1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy as cp
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
import mne
from mne import pick_types
from mne._fiff.constants import FIFF
from mne._fiff.pick import pick_info
from mne.beamformer import (
Beamformer,
apply_dics,
apply_dics_csd,
apply_dics_epochs,
apply_dics_tfr_epochs,
make_dics,
read_beamformer,
)
from mne.beamformer._compute_beamformer import _prepare_beamformer_input
from mne.beamformer._dics import _prepare_noise_csd
from mne.beamformer.tests.test_lcmv import _assert_weight_norm
from mne.datasets import testing
from mne.io import read_info
from mne.proj import compute_proj_evoked, make_projector
from mne.surface import _compute_nearest
from mne.time_frequency import CrossSpectralDensity, EpochsTFRArray, csd_morlet, csd_tfr
from mne.time_frequency.csd import _sym_mat_to_vector
from mne.transforms import apply_trans, invert_transform
from mne.utils import catch_logging, object_diff
data_path = testing.data_path(download=False)
fname_raw = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-fwd.fif"
fname_fwd_vol = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-vol-7-fwd.fif"
fname_event = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw-eve.fif"
subjects_dir = data_path / "subjects"
@pytest.fixture(scope="module", params=[testing._pytest_param()])
def _load_forward():
"""Load forward models."""
fwd_free = mne.read_forward_solution(fname_fwd)
fwd_free = mne.pick_types_forward(fwd_free, meg=True, eeg=False)
fwd_free = mne.convert_forward_solution(fwd_free, surf_ori=False)
fwd_surf = mne.convert_forward_solution(fwd_free, surf_ori=True, use_cps=False)
fwd_fixed = mne.convert_forward_solution(fwd_free, force_fixed=True, use_cps=False)
fwd_vol = mne.read_forward_solution(fname_fwd_vol)
return fwd_free, fwd_surf, fwd_fixed, fwd_vol
def _simulate_data(fwd, idx): # Somewhere on the frontal lobe by default
"""Simulate an oscillator on the cortex."""
pytest.importorskip("nibabel")
source_vertno = fwd["src"][0]["vertno"][idx]
sfreq = 50.0 # Hz.
times = np.arange(10 * sfreq) / sfreq # 10 seconds of data
signal = np.sin(20 * 2 * np.pi * times) # 20 Hz oscillator
signal[: len(times) // 2] *= 2 # Make signal louder at the beginning
signal *= 1e-9 # Scale to be in the ballpark of MEG data
# Construct a SourceEstimate object that describes the signal at the
# cortical level.
stc = mne.SourceEstimate(
signal[np.newaxis, :],
vertices=[[source_vertno], []],
tmin=0,
tstep=1 / sfreq,
subject="sample",
)
# Create an info object that holds information about the sensors
info = mne.create_info(fwd["info"]["ch_names"], sfreq, ch_types="grad")
with info._unlock():
info.update(fwd["info"]) # Merge in sensor position information
# heavily decimate sensors to make it much faster
info = mne.pick_info(info, np.arange(info["nchan"])[::5])
fwd = mne.pick_channels_forward(fwd, info["ch_names"])
