1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
"""Functions shared between different beamformer types."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from copy import deepcopy
import numpy as np
from .._fiff.proj import Projection, make_projector
from ..cov import Covariance, make_ad_hoc_cov
from ..forward.forward import _restrict_forward_to_src_sel, is_fixed_orient
from ..minimum_norm.inverse import _get_vertno, _prepare_forward
from ..source_space._source_space import label_src_vertno_sel
from ..time_frequency.csd import CrossSpectralDensity
from ..utils import (
_check_option,
_check_src_normal,
_import_h5io_funcs,
_pl,
_reg_pinv,
_sym_mat_pow,
check_fname,
logger,
verbose,
warn,
)
def _check_proj_match(proj, filters):
"""Check whether SSP projections in data and spatial filter match."""
proj_data, _, _ = make_projector(proj, filters["ch_names"])
if not np.allclose(
proj_data, filters["proj"], atol=np.finfo(float).eps, rtol=1e-13
):
raise ValueError(
"The SSP projections present in the data "
"do not match the projections used when "
"calculating the spatial filter."
)
def _check_src_type(filters):
"""Check whether src_type is in filters and set custom warning."""
if "src_type" not in filters:
filters["src_type"] = None
warn_text = (
"The spatial filter does not contain src_type and a robust "
"guess of src_type is not possible without src. Consider "
"recomputing the filter."
)
return filters, warn_text
def _prepare_beamformer_input(
info,
forward,
label=None,
pick_ori=None,
noise_cov=None,
rank=None,
pca=False,
loose=None,
combine_xyz="fro",
exp=None,
limit=None,
allow_fixed_depth=True,
limit_depth_chs=False,
):
"""Input preparation common for LCMV, DICS, and RAP-MUSIC."""
_check_option("pick_ori", pick_ori, ("normal", "max-power", "vector", None))
# Restrict forward solution to selected vertices
if label is not None:
_, src_sel = label_src_vertno_sel(label, forward["src"])
forward = _restrict_forward_to_src_sel(forward, src_sel)
if loose is None:
loose = 0.0 if is_fixed_orient(forward) else 1.0
# TODO: Deduplicate with _check_one_ch_type, should not be necessary
# (DICS hits this code path, LCMV does not)
if noise_cov is None:
noise_cov = make_ad_hoc_cov(info, std=1.0)
(
forward,
info_picked,
gain,
_,
orient_prior,
_,
trace_GRGT,
noise_cov,
whitener,
) = _prepare_forward(
forward,
info,
noise_cov,
"auto",
loose,
rank=rank,
pca=pca,
use_cps=True,
exp=exp,
limit_depth_chs=limit_depth_chs,
combine_xyz=combine_xyz,
limit=limit,
allow_fixed_depth=allow_fixed_depth,
)
is_free_ori = not is_fixed_orient(forward) # could have been changed
nn = forward["source_nn"]
if is_free_ori: # take Z coordinate
nn = nn[2::3]
nn = nn.copy()
vertno = _get_vertno(forward["src"])
if forward["surf_ori"]:
nn[...] = [0, 0, 1] # align to local +Z coordinate
if pick_ori is not None and not is_free_ori:
raise ValueError(
f"Normal or max-power orientation (got {pick_ori!r}) can only be picked "
"when a forward operator with free orientation is used."
)
if pick_ori == "normal" and not forward["surf_ori"]:
raise ValueError(
"Normal orientation can only be picked when a forward operator oriented in "
"surface coordinates is used."
)
_check_src_normal(pick_ori, forward["src"])
del forward, info
# Undo the scaling that MNE prefers
scale = np.sqrt((noise_cov["eig"] > 0).sum() / trace_GRGT)
gain /= scale
if orient_prior is not None:
orient_std = np.sqrt(orient_prior)
else:
orient_std = np.ones(gain.shape[1])
# Get the projector
proj, _, _ = make_projector(info_picked["projs"], info_picked["ch_names"])
return (is_free_ori, info_picked, proj, vertno, gain, whitener, nn, orient_std)
def _reduce_leadfield_rank(G):
"""Reduce the rank of the leadfield."""
