1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
"""Generate the MNE-Python logos."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import pathlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import font_manager, rcParams
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import Ellipse, FancyBboxPatch, PathPatch, Rectangle
from matplotlib.path import Path
from matplotlib.text import TextPath
from scipy.stats import multivariate_normal
# manually set values
dpi = 300
center_fudge = np.array([15, 30]) # compensate for font bounding box padding
tagline_scale_fudge = 0.97 # to get justification right
tagline_offset_fudge = np.array([0, -100.0])
# font, etc (default to MNE font)
rcp = {
"font.sans-serif": ["Primetime"],
"font.style": "normal",
"font.weight": "black",
"font.variant": "normal",
"figure.dpi": dpi,
"savefig.dpi": dpi,
"contour.negative_linestyle": "solid",
}
plt.rcdefaults()
rcParams.update(rcp)
# %%
# mne_logo.svg and mne_logo_dark.svg
# initialize figure (no axes, margins, etc)
fig = plt.figure(1, figsize=(5, 2.25), frameon=False, dpi=dpi)
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
fig.add_axes(ax)
# fake field data
delta = 0.01
x = np.arange(-8.0, 8.0, delta)
y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
xy = np.array([X, Y]).transpose(1, 2, 0)
Z1 = multivariate_normal.pdf(
xy, mean=[-5.0, 0.9], cov=np.array([[8.0, 1.0], [1.0, 7.0]]) ** 2
)
Z2 = multivariate_normal.pdf(
xy, mean=[2.6, -2.5], cov=np.array([[15.0, 2.5], [2.5, 2.5]]) ** 2
)
Z = Z2 - 0.7 * Z1
# color map: field gradient (yellow-red-gray-blue-cyan)
# yrtbc = {
# 'red': ((0, 1, 1), (0.4, 1, 1), (0.5, 0.5, 0.5), (0.6, 0, 0), (1, 0, 0)),
# 'blue': ((0, 0, 0), (0.4, 0, 0), (0.5, 0.5, 0.5), (0.6, 1, 1), (1, 1, 1)), # noqa
# 'green': ((0, 1, 1), (0.4, 0, 0), (0.5, 0.5, 0.5), (0.6, 0, 0), (1, 1, 1)), # noqa
# }
yrtbc = {
"red": ((0.0, 1.0, 1.0), (0.5, 1.0, 0.0), (1.0, 0.0, 0.0)),
"blue": ((0.0, 0.0, 0.0), (0.5, 0.0, 1.0), (1.0, 1.0, 1.0)),
"green": ((0.0, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)),
"alpha": (
(0.0, 1.0, 1.0),
(0.4, 0.8, 0.8),
(0.5, 0.2, 0.2),
(0.6, 0.8, 0.8),
(1.0, 1.0, 1.0),
),
}
# color map: field lines (red | blue)
redbl = {
"red": ((0.0, 1.0, 1.0), (0.5, 1.0, 0.0), (1.0, 0.0, 0.0)),
"blue": ((0.0, 0.0, 0.0), (0.5, 0.0, 1.0), (1.0, 1.0, 1.0)),
"green": ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
"alpha": ((0.0, 0.4, 0.4), (1.0, 0.4, 0.4)),
}
mne_field_grad_cols = LinearSegmentedColormap("mne_grad", yrtbc)
mne_field_line_cols = LinearSegmentedColormap("mne_line", redbl)
# plot gradient and contour lines
im = ax.imshow(Z, cmap=mne_field_grad_cols, aspect="equal", zorder=1)
cs = ax.contour(Z, 9, cmap=mne_field_line_cols, linewidths=1, zorder=1)
xlim, ylim = ax.get_xbound(), ax.get_ybound()
plot_dims = np.r_[np.diff(xlim), np.diff(ylim)]
rect = Rectangle(
[xlim[0], ylim[0]], plot_dims[0], plot_dims[1], facecolor="w", zorder=0.5
)
# create MNE clipping mask
mne_path = TextPath((0, 0), "MNE")
dims = mne_path.vertices.max(0) - mne_path.vertices.min(0)
vert = mne_path.vertices - dims / 2.0
mult = (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted (origin at top left)
offset = plot_dims / 2.0 - center_fudge
mne_clip = Path(offset + vert * mult, mne_path.codes)
ax.add_patch(PathPatch(mne_clip, color="w", zorder=0, linewidth=0))
# apply clipping mask to field gradient and lines
im.set_clip_path(mne_clip, transform=im.get_transform())
ax.add_patch(rect)
rect.set_clip_path(mne_clip, transform=im.get_transform())
cs.set_clip_path(mne_clip, transform=im.get_transform())
# get final position of clipping mask
mne_corners = mne_clip.get_extents().corners()
# For this make sure that this gives something like ""
fnt = font_manager.findfont("Cooper Hewitt:style=normal:weight=book")
if "Book" not in fnt or "CooperHewitt" not in fnt:
print(
f"WARNING: Might not use correct Cooper Hewitt, got {fnt} but want "
"CooperHewitt-Book.otf or similar"
)
# add tagline
with plt.rc_context({"font.sans-serif": ["Cooper Hewitt"], "font.weight": "book"}):
tag_path = TextPath((0, 0), "MEG + EEG ANALYSIS & VISUALIZATION")