# Run the simulated signal through the forward model, obtaining
# simulated sensor data.
raw = mne.apply_forward_raw(fwd, stc, info)
# Add a little noise
random = np.random.RandomState(42)
noise = random.randn(*raw._data.shape) * 1e-14
raw._data += noise
# Define a single epoch (weird baseline but shouldn't matter)
epochs = mne.Epochs(
raw,
[[0, 0, 1]],
event_id=1,
tmin=0,
tmax=raw.times[-1],
baseline=(0.0, 0.0),
preload=True,
)
evoked = epochs.average()
# Compute the cross-spectral density matrix
csd = csd_morlet(epochs, frequencies=[10, 20], n_cycles=[5, 10], decim=5)
labels = mne.read_labels_from_annot("sample", hemi="lh", subjects_dir=subjects_dir)
label = [label for label in labels if np.isin(source_vertno, label.vertices)]
assert len(label) == 1
label = label[0]
vertices = np.intersect1d(label.vertices, fwd["src"][0]["vertno"])
source_ind = vertices.tolist().index(source_vertno)
assert vertices[source_ind] == source_vertno
return epochs, evoked, csd, source_vertno, label, vertices, source_ind
idx_param = pytest.mark.parametrize(
"idx",
[
0,
pytest.param(100, marks=pytest.mark.slowtest),
200,
pytest.param(233, marks=pytest.mark.slowtest),
],
)
def _rand_csd(rng, info):
scales = mne.make_ad_hoc_cov(info).data
n = scales.size
# Some random complex correlation structure (with channel scalings)
data = rng.randn(n, n) + 1j * rng.randn(n, n)
data = data @ data.conj().T
data *= scales
data *= scales[:, np.newaxis]
data.flat[:: n + 1] = scales
return data
def _make_rand_csd(info, csd):
rng = np.random.RandomState(0)
data = _rand_csd(rng, info)
# now we need to have the same null space as the data csd
s, u = np.linalg.eigh(csd.get_data(csd.frequencies[0]))
mask = np.abs(s) >= s[-1] * 1e-7
rank = mask.sum()
assert rank == len(data) == len(info["ch_names"])
noise_csd = CrossSpectralDensity(
_sym_mat_to_vector(data), info["ch_names"], 0.0, csd.n_fft
)
return noise_csd, rank
@pytest.mark.slowtest
@testing.requires_testing_data
@idx_param
@pytest.mark.parametrize(
"whiten",
[
pytest.param(False, marks=pytest.mark.slowtest),
True,
],
)
def test_make_dics(tmp_path, _load_forward, idx, whiten):
"""Test making DICS beamformer filters."""
pytest.importorskip("h5io")
# We only test proper handling of parameters here. Testing the results is
# done in test_apply_dics_timeseries and test_apply_dics_csd.
fwd_free, fwd_surf, fwd_fixed, fwd_vol = _load_forward
epochs, _, csd, _, label, vertices, source_ind = _simulate_data(fwd_fixed, idx)
with pytest.raises(ValueError, match="several sensor types"):
make_dics(epochs.info, fwd_surf, csd, label=label, pick_ori=None)
if whiten:
noise_csd, rank = _make_rand_csd(epochs.info, csd)
assert rank == len(epochs.info["ch_names"]) == 62
else:
noise_csd = None
epochs.pick(picks="grad")
with pytest.raises(ValueError, match="Invalid value for the 'pick_ori'"):
make_dics(
epochs.info, fwd_fixed, csd, pick_ori="notexistent", noise_csd=noise_csd
)
with pytest.raises(ValueError, match="rank, if str"):
make_dics(epochs.info, fwd_fixed, csd, rank="foo", noise_csd=noise_csd)
with pytest.raises(TypeError, match="rank must be"):
make_dics(epochs.info, fwd_fixed, csd, rank=1.0, noise_csd=noise_csd)
# Test if fixed forward operator is detected when picking normal
# orientation
with pytest.raises(ValueError, match="forward operator with free ori"):
make_dics(epochs.info, fwd_fixed, csd, pick_ori="normal", noise_csd=noise_csd)
# Test if non-surface oriented forward operator is detected when picking
# normal orientation
with pytest.raises(ValueError, match="oriented in surface coordinates"):
make_dics(epochs.info, fwd_free, csd, pick_ori="normal", noise_csd=noise_csd)
# Test if volume forward operator is detected when picking normal
# orientation
with pytest.raises(ValueError, match="oriented in surface coordinates"):
make_dics(epochs.info, fwd_vol, csd, pick_ori="normal", noise_csd=noise_csd)
# Test invalid combinations of parameters
with pytest.raises(ValueError, match="reduce_rank cannot be used with"):
make_dics(
epochs.info,
fwd_free,
csd,
inversion="single",
reduce_rank=True,
noise_csd=noise_csd,
)