# decompose lead field
u, s, v = np.linalg.svd(G, full_matrices=False)
# backproject, omitting one direction (equivalent to setting the smallest
# singular value to zero)
G = np.matmul(u[:, :, :-1], s[:, :-1, np.newaxis] * v[:, :-1, :])
return G
def _sym_inv_sm(x, reduce_rank, inversion, sk):
"""Symmetric inversion with single- or matrix-style inversion."""
if x.shape[1:] == (1, 1):
with np.errstate(divide="ignore", invalid="ignore"):
x_inv = 1.0 / x
x_inv[~np.isfinite(x_inv)] = 1.0
else:
assert x.shape[1:] == (3, 3)
if inversion == "matrix":
x_inv = _sym_mat_pow(x, -1, reduce_rank=reduce_rank)
# Reapply source covariance after inversion
x_inv *= sk[:, :, np.newaxis]
x_inv *= sk[:, np.newaxis, :]
else:
# Invert for each dipole separately using plain division
diags = np.diagonal(x, axis1=1, axis2=2)
assert not reduce_rank # guaranteed earlier
with np.errstate(divide="ignore"):
diags = 1.0 / diags
# set the diagonal of each 3x3
x_inv = np.zeros_like(x)
for k in range(x.shape[0]):
this = diags[k]
# Reapply source covariance after inversion
this *= sk[k] * sk[k]
x_inv[k].flat[::4] = this
return x_inv
def _compute_beamformer(
G,
Cm,
reg,
n_orient,
weight_norm,
pick_ori,
reduce_rank,
rank,
inversion,
nn,
orient_std,
whitener,
):
"""Compute a spatial beamformer filter (LCMV or DICS).
For more detailed information on the parameters, see the docstrings of
`make_lcmv` and `make_dics`.
Parameters
----------
G : ndarray, shape (n_dipoles, n_channels)
The leadfield.
Cm : ndarray, shape (n_channels, n_channels)
The data covariance matrix.
reg : float
Regularization parameter.
n_orient : int
Number of dipole orientations defined at each source point
weight_norm : None | 'unit-noise-gain' | 'nai'
The weight normalization scheme to use.
pick_ori : None | 'normal' | 'max-power'
The source orientation to compute the beamformer in.
reduce_rank : bool
Whether to reduce the rank by one during computation of the filter.
rank : dict | None | 'full' | 'info'
See compute_rank.
inversion : 'matrix' | 'single'
The inversion scheme to compute the weights.
nn : ndarray, shape (n_dipoles, 3)
The source normals.
orient_std : ndarray, shape (n_dipoles,)
The std of the orientation prior used in weighting the lead fields.
whitener : ndarray, shape (n_channels, n_channels)
The whitener.
Returns
-------
W : ndarray, shape (n_dipoles, n_channels)
The beamformer filter weights.