dims = tag_path.vertices.max(0) - tag_path.vertices.min(0)
vert = tag_path.vertices - dims / 2.0
mult = tagline_scale_fudge * (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted
offset = (
mne_corners[-1]
- np.array([mne_clip.get_extents().size[0] / 2.0, -dims[1]])
- tagline_offset_fudge
)
tag_clip = Path(offset + vert * mult, tag_path.codes)
tag_patch = PathPatch(tag_clip, facecolor="0.6", edgecolor="none", zorder=10)
ax.add_patch(tag_patch)
yl = ax.get_ylim()
yy = np.max([tag_clip.vertices.max(0)[-1], tag_clip.vertices.min(0)[-1]])
ax.set_ylim(np.ceil(yy), yl[-1])
# only save actual image extent plus a bit of padding
fig.canvas.draw_idle()
static_dir = pathlib.Path(__file__).parents[1] / "doc" / "_static"
assert static_dir.is_dir()
kind_color = dict(
mne_logo_dark=("0.8", "0.5"),
mne_logo_gray=("0.6", "0.75"),
mne_logo=("0.3", "w"), # always last
)
for kind, (tag_color, rect_color) in kind_color.items():
tag_patch.set_facecolor(tag_color)
rect.set_facecolor(rect_color)
fig.savefig(
static_dir / f"{kind}.svg",
transparent=True,
)
# %%
# mne_splash.png
# modify to make the splash screen
data_dir = pathlib.Path(__file__).parents[1] / "mne" / "icons"
assert data_dir.is_dir()
tag_patch.set_facecolor("0.7")
for coll in list(ax.collections):
coll.remove()
bounds = np.array(
[
[mne_path.vertices[:, ii].min(), mne_path.vertices[:, ii].max()]
for ii in range(2)
]
)
bounds *= plot_dims / dims
xy = np.mean(bounds, axis=1) - [100, 0]
r = np.diff(bounds, axis=1).max() * 1.2
w, h = r, r * (2 / 3)
box_xy = [xy[0] - w * 0.5, xy[1] - h * (2 / 5)]
ax.set(
ylim=(box_xy[1] + h * 1.001, box_xy[1] - h * 0.001),
xlim=(box_xy[0] - w * 0.001, box_xy[0] + w * 1.001),
)
patch = FancyBboxPatch(
box_xy,
w,
h,
clip_on=False,
zorder=-1,
fc="k",
ec="none",
alpha=0.75,
boxstyle="round,rounding_size=200.0",
mutation_aspect=1,
)
ax.add_patch(patch)
fig.set_size_inches((512 / dpi, 512 * (h / w) / dpi))
fig.savefig(
data_dir / "mne_splash.png",
transparent=True,
)
patch.remove()
# %%
# mne_default_icon.png
# modify to make an icon
ax.patches[-1].remove() # no tag line for our icon
patch = Ellipse(xy, r, r, clip_on=False, zorder=-1, fc="k")
ax.add_patch(patch)
ax.set_ylim(xy[1] + r / 1.99, xy[1] - r / 1.99)
fig.set_size_inches((256 / dpi, 256 / dpi))
# Qt does not support clip paths in SVG rendering so we have to use PNG here
# then use "optipng -o7" on it afterward (14% reduction in file size)
fig.savefig(
data_dir / "mne_default_icon.png",
transparent=True,
)
# %%
# mne_logo_small.svg
# 188x45 image
dpi = 96 # for SVG it's different
w_px = 188
h_px = 45
center_fudge = np.array([60, 0])
scale_fudge = 2.1
x = np.linspace(-1.0, 1.0, w_px // 2)
y = np.linspace(-1.0, 1.0, h_px // 2)
X, Y = np.meshgrid(x, y)
# initialize figure (no axes, margins, etc)
fig = plt.figure(
2, figsize=(w_px / dpi, h_px / dpi), facecolor="k", frameon=False, dpi=dpi
)
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
fig.add_axes(ax)
# plot rainbow
ax.imshow(X, cmap=mne_field_grad_cols, aspect="equal", zorder=1)
ax.imshow(np.ones_like(X) * 0.5, cmap="Greys", aspect="equal", zorder=0, clim=[0, 1])
plot_dims = np.r_[np.diff(ax.get_xbound()), np.diff(ax.get_ybound())]
# MNE text in white
mne_path = TextPath((0, 0), "MNE")
dims = mne_path.vertices.max(0) - mne_path.vertices.min(0)
vert = mne_path.vertices - dims / 2.0
mult = scale_fudge * (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted (origin at top left)
offset = (
np.array([scale_fudge, 1.0]) * np.array([-dims[0], plot_dims[-1]]) / 2.0
- center_fudge
)
mne_clip = Path(offset + vert * mult, mne_path.codes)
mne_patch = PathPatch(mne_clip, facecolor="0.5", edgecolor="none", zorder=10)
ax.add_patch(mne_patch)
# adjust xlim and ylim
mne_corners = mne_clip.get_extents().corners()
xmin, ymin = np.min(mne_corners, axis=0)
xmax, ymax = np.max(mne_corners, axis=0)
xl = ax.get_xlim()
yl = ax.get_ylim()
xpad = np.abs(np.diff([xmin, xl[1]])) / 20.0
ypad = np.abs(np.diff([ymax, ymin])) / 20.0
ax.set_xlim(xmin - xpad, xl[1] + xpad)
ax.set_ylim(ymax + ypad, ymin - ypad)
fig.canvas.draw_idle()
fig.savefig(
static_dir / "mne_logo_small.svg",
dpi=dpi,
transparent=True,
)
|