# TODO: Restore this?
# with pytest.raises(ValueError, match='not stable with depth'):
# make_dics(epochs.info, fwd_free, csd, weight_norm='unit-noise-gain',
# inversion='single', depth=None)
# Sanity checks on the returned filters
n_freq = len(csd.frequencies)
vertices = np.intersect1d(label.vertices, fwd_free["src"][0]["vertno"])
n_verts = len(vertices)
n_orient = 3
n_channels = len(epochs.ch_names)
# Test return values
weight_norm = "unit-noise-gain"
inversion = "single"
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori=None,
weight_norm=weight_norm,
depth=None,
real_filter=False,
noise_csd=noise_csd,
inversion=inversion,
)
assert filters["weights"].shape == (n_freq, n_verts * n_orient, n_channels)
assert np.iscomplexobj(filters["weights"])
assert filters["csd"].ch_names == epochs.ch_names
assert isinstance(filters["csd"], CrossSpectralDensity)
assert filters["ch_names"] == epochs.ch_names
assert_array_equal(filters["proj"], np.eye(n_channels))
assert_array_equal(filters["vertices"][0], vertices)
assert_array_equal(filters["vertices"][1], []) # Label was on the LH
assert filters["subject"] == fwd_free["src"]._subject
assert filters["pick_ori"] is None
assert filters["is_free_ori"]
assert filters["inversion"] == inversion
assert filters["weight_norm"] == weight_norm
assert "DICS" in repr(filters)
assert 'subject "sample"' in repr(filters)
assert str(len(vertices)) in repr(filters)
assert str(n_channels) in repr(filters)
assert "rank" not in repr(filters)
_, noise_cov = _prepare_noise_csd(csd, noise_csd, real_filter=False)
_, _, _, _, G, _, _, _ = _prepare_beamformer_input(
epochs.info,
fwd_surf,
label,
"vector",
combine_xyz=False,
exp=None,
noise_cov=noise_cov,
)
G.shape = (n_channels, n_verts, n_orient)
G = G.transpose(1, 2, 0).conj() # verts, orient, ch
_assert_weight_norm(filters, G)
inversion = "matrix"
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori=None,
weight_norm=weight_norm,
depth=None,
noise_csd=noise_csd,
inversion=inversion,
)
_assert_weight_norm(filters, G)
weight_norm = "unit-noise-gain-invariant"
inversion = "single"
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori=None,
weight_norm=weight_norm,
depth=None,
noise_csd=noise_csd,
inversion=inversion,
)
_assert_weight_norm(filters, G)
# Test picking orientations. Also test weight norming under these different
# conditions.
weight_norm = "unit-noise-gain"
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori="normal",
weight_norm=weight_norm,
depth=None,
noise_csd=noise_csd,
inversion=inversion,
)
n_orient = 1
assert filters["weights"].shape == (n_freq, n_verts * n_orient, n_channels)
assert not filters["is_free_ori"]
_assert_weight_norm(filters, G)
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori="max-power",
weight_norm=weight_norm,
depth=None,
noise_csd=noise_csd,
inversion=inversion,
)
n_orient = 1
assert filters["weights"].shape == (n_freq, n_verts * n_orient, n_channels)
assert not filters["is_free_ori"]
_assert_weight_norm(filters, G)
# From here on, only work on a single frequency
csd = csd[0]
# Test using a real-valued filter
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori="normal",
real_filter=True,
noise_csd=noise_csd,
)
assert not np.iscomplexobj(filters["weights"])
