File: _lcmv.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (503 lines) | stat: -rw-r--r-- 15,769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
"""Compute Linearly constrained minimum variance (LCMV) beamformer."""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import numpy as np

from .._fiff.meas_info import _simplify_info
from .._fiff.pick import pick_channels_cov, pick_info
from ..forward import _subject_from_forward
from ..minimum_norm.inverse import _check_depth, _check_reference, combine_xyz
from ..rank import compute_rank
from ..source_estimate import _get_src_type, _make_stc
from ..utils import (
    _check_channels_spatial_filter,
    _check_info_inv,
    _check_one_ch_type,
    logger,
    verbose,
)
from ._compute_beamformer import (
    Beamformer,
    _check_src_type,
    _compute_beamformer,
    _compute_power,
    _prepare_beamformer_input,
    _proj_whiten_data,
)


@verbose
def make_lcmv(
    info,
    forward,
    data_cov,
    reg=0.05,
    noise_cov=None,
    label=None,
    pick_ori=None,
    rank="info",
    weight_norm="unit-noise-gain-invariant",
    reduce_rank=False,
    depth=None,
    inversion="matrix",
    verbose=None,
):
    """Compute LCMV spatial filter.

    Parameters
    ----------
    %(info_not_none)s
        Specifies the channels to include. Bad channels (in ``info['bads']``)
        are not used.
    forward : instance of Forward
        Forward operator.
    data_cov : instance of Covariance
        The data covariance.
    reg : float
        The regularization for the whitened data covariance.
    noise_cov : instance of Covariance
        The noise covariance. If provided, whitening will be done. Providing a
        noise covariance is mandatory if you mix sensor types, e.g.
        gradiometers with magnetometers or EEG with MEG.

        .. note::
            If ``noise_cov`` is ``None`` and ``weight_norm='unit-noise-gain'``,
            the unit noise is assumed to be 1 in SI units, e.g., 1 T for
            magnetometers, 1 V for EEG, so resulting amplitudes will be tiny.
            Consider using :func:`mne.make_ad_hoc_cov` to provide a
            ``noise_cov`` to set noise values that are more reasonable for
            neural data or using ``weight_norm='nai'`` for weight-normalized
            beamformer output that is scaled by a noise estimate.
    label : instance of Label
        Restricts the LCMV solution to a given label.
    %(pick_ori_bf)s

        - ``'vector'``
            Keeps the currents for each direction separate
    %(rank_info)s
    %(weight_norm)s

        Defaults to ``'unit-noise-gain-invariant'``.
    %(reduce_rank)s
    %(depth)s

        .. versionadded:: 0.18
    %(inversion_bf)s

        .. versionadded:: 0.21
    %(verbose)s

    Returns
    -------
    filters : instance of Beamformer
        Dictionary containing filter weights from LCMV beamformer.
        Contains the following keys:

            'kind' : str
                The type of beamformer, in this case 'LCMV'.
            'weights' : array
                The filter weights of the beamformer.
            'data_cov' : instance of Covariance
                The data covariance matrix used to compute the beamformer.
            'noise_cov' : instance of Covariance | None
                The noise covariance matrix used to compute the beamformer.
            'whitener' : None | ndarray, shape (n_channels, n_channels)
                Whitening matrix, provided if whitening was applied to the
                covariance matrix and leadfield during computation of the
                beamformer weights.
            'weight_norm' : str | None
                Type of weight normalization used to compute the filter
                weights.
            'pick-ori' : None | 'max-power' | 'normal' | 'vector'
                The orientation in which the beamformer filters were computed.
            'ch_names' : list of str
                Channels used to compute the beamformer.
            'proj' : array
                Projections used to compute the beamformer.
            'is_ssp' : bool
                If True, projections were applied prior to filter computation.
            'vertices' : list
                Vertices for which the filter weights were computed.
            'is_free_ori' : bool
                If True, the filter was computed with free source orientation.
            'n_sources' : int
                Number of source location for which the filter weight were
                computed.
            'src_type' : str
                Type of source space.
            'source_nn' : ndarray, shape (n_sources, 3)
                For each source location, the surface normal.
            'proj' : ndarray, shape (n_channels, n_channels)
                Projections used to compute the beamformer.
            'subject' : str
                The subject ID.
            'rank' : int
                The rank of the data covariance matrix used to compute the
                beamformer weights.
            'max-power-ori' : ndarray, shape (n_sources, 3) | None
                When pick_ori='max-power', this fields contains the estimated
                direction of maximum power at each source location.
            'inversion' : 'single' | 'matrix'
                Whether the spatial filters were computed for each dipole
                separately or jointly for all dipoles at each vertex using a
                matrix inversion.

    Notes
    -----
    The original reference is :footcite:`VanVeenEtAl1997`.

