1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
"""Compute a Recursively Applied and Projected MUltiple Signal Classification (RAP-MUSIC).""" # noqa
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from scipy import linalg
from .._fiff.pick import pick_channels_forward, pick_info
from ..fixes import _safe_svd
from ..forward import convert_forward_solution, is_fixed_orient
from ..inverse_sparse.mxne_inverse import _make_dipoles_sparse
from ..minimum_norm.inverse import _log_exp_var
from ..utils import _check_info_inv, fill_doc, logger, verbose
from ._compute_beamformer import _prepare_beamformer_input
@fill_doc
def _apply_rap_music(
data, info, times, forward, noise_cov, n_dipoles=2, picks=None, use_trap=False
):
"""RAP-MUSIC or TRAP-MUSIC for evoked data.
Parameters
----------
data : array, shape (n_channels, n_times)
Evoked data.
%(info_not_none)s
times : array
Times.
forward : instance of Forward
Forward operator.
noise_cov : instance of Covariance
The noise covariance.
n_dipoles : int
The number of dipoles to estimate. The default value is 2.
picks : list of int
Caller ensures this is a list of int.
use_trap : bool
Use the TRAP-MUSIC variant if True (default False).
Returns
-------
dipoles : list of instances of Dipole
The dipole fits.
explained_data : array | None
Data explained by the dipoles using a least square fitting with the
selected active dipoles and their estimated orientation.
"""
info = pick_info(info, picks)
del picks
# things are much simpler if we avoid surface orientation
align = forward["source_nn"].copy()
if forward["surf_ori"] and not is_fixed_orient(forward):
forward = convert_forward_solution(forward, surf_ori=False)
is_free_ori, info, _, _, G, whitener, _, _ = _prepare_beamformer_input(
info, forward, noise_cov=noise_cov, rank=None
)
forward = pick_channels_forward(forward, info["ch_names"], ordered=True)
del info
# whiten the data (leadfield already whitened)
M = np.dot(whitener, data)
del data
_, eig_vectors = linalg.eigh(np.dot(M, M.T))
phi_sig = eig_vectors[:, -n_dipoles:]
n_orient = 3 if is_free_ori else 1
G.shape = (G.shape[0], -1, n_orient)
gain = forward["sol"]["data"].copy()
gain.shape = G.shape
n_channels = G.shape[0]
A = np.empty((n_channels, n_dipoles))
gain_dip = np.empty((n_channels, n_dipoles))
oris = np.empty((n_dipoles, 3))
poss = np.empty((n_dipoles, 3))
G_proj = G.copy()
phi_sig_proj = phi_sig.copy()
idxs = list()
for k in range(n_dipoles):
subcorr_max = -1.0
source_idx, source_ori, source_pos = 0, [0, 0, 0], [0, 0, 0]
for i_source in range(G.shape[1]):
Gk = G_proj[:, i_source]
subcorr, ori = _compute_subcorr(Gk, phi_sig_proj)
if subcorr > subcorr_max:
subcorr_max = subcorr
source_idx = i_source
source_ori = ori
source_pos = forward["source_rr"][i_source]
if n_orient == 3 and align is not None:
surf_normal = forward["source_nn"][3 * i_source + 2]
# make sure ori is aligned to the surface orientation
source_ori *= np.sign(source_ori @ surf_normal) or 1.0
if n_orient == 1:
source_ori = forward["source_nn"][i_source]
idxs.append(source_idx)
if n_orient == 3:
Ak = np.dot(G[:, source_idx], source_ori)
else:
Ak = G[:, source_idx, 0]
A[:, k] = Ak
oris[k] = source_ori
poss[k] = source_pos
logger.info(f"source {k + 1} found: p = {source_idx}")
if n_orient == 3:
logger.info("ori = {} {} {}".format(*tuple(oris[k])))
projection = _compute_proj(A[:, : k + 1])
G_proj = np.einsum("ab,bso->aso", projection, G)
phi_sig_proj = np.dot(projection, phi_sig)
if use_trap:
phi_sig_proj = phi_sig_proj[:, -(n_dipoles - k) :]
del G, G_proj
sol = linalg.lstsq(A, M)[0]
if n_orient == 3:
X = sol[:, np.newaxis] * oris[:, :, np.newaxis]
X.shape = (-1, len(times))
else:
X = sol
gain_active = gain[:, idxs]
if n_orient == 3:
gain_dip = (oris * gain_active).sum(-1)
idxs = np.array(idxs)
active_set = np.array([[3 * idxs, 3 * idxs + 1, 3 * idxs + 2]]).T.ravel()
else:
gain_dip = gain_active[:, :, 0]
active_set = idxs
gain_active = whitener @ gain_active.reshape(gain.shape[0], -1)
assert gain_active.shape == (n_channels, X.shape[0])
explained_data = gain_dip @ sol
M_estimate = whitener @ explained_data
_log_exp_var(M, M_estimate)
tstep = np.median(np.diff(times)) if len(times) > 1 else 1.0
dipoles = _make_dipoles_sparse(
X, active_set, forward, times[0], tstep, M, gain_active, active_is_idx=True
)
for dipole, ori in zip(dipoles, oris):
signs = np.sign((dipole.ori * ori).sum(-1, keepdims=True))
dipole.ori *= signs
dipole.amplitude *= signs[:, 0]
logger.info("[done]")
return dipoles, explained_data
def _compute_subcorr(G, phi_sig):
"""Compute the subspace correlation."""