# Test forward normalization. When inversion='single', the power of a
# unit-noise CSD should be 1, even without weight normalization.
if not whiten:
csd_noise = csd.copy()
inds = np.triu_indices(csd.n_channels)
# Using [:, :] syntax for in-place broadcasting
csd_noise._data[:, :] = np.eye(csd.n_channels)[inds][:, np.newaxis]
filters = make_dics(
epochs.info,
fwd_surf,
csd_noise,
label=label,
weight_norm=None,
depth=1.0,
noise_csd=noise_csd,
inversion="single",
)
w = filters["weights"][0][:3]
assert_allclose(np.diag(w.dot(w.conjugate().T)), 1.0, rtol=1e-6, atol=0)
# Test turning off both forward and weight normalization
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
weight_norm=None,
depth=None,
noise_csd=noise_csd,
)
w = filters["weights"][0][:3]
assert not np.allclose(np.diag(w.dot(w.conjugate().T)), 1.0, rtol=1e-2, atol=0)
# Test neural-activity-index weight normalization. It should be a scaled
# version of the unit-noise-gain beamformer.
filters_nai = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori="max-power",
weight_norm="nai",
depth=None,
noise_csd=noise_csd,
)
w_nai = filters_nai["weights"][0]
filters_ung = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
pick_ori="max-power",
weight_norm="unit-noise-gain",
depth=None,
noise_csd=noise_csd,
)
w_ung = filters_ung["weights"][0]
assert_allclose(
np.corrcoef(np.abs(w_nai).ravel(), np.abs(w_ung).ravel()), 1, atol=1e-7
)
# Test whether spatial filter contains src_type
assert "src_type" in filters
fname = tmp_path / "filters-dics.h5"
filters.save(fname)
filters_read = read_beamformer(fname)
assert isinstance(filters, Beamformer)
assert isinstance(filters_read, Beamformer)
for key in ["tmin", "tmax"]: # deal with strictness of object_diff
setattr(filters["csd"], key, np.float64(getattr(filters["csd"], key)))
assert object_diff(filters, filters_read) == ""
def _fwd_dist(power, fwd, vertices, source_ind, tidx=1):
idx = np.argmax(power.data[:, tidx])
rr_got = fwd["src"][0]["rr"][vertices[idx]]
rr_want = fwd["src"][0]["rr"][vertices[source_ind]]
return np.linalg.norm(rr_got - rr_want)
@idx_param
@pytest.mark.parametrize(
"inversion, weight_norm",
[
("single", None),
("matrix", "unit-noise-gain"),
],
)
def test_apply_dics_csd(_load_forward, idx, inversion, weight_norm):
"""Test applying a DICS beamformer to a CSD matrix."""
fwd_free, fwd_surf, fwd_fixed, _ = _load_forward
epochs, _, csd, source_vertno, label, vertices, source_ind = _simulate_data(
fwd_fixed, idx
)
reg = 1 # Lots of regularization for our toy dataset
with pytest.raises(ValueError, match="several sensor types"):
make_dics(epochs.info, fwd_free, csd)
epochs.pick(picks="grad")
# Try different types of forward models
assert label.hemi == "lh"
for fwd in [fwd_free, fwd_surf, fwd_fixed]:
filters = make_dics(
epochs.info,
fwd,
csd,
label=label,
reg=reg,
inversion=inversion,
weight_norm=weight_norm,
)
power, f = apply_dics_csd(csd, filters)
assert f == [10, 20]
# Did we find the true source at 20 Hz?
dist = _fwd_dist(power, fwd_free, vertices, source_ind)
assert dist == 0.0
# Is the signal stronger at 20 Hz than 10?
assert power.data[source_ind, 1] > power.data[source_ind, 0]
@pytest.mark.parametrize("pick_ori", [None, "normal", "max-power", "vector"])
@pytest.mark.parametrize("inversion", ["single", "matrix"])
@idx_param
def test_apply_dics_ori_inv(_load_forward, pick_ori, inversion, idx):
"""Test picking different orientations and inversion modes."""