"""
_check_option(
"weight_norm",
weight_norm,
["unit-noise-gain-invariant", "unit-noise-gain", "nai", None],
)
# Whiten the data covariance
Cm = whitener @ Cm @ whitener.T.conj()
# Restore to properly Hermitian as large whitening coefs can have bad
# rounding error
Cm[:] = (Cm + Cm.T.conj()) / 2.0
assert Cm.shape == (G.shape[0],) * 2
s, _ = np.linalg.eigh(Cm)
if not (s >= -s.max() * 1e-7).all():
# This shouldn't ever happen, but just in case
warn(
"data covariance does not appear to be positive semidefinite, "
"results will likely be incorrect"
)
# Tikhonov regularization using reg parameter to control for
# trade-off between spatial resolution and noise sensitivity
# eq. 25 in Gross and Ioannides, 1999 Phys. Med. Biol. 44 2081
Cm_inv, loading_factor, rank = _reg_pinv(Cm, reg, rank)
assert orient_std.shape == (G.shape[1],)
n_sources = G.shape[1] // n_orient
assert nn.shape == (n_sources, 3)
logger.info(f"Computing beamformer filters for {n_sources} source{_pl(n_sources)}")
n_channels = G.shape[0]
assert n_orient in (3, 1)
Gk = np.reshape(G.T, (n_sources, n_orient, n_channels)).transpose(0, 2, 1)
assert Gk.shape == (n_sources, n_channels, n_orient)
sk = np.reshape(orient_std, (n_sources, n_orient))
del G, orient_std
_check_option("reduce_rank", reduce_rank, (True, False))
# inversion of the denominator
_check_option("inversion", inversion, ("matrix", "single"))
if (
inversion == "single"
and n_orient > 1
and pick_ori == "vector"
and weight_norm == "unit-noise-gain-invariant"
):
raise ValueError(
'Cannot use pick_ori="vector" with inversion="single" and '
'weight_norm="unit-noise-gain-invariant"'
)
if reduce_rank and inversion == "single":
raise ValueError(
'reduce_rank cannot be used with inversion="single"; '
'consider using inversion="matrix" if you have a '
"rank-deficient forward model (i.e., from a sphere "
"model with MEG channels), otherwise consider using "
"reduce_rank=False"
)
if n_orient > 1:
_, Gk_s, _ = np.linalg.svd(Gk, full_matrices=False)
assert Gk_s.shape == (n_sources, n_orient)
if not reduce_rank and (Gk_s[:, 0] > 1e6 * Gk_s[:, 2]).any():
raise ValueError(
"Singular matrix detected when estimating spatial filters. "
"Consider reducing the rank of the forward operator by using "
"reduce_rank=True."
)
del Gk_s
#
# 1. Reduce rank of the lead field
#
if reduce_rank:
Gk = _reduce_leadfield_rank(Gk)
def _compute_bf_terms(Gk, Cm_inv):
bf_numer = np.matmul(Gk.swapaxes(-2, -1).conj(), Cm_inv)
bf_denom = np.matmul(bf_numer, Gk)
return bf_numer, bf_denom
#
# 2. Reorient lead field in direction of max power or normal
#
if pick_ori == "max-power":
assert n_orient == 3
_, bf_denom = _compute_bf_terms(Gk, Cm_inv)
if weight_norm is None:
ori_numer = np.eye(n_orient)[np.newaxis]
ori_denom = bf_denom
else:
# compute power, cf Sekihara & Nagarajan 2008, eq. 4.47
ori_numer = bf_denom
# Cm_inv should be Hermitian so no need for .T.conj()
ori_denom = np.matmul(
np.matmul(Gk.swapaxes(-2, -1).conj(), Cm_inv @ Cm_inv), Gk
)
ori_denom_inv = _sym_inv_sm(ori_denom, reduce_rank, inversion, sk)
ori_pick = np.matmul(ori_denom_inv, ori_numer)
assert ori_pick.shape == (n_sources, n_orient, n_orient)
# pick eigenvector that corresponds to maximum eigenvalue:
eig_vals, eig_vecs = np.linalg.eig(ori_pick.real) # not Hermitian!
