File: ssd_spatial_filters.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (158 lines) | stat: -rw-r--r-- 4,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
.. _ex-ssd-spatial-filters:

================================================================
Compute spatial filters with Spatio-Spectral Decomposition (SSD)
================================================================

In this example, we will compute spatial filters for retaining
oscillatory brain activity and down-weighting 1/f background signals
as proposed by :footcite:`NikulinEtAl2011`.
The idea is to learn spatial filters that separate oscillatory dynamics
from surrounding non-oscillatory noise based on the covariance in the
frequency band of interest and the noise covariance based on surrounding
frequencies.
"""
# Author: Denis A. Engemann <denis.engemann@gmail.com>
#         Victoria Peterson <victoriapeterson09@gmail.com>
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

# %%

import matplotlib.pyplot as plt

import mne
from mne import Epochs
from mne.datasets.fieldtrip_cmc import data_path
from mne.decoding import SSD

# %%
# Define parameters
fname = data_path() / "SubjectCMC.ds"

# Prepare data
raw = mne.io.read_raw_ctf(fname)
raw.crop(tmin=50.0, tmax=110.0).load_data()  # crop for memory purposes
raw.resample(sfreq=250)

raw.pick_types(meg=True, ref_meg=False)

freqs_sig = 9, 12
freqs_noise = 8, 13


ssd = SSD(
    info=raw.info,
    reg="oas",
    sort_by_spectral_ratio=False,  # False for purpose of example.
    filt_params_signal=dict(
        l_freq=freqs_sig[0],
        h_freq=freqs_sig[1],
        l_trans_bandwidth=1,
        h_trans_bandwidth=1,
    ),
    filt_params_noise=dict(
        l_freq=freqs_noise[0],
        h_freq=freqs_noise[1],
        l_trans_bandwidth=1,
        h_trans_bandwidth=1,
    ),
)
ssd.fit(X=raw.get_data())


# %%
# Let's investigate spatial filter with the max power ratio.
# We will first inspect the topographies.
# According to Nikulin et al. (2011), this is done by either inverting the filters
# (W^{-1}) or by multiplying the noise cov with the filters Eq. (22) (C_n W)^t.
# We rely on the inversion approach here.

pattern = mne.EvokedArray(data=ssd.patterns_[:4].T, info=ssd.info)
pattern.plot_topomap(units=dict(mag="A.U."), time_format="")

# The topographies suggest that we picked up a parietal alpha generator.

# Transform
ssd_sources = ssd.transform(X=raw.get_data())

# Get psd of SSD-filtered signals.
psd, freqs = mne.time_frequency.psd_array_welch(
    ssd_sources, sfreq=raw.info["sfreq"], n_fft=4096
)

# Get spec_ratio information (already sorted).
# Note that this is not necessary if sort_by_spectral_ratio=True (default).
spec_ratio, sorter = ssd.get_spectral_ratio(ssd_sources)

# Plot spectral ratio (see Eq. 24 in Nikulin et al., 2011).
fig, ax = plt.subplots(1)
ax.plot(spec_ratio, color="black")
ax.plot(spec_ratio[sorter], color="orange", label="sorted eigenvalues")
ax.set_xlabel("Eigenvalue Index")
ax.set_ylabel(r"Spectral Ratio $\frac{P_f}{P_{sf}}$")
ax.legend()
ax.axhline(1, linestyle="--")

# We can see that the initial sorting based on the eigenvalues
# was already quite good. However, when using few components only
# the sorting might make a difference.

# %%
# Let's also look at the power spectrum of that source and compare it
# to the power spectrum of the source with lowest SNR.

below50 = freqs < 50
# for highlighting the freq. band of interest
bandfilt = (freqs_sig[0] <= freqs) & (freqs <= freqs_sig[1])
fig, ax = plt.subplots(1)
ax.loglog(freqs[below50], psd[0, below50], label="max SNR")
ax.loglog(freqs[below50], psd[-1, below50], label="min SNR")
ax.loglog(freqs[below50], psd[:, below50].mean(axis=0), label="mean")
ax.fill_between(freqs[bandfilt], 0, 10000, color="green", alpha=0.15)
ax.set_xlabel("log(frequency)")
ax.set_ylabel("log(power)")
ax.legend()

# We can clearly see that the selected component enjoys an SNR that is
# way above the average power spectrum.

# %%
# Epoched data
# ------------
# Although we suggest using this method before epoching, there might be some
# situations in which data can only be treated by chunks.

# Build epochs as sliding windows over the continuous raw file.
events = mne.make_fixed_length_events(raw, id=1, duration=5.0, overlap=0.0)

# Epoch length is 5 seconds.
epochs = Epochs(raw, events, tmin=0.0, tmax=5, baseline=None, preload=True)

ssd_epochs = SSD(
    info=epochs.info,
    reg="oas",
    filt_params_signal=dict(
        l_freq=freqs_sig[0],
        h_freq=freqs_sig[1],
        l_trans_bandwidth=1,
        h_trans_bandwidth=1,
    ),
    filt_params_noise=dict(
        l_freq=freqs_noise[0],
        h_freq=freqs_noise[1],
        l_trans_bandwidth=1,
        h_trans_bandwidth=1,
    ),
)
ssd_epochs.fit(X=epochs.get_data(copy=False))

# Plot topographies.
pattern_epochs = mne.EvokedArray(data=ssd_epochs.patterns_[:4].T, info=ssd_epochs.info)
pattern_epochs.plot_topomap(units=dict(mag="A.U."), time_format="")
# %%
# References
# ----------
#
# .. footbibliography::