fwd_free, fwd_surf, fwd_fixed, fwd_vol = _load_forward
epochs, _, csd, source_vertno, label, vertices, source_ind = _simulate_data(
fwd_fixed, idx
)
epochs.pick(picks="grad")
reg_ = 5 if inversion == "matrix" else 1
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
reg=reg_,
pick_ori=pick_ori,
inversion=inversion,
depth=None,
weight_norm="unit-noise-gain",
)
power, f = apply_dics_csd(csd, filters)
assert f == [10, 20]
dist = _fwd_dist(power, fwd_surf, vertices, source_ind)
# This is 0. for unit-noise-gain-invariant:
assert dist <= (0.02 if inversion == "matrix" else 0.0)
assert power.data[source_ind, 1] > power.data[source_ind, 0]
# Test unit-noise-gain weighting
csd_noise = csd.copy()
inds = np.triu_indices(csd.n_channels)
csd_noise._data[...] = np.eye(csd.n_channels)[inds][:, np.newaxis]
noise_power, f = apply_dics_csd(csd_noise, filters)
want_norm = 3 if pick_ori in (None, "vector") else 1
assert_allclose(noise_power.data, want_norm, atol=1e-7)
# Test filter with forward normalization instead of weight
# normalization
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
reg=reg_,
pick_ori=pick_ori,
inversion=inversion,
weight_norm=None,
depth=1.0,
)
power, f = apply_dics_csd(csd, filters)
assert f == [10, 20]
dist = _fwd_dist(power, fwd_surf, vertices, source_ind)
mat_tol = {0: 0.055, 100: 0.20, 200: 0.015, 233: 0.035}[idx]
max_ = mat_tol if inversion == "matrix" else 0.0
assert 0 <= dist <= max_
assert power.data[source_ind, 1] > power.data[source_ind, 0]
def _nearest_vol_ind(fwd_vol, fwd, vertices, source_ind):
return _compute_nearest(
fwd_vol["source_rr"], fwd["src"][0]["rr"][vertices][source_ind][np.newaxis]
)[0]
@idx_param
def test_real(_load_forward, idx):
"""Test using a real-valued filter."""
fwd_free, fwd_surf, fwd_fixed, fwd_vol = _load_forward
epochs, _, csd, source_vertno, label, vertices, source_ind = _simulate_data(
fwd_fixed, idx
)
epochs.pick(picks="grad")
reg = 1 # Lots of regularization for our toy dataset
filters_real = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
reg=reg,
real_filter=True,
inversion="single",
)
# Also test here that no warnings are thrown - implemented to check whether
# src should not be None warning occurs:
power, f = apply_dics_csd(csd, filters_real)
assert f == [10, 20]
dist = _fwd_dist(power, fwd_surf, vertices, source_ind)
assert dist == 0
assert power.data[source_ind, 1] > power.data[source_ind, 0]
# Test rank reduction
filters_real = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
reg=5,
pick_ori="max-power",
inversion="matrix",
reduce_rank=True,
)
power, f = apply_dics_csd(csd, filters_real)
assert f == [10, 20]
dist = _fwd_dist(power, fwd_surf, vertices, source_ind)
assert dist == 0
assert power.data[source_ind, 1] > power.data[source_ind, 0]
# Test computing source power on a volume source space
filters_vol = make_dics(epochs.info, fwd_vol, csd, reg=reg, inversion="single")
power, f = apply_dics_csd(csd, filters_vol)
vol_source_ind = _nearest_vol_ind(fwd_vol, fwd_surf, vertices, source_ind)
assert f == [10, 20]
dist = _fwd_dist(power, fwd_vol, fwd_vol["src"][0]["vertno"], vol_source_ind)
vol_tols = {100: 0.008, 200: 0.008}
assert dist <= vol_tols.get(idx, 0.0)
assert power.data[vol_source_ind, 1] > power.data[vol_source_ind, 0]
# check whether a filters object without src_type throws expected warning
del filters_vol["src_type"] # emulate 0.16 behaviour to cause warning
with pytest.warns(RuntimeWarning, match="spatial filter does not contain src_type"):
apply_dics_csd(csd, filters_vol)
@pytest.mark.filterwarnings(
"ignore:The use of several sensor types with the:RuntimeWarning"
)
@idx_param
def test_apply_dics_timeseries(_load_forward, idx):
"""Test DICS applied to timeseries data."""