# sort eigenvectors by eigenvalues for picking:
order = np.argsort(np.abs(eig_vals), axis=-1)
# eig_vals = np.take_along_axis(eig_vals, order, axis=-1)
max_power_ori = eig_vecs[np.arange(len(eig_vecs)), :, order[:, -1]]
assert max_power_ori.shape == (n_sources, n_orient)
# set the (otherwise arbitrary) sign to match the normal
signs = np.sign(np.sum(max_power_ori * nn, axis=1, keepdims=True))
signs[signs == 0] = 1.0
max_power_ori *= signs
# Compute the lead field for the optimal orientation,
# and adjust numer/denom
Gk = np.matmul(Gk, max_power_ori[..., np.newaxis])
n_orient = 1
else:
max_power_ori = None
if pick_ori == "normal":
Gk = Gk[..., 2:3]
n_orient = 1
#
# 3. Compute numerator and denominator of beamformer formula (unit-gain)
#
bf_numer, bf_denom = _compute_bf_terms(Gk, Cm_inv)
assert bf_denom.shape == (n_sources,) + (n_orient,) * 2
assert bf_numer.shape == (n_sources, n_orient, n_channels)
del Gk # lead field has been adjusted and should not be used anymore
#
# 4. Invert the denominator
#
# Here W is W_ug, i.e.:
# G.T @ Cm_inv / (G.T @ Cm_inv @ G)
bf_denom_inv = _sym_inv_sm(bf_denom, reduce_rank, inversion, sk)
assert bf_denom_inv.shape == (n_sources, n_orient, n_orient)
W = np.matmul(bf_denom_inv, bf_numer)
assert W.shape == (n_sources, n_orient, n_channels)
del bf_denom_inv, sk
#
# 5. Re-scale filter weights according to the selected weight_norm
#
# Weight normalization is done by computing, for each source::
#
# W_ung = W_ug / sqrt(W_ug @ W_ug.T)
#
# with W_ung referring to the unit-noise-gain (weight normalized) filter
# and W_ug referring to the above-calculated unit-gain filter stored in W.
if weight_norm is not None:
# Three different ways to calculate the normalization factors here.
# Only matters when in vector mode, as otherwise n_orient == 1 and
# they are all equivalent.
#
# In MNE < 0.21, we just used the Frobenius matrix norm:
#
# noise_norm = np.linalg.norm(W, axis=(1, 2), keepdims=True)
# assert noise_norm.shape == (n_sources, 1, 1)
# W /= noise_norm
#
# Sekihara 2008 says to use sqrt(diag(W_ug @ W_ug.T)), which is not
# rotation invariant:
if weight_norm in ("unit-noise-gain", "nai"):
noise_norm = np.matmul(W, W.swapaxes(-2, -1).conj()).real
noise_norm = np.reshape( # np.diag operation over last two axes
noise_norm, (n_sources, -1, 1)
)[:, :: n_orient + 1]
np.sqrt(noise_norm, out=noise_norm)
noise_norm[noise_norm == 0] = np.inf
assert noise_norm.shape == (n_sources, n_orient, 1)
W /= noise_norm
else:
assert weight_norm == "unit-noise-gain-invariant"
# Here we use sqrtm. The shortcut:
#
# use = W
#
# ... does not match the direct route (it is rotated!), so we'll
# use the direct one to match FieldTrip:
use = bf_numer
inner = np.matmul(use, use.swapaxes(-2, -1).conj())
W = np.matmul(_sym_mat_pow(inner, -0.5), use)
noise_norm = 1.0
if weight_norm == "nai":
# Estimate noise level based on covariance matrix, taking the
# first eigenvalue that falls outside the signal subspace or the
# loading factor used during regularization, whichever is largest.
if rank > len(Cm):
# Covariance matrix is full rank, no noise subspace!
# Use the loading factor as noise ceiling.
if loading_factor == 0:
raise RuntimeError(
"Cannot compute noise subspace with a full-rank "
"covariance matrix and no regularization. Try "
"manually specifying the rank of the covariance "
"matrix or using regularization."
)
noise = loading_factor
else:
noise, _ = np.linalg.eigh(Cm)
noise = noise[-rank]
noise = max(noise, loading_factor)
W /= np.sqrt(noise)
W = W.reshape(n_sources * n_orient, n_channels)
logger.info("Filter computation complete")
return W, max_power_ori
def _compute_power(Cm, W, n_orient):
"""Use beamformer filters to compute source power.