Ug, Sg, Vg = _safe_svd(G, full_matrices=False)
# Now we look at the actual rank of the forward fields
# in G and handle the fact that it might be rank defficient
# eg. when using MEG and a sphere model for which the
# radial component will be truly 0.
rank = np.sum(Sg > (Sg[0] * 1e-6))
if rank == 0:
return 0, np.zeros(len(G))
rank = max(rank, 2) # rank cannot be 1
Ug, Sg, Vg = Ug[:, :rank], Sg[:rank], Vg[:rank]
tmp = np.dot(Ug.T.conjugate(), phi_sig)
Uc, Sc, _ = _safe_svd(tmp, full_matrices=False)
X = np.dot(Vg.T / Sg[None, :], Uc[:, 0]) # subcorr
return Sc[0], X / np.linalg.norm(X)
def _compute_proj(A):
"""Compute the orthogonal projection operation for a manifold vector A."""
U, _, _ = _safe_svd(A, full_matrices=False)
return np.identity(A.shape[0]) - np.dot(U, U.T.conjugate())
def _rap_music(evoked, forward, noise_cov, n_dipoles, return_residual, use_trap):
"""RAP-/TRAP-MUSIC implementation."""
info = evoked.info
data = evoked.data
times = evoked.times
picks = _check_info_inv(info, forward, data_cov=None, noise_cov=noise_cov)
data = data[picks]
dipoles, explained_data = _apply_rap_music(
data, info, times, forward, noise_cov, n_dipoles, picks, use_trap
)
if return_residual:
residual = evoked.copy().pick([info["ch_names"][p] for p in picks])
residual.data -= explained_data
active_projs = [p for p in residual.info["projs"] if p["active"]]
for p in active_projs:
p["active"] = False
residual.add_proj(active_projs, remove_existing=True)
residual.apply_proj()
return dipoles, residual
else:
return dipoles
@verbose
def rap_music(
evoked,
forward,
noise_cov,
n_dipoles=5,
return_residual=False,
*,
verbose=None,
):
"""RAP-MUSIC source localization method.
Compute Recursively Applied and Projected MUltiple SIgnal Classification
(RAP-MUSIC) :footcite:`MosherLeahy1999,MosherLeahy1996` on evoked data.
.. note:: The goodness of fit (GOF) of all the returned dipoles is the
same and corresponds to the GOF of the full set of dipoles.
Parameters
----------
evoked : instance of Evoked
Evoked data to localize.
forward : instance of Forward
Forward operator.
noise_cov : instance of Covariance
The noise covariance.
n_dipoles : int
The number of dipoles to look for. The default value is 5.
return_residual : bool
If True, the residual is returned as an Evoked instance.
%(verbose)s
Returns
-------
dipoles : list of instance of Dipole
The dipole fits.
residual : instance of Evoked
The residual a.k.a. data not explained by the dipoles.
Only returned if return_residual is True.
See Also
--------
mne.fit_dipole
mne.beamformer.trap_music
Notes
-----
.. versionadded:: 0.9.0
References
----------
.. footbibliography::
"""
return _rap_music(evoked, forward, noise_cov, n_dipoles, return_residual, False)
@verbose
def trap_music(
evoked,
forward,
noise_cov,
n_dipoles=5,
return_residual=False,
*,
verbose=None,
):
"""TRAP-MUSIC source localization method.
Compute Truncated Recursively Applied and Projected MUltiple SIgnal Classification
(TRAP-MUSIC) :footcite:`Makela2018` on evoked data.
.. note:: The goodness of fit (GOF) of all the returned dipoles is the
same and corresponds to the GOF of the full set of dipoles.
Parameters
----------
evoked : instance of Evoked
Evoked data to localize.
forward : instance of Forward
Forward operator.
noise_cov : instance of Covariance
The noise covariance.
n_dipoles : int
The number of dipoles to look for. The default value is 5.
return_residual : bool
If True, the residual is returned as an Evoked instance.
%(verbose)s
Returns
-------
dipoles : list of instance of Dipole
The dipole fits.
residual : instance of Evoked
The residual a.k.a. data not explained by the dipoles.
Only returned if return_residual is True.
See Also
--------
mne.fit_dipole
mne.beamformer.rap_music
Notes
-----
.. versionadded:: 1.4
References
----------
.. footbibliography::
"""
return _rap_music(evoked, forward, noise_cov, n_dipoles, return_residual, True)
|