fwd_free, fwd_surf, fwd_fixed, fwd_vol = _load_forward
epochs, evoked, csd, source_vertno, label, vertices, source_ind = _simulate_data(
fwd_fixed, idx
)
reg = 5 # Lots of regularization for our toy dataset
with pytest.raises(ValueError, match="several sensor types"):
make_dics(evoked.info, fwd_surf, csd)
evoked.pick(picks="grad")
multiple_filters = make_dics(evoked.info, fwd_surf, csd, label=label, reg=reg)
# Sanity checks on the resulting STC after applying DICS on evoked
stcs = apply_dics(evoked, multiple_filters)
assert isinstance(stcs, list)
assert len(stcs) == len(multiple_filters["weights"])
assert_array_equal(stcs[0].vertices[0], multiple_filters["vertices"][0])
assert_array_equal(stcs[0].vertices[1], multiple_filters["vertices"][1])
assert_allclose(stcs[0].times, evoked.times)
# Applying filters for multiple frequencies on epoch data should fail
with pytest.raises(ValueError, match="computed for a single frequency"):
apply_dics_epochs(epochs, multiple_filters)
# From now on, only apply filters with a single frequency (20 Hz).
csd20 = csd.pick_frequency(20)
filters = make_dics(
evoked.info, fwd_surf, csd20, label=label, reg=reg, inversion="single"
)
# Sanity checks on the resulting STC after applying DICS on epochs.
# Also test here that no warnings are thrown - implemented to check whether
# src should not be None warning occurs
stcs = apply_dics_epochs(epochs, filters)
assert isinstance(stcs, list)
assert len(stcs) == 1
assert_array_equal(stcs[0].vertices[0], filters["vertices"][0])
assert_array_equal(stcs[0].vertices[1], filters["vertices"][1])
assert_allclose(stcs[0].times, epochs.times)
# Did we find the source?
stc = (stcs[0] ** 2).mean()
dist = _fwd_dist(stc, fwd_surf, vertices, source_ind, tidx=0)
assert dist == 0
# Apply filters to evoked
stc = apply_dics(evoked, filters)
stc = (stc**2).mean()
dist = _fwd_dist(stc, fwd_surf, vertices, source_ind, tidx=0)
assert dist == 0
# Test if wrong channel selection is detected in application of filter
evoked_ch = cp.deepcopy(evoked)
evoked_ch.pick(evoked_ch.ch_names[:-1])
with pytest.raises(ValueError, match="MEG 2633 which is not present"):
apply_dics(evoked_ch, filters)
# Test whether projections are applied, by adding a custom projection
filters_noproj = make_dics(evoked.info, fwd_surf, csd20, label=label)
stc_noproj = apply_dics(evoked, filters_noproj)
evoked_proj = evoked.copy()
p = compute_proj_evoked(evoked_proj, n_grad=1, n_mag=0, n_eeg=0)
proj_matrix = make_projector(p, evoked_proj.ch_names)[0]
evoked_proj.add_proj(p)
filters_proj = make_dics(evoked_proj.info, fwd_surf, csd20, label=label)
assert_allclose(filters_proj["proj"], proj_matrix, rtol=1e-7)
stc_proj = apply_dics(evoked_proj, filters_proj)
assert np.any(np.not_equal(stc_noproj.data, stc_proj.data))
# Test detecting incompatible projections
filters_proj["proj"] = filters_proj["proj"][:-1, :-1]
with pytest.raises(ValueError, match="operands could not be broadcast"):
apply_dics(evoked_proj, filters_proj)
# Test returning a generator
stcs = apply_dics_epochs(epochs, filters, return_generator=False)
stcs_gen = apply_dics_epochs(epochs, filters, return_generator=True)
assert_array_equal(stcs[0].data, next(stcs_gen).data)
# Test computing timecourses on a volume source space
filters_vol = make_dics(evoked.info, fwd_vol, csd20, reg=reg, inversion="single")
stc = apply_dics(evoked, filters_vol)
stc = (stc**2).mean()
assert stc.data.shape[1] == 1
vol_source_ind = _nearest_vol_ind(fwd_vol, fwd_surf, vertices, source_ind)
dist = _fwd_dist(stc, fwd_vol, fwd_vol["src"][0]["vertno"], vol_source_ind, tidx=0)
vol_tols = {100: 0.008, 200: 0.015}
vol_tol = vol_tols.get(idx, 0.0)
assert dist <= vol_tol
# check whether a filters object without src_type throws expected warning
del filters_vol["src_type"] # emulate 0.16 behaviour to cause warning
with pytest.warns(RuntimeWarning, match="filter does not contain src_typ"):
apply_dics_epochs(epochs, filters_vol)
@testing.requires_testing_data
@pytest.mark.parametrize("return_generator", (True, False))
def test_apply_dics_tfr(return_generator):
"""Test DICS applied to time-frequency objects."""