Parameters
----------
Cm : ndarray, shape (n_channels, n_channels)
Data covariance matrix or CSD matrix.
W : ndarray, shape (nvertices*norient, nchannels)
Beamformer weights.
Returns
-------
power : ndarray, shape (nvertices,)
Source power.
"""
n_sources = W.shape[0] // n_orient
Wk = W.reshape(n_sources, n_orient, W.shape[1])
source_power = np.trace(
(Wk @ Cm @ Wk.conj().transpose(0, 2, 1)).real, axis1=1, axis2=2
)
return source_power
class Beamformer(dict):
"""A computed beamformer.
Notes
-----
.. versionadded:: 0.17
"""
def copy(self):
"""Copy the beamformer.
Returns
-------
beamformer : instance of Beamformer
A deep copy of the beamformer.
"""
return deepcopy(self)
def __repr__(self): # noqa: D105
n_verts = sum(len(v) for v in self["vertices"])
n_channels = len(self["ch_names"])
if self["subject"] is None:
subject = "unknown"
else:
subject = f'"{self["subject"]}"'
out = "<Beamformer | {}, subject {}, {} vert, {} ch".format(
self["kind"],
subject,
n_verts,
n_channels,
)
if self["pick_ori"] is not None:
out += f', {self["pick_ori"]} ori'
if self["weight_norm"] is not None:
out += f', {self["weight_norm"]} norm'
if self.get("inversion") is not None:
out += f', {self["inversion"]} inversion'
if "rank" in self:
out += f', rank {self["rank"]}'
out += ">"
return out
@verbose
def save(self, fname, overwrite=False, verbose=None):
"""Save the beamformer filter.
Parameters
----------
fname : path-like
The filename to use to write the HDF5 data.
Should end in ``'-lcmv.h5'`` or ``'-dics.h5'``.
%(overwrite)s
%(verbose)s
"""
_, write_hdf5 = _import_h5io_funcs()
ending = f'-{self["kind"].lower()}.h5'
check_fname(fname, self["kind"], (ending,))
csd_orig = None
try:
if "csd" in self:
csd_orig = self["csd"]
self["csd"] = self["csd"].__getstate__()
write_hdf5(fname, self, overwrite=overwrite, title="mnepython")
finally:
if csd_orig is not None:
self["csd"] = csd_orig
def read_beamformer(fname):
"""Read a beamformer filter.
Parameters
----------
fname : path-like
The filename of the HDF5 file.
Returns
-------
filter : instance of Beamformer
The beamformer filter.
"""
read_hdf5, _ = _import_h5io_funcs()
beamformer = read_hdf5(fname, title="mnepython")
if "csd" in beamformer:
beamformer["csd"] = CrossSpectralDensity(**beamformer["csd"])
# h5io seems to cast `bool` to `int` on round-trip, probably a bug
# we should fix at some point (if possible -- could be HDF5 limitation)
for key in ("normalize_fwd", "is_free_ori", "is_ssp"):
if key in beamformer:
beamformer[key] = bool(beamformer[key])
for key in ("data_cov", "noise_cov"):
if beamformer.get(key) is not None:
for pi, p in enumerate(beamformer[key]["projs"]):
p = Projection(**p)
p["active"] = bool(p["active"])
beamformer[key]["projs"][pi] = p
beamformer[key] = Covariance(
*[
beamformer[key].get(arg)
for arg in (
"data",
"names",
"bads",
"projs",
"nfree",
"eig",
"eigvec",
"method",
"loglik",
)
]
)
return Beamformer(beamformer)
def _proj_whiten_data(M, proj, filters):
if filters.get("is_ssp", True):
# check whether data and filter projs match
_check_proj_match(proj, filters)
if filters["whitener"] is None:
M = np.dot(filters["proj"], M)
if filters["whitener"] is not None:
M = np.dot(filters["whitener"], M)
return M
|