you can adjust
this by passing a different name via ``--name``) and install all
dependencies into it.
If you need to convert structural MRI scans into models
of the scalp, inner/outer skull, and cortical surfaces, you will also need
to install :doc:`FreeSurfer <freesurfer>`.
Installing MNE-Python with core dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you only need MNE-Python's core functionality, which includes 2D plotting
(but does not support 3D visualization), install via :code:`pip`:
.. code-block:: console
$ pip install mne
or via :code:`conda`:
.. code-block:: console
$ conda create --channel=conda-forge --strict-channel-priority --name=mne mne-base
This will create a new ``conda`` environment called ``mne`` (you can adjust
this by passing a different name via ``--name``).
This minimal installation requires only a few dependencies. If you need additional
functionality later on, you can install individual packages as needed.
Installing MNE-Python with HDF5 support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you plan to use MNE-Python's functions that require
`HDF5 <https://www.hdfgroup.org/solutions/hdf5/>`__ I/O (this
includes :func:`mne.io.read_raw_eeglab`, :meth:`mne.SourceMorph.save`, and
others), you should run via :code:`pip`:
.. code-block:: console
$ pip install "mne[hdf5]"
or via :code:`conda`:
.. code-block:: console
$ conda create --override-channels --channel=conda-forge --name=mne mne-base h5io h5py pymatreader
This will create a new ``conda`` environment called ``mne`` (you can adjust
this by passing a different name via ``--name``).
If you have already installed MNE-Python with core dependencies (e.g. via ``pip install mne``),
you can install these two packages to unlock HDF5 support:
.. code-block:: console
$ pip install h5io pymatreader
Installing MNE-Python for other scenarios
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :ref:`advanced_setup` page has additional
tips and tricks for special situations (servers, notebooks, CUDA, installing
the development version, etc). The :ref:`contributing` has additional
installation instructions for (future) contributors to MNE-Python (e.g, extra
dependencies for running our tests and building our documentation).
|