info = read_info(fname_raw)
info = pick_info(info, pick_types(info, meg="grad"))
forward = mne.read_forward_solution(fname_fwd)
rng = np.random.default_rng(11)
# Construct an EpochsTFR object filled with random data.
n_epochs = 8
n_chans = len(info.ch_names)
freqs = [8, 9]
n_times = 300
times = np.arange(n_times) / info["sfreq"]
data = rng.random((n_epochs, n_chans, len(freqs), n_times))
data *= 1e-6
data = data + data * 1j # add imag. component to simulate phase
epochs_tfr = EpochsTFRArray(info=info, data=data, times=times, freqs=freqs)
# Create a DICS beamformer and convert the EpochsTFR to source space.
csd = csd_tfr(epochs_tfr)
filters = make_dics(epochs_tfr.info, forward, csd, reg=0.05)
stcs = apply_dics_tfr_epochs(epochs_tfr, filters, return_generator)
# Check some basic properties of the returned SourceEstimate objects.
if return_generator:
stcs = list(stcs)
assert_allclose(stcs[0][0].times, times)
assert len(stcs) == len(epochs_tfr) # check same number of epochs
assert all([len(s) == len(freqs) for s in stcs]) # check nested freqs
assert all(
[
s.data.shape == (forward["nsource"], n_times)
for these_stcs in stcs
for s in these_stcs
]
)
# Compute power from the source space TFR. This should yield the same
# result as the apply_dics_csd function.
source_power = np.zeros((forward["nsource"], len(freqs)))
for stcs_epoch in stcs:
for i, stc_freq in enumerate(stcs_epoch):
power = (stc_freq.data * np.conj(stc_freq.data)).real
power = power.mean(axis=-1) # mean over time
# Scaling by sampling frequency for compatibility with Matlab
power /= epochs_tfr.info["sfreq"]
source_power[:, i] += power.T
source_power /= n_epochs
ref_source_power, ref_freqs = apply_dics_csd(csd, filters)
assert_allclose(freqs, ref_freqs)
assert_allclose(ref_source_power.data, source_power)