    To obtain the Sekihara unit-noise-gain vector beamformer, you should use
    ``weight_norm='unit-noise-gain', pick_ori='vector'`` followed by
    :meth:`vec_stc.project('pca', src) <mne.VectorSourceEstimate.project>`.

    .. versionchanged:: 0.21
       The computations were extensively reworked, and the default for
       ``weight_norm`` was set to ``'unit-noise-gain-invariant'``.

    References
    ----------
    .. footbibliography::
    """
    # check number of sensor types present in the data and ensure a noise cov
    info = _simplify_info(info, keep=("proc_history",))
    noise_cov, _, allow_mismatch = _check_one_ch_type(
        "lcmv", info, forward, data_cov, noise_cov
    )
    # XXX we need this extra picking step (can't just rely on minimum norm's
    # because there can be a mismatch. Should probably add an extra arg to
    # _prepare_beamformer_input at some point (later)
    picks = _check_info_inv(info, forward, data_cov, noise_cov)
    info = pick_info(info, picks)
    data_rank = compute_rank(data_cov, rank=rank, info=info)
    noise_rank = compute_rank(noise_cov, rank=rank, info=info)
    for key in data_rank:
        if (
            key not in noise_rank or data_rank[key] != noise_rank[key]
        ) and not allow_mismatch:
            raise ValueError(
                f"{key} data rank ({data_rank[key]}) did not match the noise rank ("
                f"{noise_rank.get(key, None)})"
            )
    del noise_rank
    rank = data_rank
    logger.info(f"Making LCMV beamformer with rank {rank}")
    del data_rank
    depth = _check_depth(depth, "depth_sparse")
    if inversion == "single":
        depth["combine_xyz"] = False

    (
        is_free_ori,
        info,
        proj,
        vertno,
        G,
        whitener,
        nn,
        orient_std,
    ) = _prepare_beamformer_input(
        info,
        forward,
        label,
        pick_ori,
        noise_cov=noise_cov,
        rank=rank,
        pca=False,
        **depth,
    )
    ch_names = list(info["ch_names"])

    data_cov = pick_channels_cov(data_cov, include=ch_names)
    Cm = data_cov._get_square()
    if "estimator" in data_cov:
        del data_cov["estimator"]
    rank_int = sum(rank.values())
    del rank

    # compute spatial filter
    n_orient = 3 if is_free_ori else 1
    W, max_power_ori = _compute_beamformer(
        G,
        Cm,
        reg,
        n_orient,
        weight_norm,
        pick_ori,
        reduce_rank,
        rank_int,
        inversion=inversion,
        nn=nn,
        orient_std=orient_std,
        whitener=whitener,
    )

    # get src type to store with filters for _make_stc
    src_type = _get_src_type(forward["src"], vertno)

    # get subject to store with filters
    subject_from = _subject_from_forward(forward)

    # Is the computed beamformer a scalar or vector beamformer?
    is_free_ori = is_free_ori if pick_ori in [None, "vector"] else False
    is_ssp = bool(info["projs"])

    filters = Beamformer(
        kind="LCMV",
        weights=W,
        data_cov=data_cov,
        noise_cov=noise_cov,
        whitener=whitener,
        weight_norm=weight_norm,
        pick_ori=pick_ori,
        ch_names=ch_names,
        proj=proj,
        is_ssp=is_ssp,
        vertices=vertno,
        is_free_ori=is_free_ori,
        n_sources=forward["nsource"],
        src_type=src_type,
        source_nn=forward["source_nn"].copy(),
        subject=subject_from,
        rank=rank_int,
        max_power_ori=max_power_ori,
        inversion=inversion,
    )

    return filters


def _apply_lcmv(data, filters, info, tmin):
    """Apply LCMV spatial filter to data for source reconstruction."""
    if isinstance(data, np.ndarray) and data.ndim == 2:
        data = [data]
        return_single = True
    else:
        return_single = False

    W = filters["weights"]

    for i, M in enumerate(data):
        if len(M) != len(filters["ch_names"]):
            raise ValueError("data and picks must have the same length")

        if not return_single:
            logger.info(f"Processing epoch : {i + 1}")

        M = _proj_whiten_data(M, info["projs"], filters)

        # project to source space using beamformer weights
        vector = False
        if filters["is_free_ori"]:
            sol = np.dot(W, M)
            if filters["pick_ori"] == "vector":
                vector = True
            else:
                logger.info("combining the current components...")
                sol = combine_xyz(sol)
        else:
            # Linear inverse: do computation here or delayed
            if M.shape[0] < W.shape[0] and filters["pick_ori"] != "max-power":
                sol = (W, M)
            else:
                sol = np.dot(W, M)

        tstep = 1.0 / info["sfreq"]

        # compatibility with 0.16, add src_type as None if not present:
        filters, warn_text = _check_src_type(filters)

        yield _make_stc(
            sol,
            vertices=filters["vertices"],
            tmin=tmin,
            tstep=tstep,
            subject=filters["subject"],
            vector=vector,
            source_nn=filters["source_nn"],
            src_type=filters["src_type"],
            warn_text=warn_text,
        )

    logger.info("[done]")


@verbose
def apply_lcmv(evoked, filters, *, verbose=None):
    """Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights.

    Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights
    on evoked data.

    Parameters
    ----------
    evoked : Evoked
        Evoked data to invert.
    filters : instance of Beamformer
        LCMV spatial filter (beamformer weights).
        Filter weights returned from :func:`make_lcmv`.
    %(verbose)s

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate | VectorSourceEstimate
        Source time courses.

    See Also
    --------
    make_lcmv, apply_lcmv_raw, apply_lcmv_epochs, apply_lcmv_cov

    Notes
    -----
    .. versionadded:: 0.18
    """
    _check_reference(evoked)

    info = evoked.info
    data = evoked.data
    tmin = evoked.times[0]

    sel = _check_channels_spatial_filter(evoked.ch_names, filters)
    data = data[sel]

    stc = _apply_lcmv(data=data, filters=filters, info=info, tmin=tmin)

    return next(stc)


@verbose
def apply_lcmv_epochs(epochs, filters, *, return_generator=False, verbose=None):
    """Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights.

    Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights
    on single trial data.

    Parameters
    ----------
    epochs : Epochs
        Single trial epochs.
    filters : instance of Beamformer
        LCMV spatial filter (beamformer weights)
        Filter weights returned from :func:`make_lcmv`.
    return_generator : bool
         Return a generator object instead of a list. This allows iterating
         over the stcs without having to keep them all in memory.
    %(verbose)s

    Returns
    -------
    stc: list | generator of (SourceEstimate | VolSourceEstimate)
        The source estimates for all epochs.

    See Also
    --------
    make_lcmv, apply_lcmv_raw, apply_lcmv, apply_lcmv_cov
    """
    _check_reference(epochs)

    info = epochs.info
    tmin = epochs.times[0]

    sel = _check_channels_spatial_filter(epochs.ch_names, filters)
    data = epochs.get_data(sel)
    stcs = _apply_lcmv(data=data, filters=filters, info=info, tmin=tmin)

    if not return_generator:
        stcs = [s for s in stcs]

    return stcs


@verbose
def apply_lcmv_raw(raw, filters, start=None, stop=None, *, verbose=None):
    """Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights.

    Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights
    on raw data.

    Parameters
    ----------
    raw : mne.io.Raw
        Raw data to invert.
    filters : instance of Beamformer
        LCMV spatial filter (beamformer weights).
        Filter weights returned from :func:`make_lcmv`.
    start : int
        Index of first time sample (index not time is seconds).
    stop : int
        Index of first time sample not to include (index not time is seconds).
    %(verbose)s

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate
        Source time courses.

    See Also
    --------
    make_lcmv, apply_lcmv_epochs, apply_lcmv, apply_lcmv_cov
    """
    _check_reference(raw)

    info = raw.info

    sel = _check_channels_spatial_filter(raw.ch_names, filters)
    data, times = raw[sel, start:stop]
    tmin = times[0]

    stc = _apply_lcmv(data=data, filters=filters, info=info, tmin=tmin)

    return next(stc)


@verbose
def apply_lcmv_cov(data_cov, filters, verbose=None):
    """Apply Linearly Constrained  Minimum Variance (LCMV) beamformer weights.

    Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights
    to a data covariance matrix to estimate source power.

    Parameters
    ----------
    data_cov : instance of Covariance
        Data covariance matrix.
    filters : instance of Beamformer
        LCMV spatial filter (beamformer weights).
        Filter weights returned from :func:`make_lcmv`.
    %(verbose)s

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate
        Source power.

    See Also
    --------
    make_lcmv, apply_lcmv, apply_lcmv_epochs, apply_lcmv_raw
    """
    sel = _check_channels_spatial_filter(data_cov.ch_names, filters)
    sel_names = [data_cov.ch_names[ii] for ii in sel]
    data_cov = pick_channels_cov(data_cov, sel_names)

    n_orient = filters["weights"].shape[0] // filters["n_sources"]
    # Need to project and whiten along both dimensions
    data = _proj_whiten_data(data_cov["data"].T, data_cov["projs"], filters)
    data = _proj_whiten_data(data.T, data_cov["projs"], filters)
    del data_cov
    source_power = _compute_power(data, filters["weights"], n_orient)

    # compatibility with 0.16, add src_type as None if not present:
    filters, warn_text = _check_src_type(filters)

    return _make_stc(
        source_power,
        vertices=filters["vertices"],
        src_type=filters["src_type"],
        tmin=0.0,
        tstep=1.0,
        subject=filters["subject"],
        source_nn=filters["source_nn"],
        warn_text=warn_text,
    )