File: ssp_projs_sensitivity_map.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (53 lines) | stat: -rw-r--r-- 1,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
.. _ex-ssp-proj:

==================================
Sensitivity map of SSP projections
==================================

This example shows the sources that have a forward field
similar to the first SSP vector correcting for ECG.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

# %%

import matplotlib.pyplot as plt

from mne import read_forward_solution, read_proj, sensitivity_map
from mne.datasets import sample

print(__doc__)

data_path = sample.data_path()

subjects_dir = data_path / "subjects"
meg_path = data_path / "MEG" / "sample"
fname = meg_path / "sample_audvis-meg-eeg-oct-6-fwd.fif"
ecg_fname = meg_path / "sample_audvis_ecg-proj.fif"

fwd = read_forward_solution(fname)

projs = read_proj(ecg_fname)
# take only one projection per channel type
projs = projs[::2]

# Compute sensitivity map
ssp_ecg_map = sensitivity_map(fwd, ch_type="grad", projs=projs, mode="angle")

# %%
# Show sensitivity map

plt.hist(ssp_ecg_map.data.ravel())
plt.show()

args = dict(
    clim=dict(kind="value", lims=(0.2, 0.6, 1.0)),
    smoothing_steps=7,
    hemi="rh",
    subjects_dir=subjects_dir,
)
ssp_ecg_map.plot(subject="sample", time_label="ECG SSP sensitivity", **args)