# Test that real-value only data fails, due to non-linearity of computing
# power, it is recommended to transform to source-space first before
# converting to power.
with pytest.raises(RuntimeError, match="Time-frequency data must be complex"):
epochs_tfr_real = epochs_tfr.copy()
epochs_tfr_real.data = epochs_tfr_real.data.real
stcs = apply_dics_tfr_epochs(epochs_tfr_real, filters)
filters_vector = filters.copy()
filters_vector["pick_ori"] = "vector"
with pytest.warns(match="vector solution"):
apply_dics_tfr_epochs(epochs_tfr, filters_vector)
def _cov_as_csd(cov, info):
rng = np.random.RandomState(0)
assert cov["data"].ndim == 2
assert len(cov["data"]) == len(cov["names"])
# we need to make this have at least some complex structure
data = cov["data"] + 1e-1 * _rand_csd(rng, info)
assert data.dtype == np.complex128
return CrossSpectralDensity(_sym_mat_to_vector(data), cov["names"], 0.0, 16)
# Just test free ori here (assume fixed is same as LCMV if these are)
# Changes here should be synced with test_lcmv.py
@pytest.mark.slowtest
@pytest.mark.parametrize(
"reg, pick_ori, weight_norm, use_cov, depth, lower, upper, real_filter",
[
(0.05, "vector", "unit-noise-gain-invariant", False, None, 26, 28, True),
(0.05, "vector", "unit-noise-gain", False, None, 13, 15, True),
(0.05, "vector", "nai", False, None, 13, 15, True),
(0.05, None, "unit-noise-gain-invariant", False, None, 26, 28, False),
(0.05, None, "unit-noise-gain-invariant", True, None, 40, 42, False),
(0.05, None, "unit-noise-gain-invariant", True, None, 40, 42, True),
(0.05, None, "unit-noise-gain", False, None, 13, 14, False),
(0.05, None, "unit-noise-gain", True, None, 35, 37, False),
(0.05, None, "nai", True, None, 35, 37, False),
(0.05, None, None, True, None, 12, 14, False),
(0.05, None, None, True, 0.8, 39, 43, False),
(0.05, "max-power", "unit-noise-gain-invariant", False, None, 17, 20, False),
(0.05, "max-power", "unit-noise-gain", False, None, 17, 20, False),
(0.05, "max-power", "unit-noise-gain", False, None, 17, 20, True),
(0.05, "max-power", "nai", True, None, 21, 24, False),
(0.05, "max-power", None, True, None, 7, 10, False),
(0.05, "max-power", None, True, 0.8, 15, 18, False),
# skip most no-reg tests, assume others are equal to LCMV if these are
(0.00, None, None, True, None, 21, 32, False),
(0.00, "max-power", None, True, None, 13, 19, False),
],
)
def test_localization_bias_free(
bias_params_free,
reg,
pick_ori,
weight_norm,
use_cov,
depth,
lower,
upper,
real_filter,
):
"""Test localization bias for free-orientation DICS."""
evoked, fwd, noise_cov, data_cov, want = bias_params_free
noise_csd = _cov_as_csd(noise_cov, evoked.info)
data_csd = _cov_as_csd(data_cov, evoked.info)
del noise_cov, data_cov
if not use_cov:
evoked.pick(picks="grad")
noise_csd = None
filters = make_dics(
evoked.info,
fwd,
data_csd,
reg,
noise_csd,
pick_ori=pick_ori,
weight_norm=weight_norm,
depth=depth,
real_filter=real_filter,
)
loc = apply_dics(evoked, filters).data
loc = np.linalg.norm(loc, axis=1) if pick_ori == "vector" else np.abs(loc)
# Compute the percentage of sources for which there is no loc bias:
perc = (want == np.argmax(loc, axis=0)).mean() * 100
assert lower <= perc <= upper
@pytest.mark.parametrize(
"weight_norm, lower, upper, lower_ori, upper_ori, real_filter",
[
("unit-noise-gain-invariant", 57, 58, 0.60, 0.61, False),
("unit-noise-gain", 57, 58, 0.60, 0.61, False),
("unit-noise-gain", 57, 58, 0.60, 0.61, True),
(None, 27, 28, 0.56, 0.57, False),
],
)
def test_orientation_max_power(
bias_params_fixed,
bias_params_free,
weight_norm,
lower,
upper,
lower_ori,
upper_ori,
real_filter,
):
"""Test orientation selection for bias for max-power DICS."""
# we simulate data for the fixed orientation forward and beamform using
# the free orientation forward, and check the orientation match at the end
evoked, _, noise_cov, data_cov, want = bias_params_fixed
noise_csd = _cov_as_csd(noise_cov, evoked.info)
data_csd = _cov_as_csd(data_cov, evoked.info)
del data_cov, noise_cov
fwd = bias_params_free[1]
filters = make_dics(
evoked.info,
fwd,
data_csd,
0.05,
noise_csd,
pick_ori="max-power",
weight_norm=weight_norm,
depth=None,
real_filter=real_filter,
)
loc = np.abs(apply_dics(evoked, filters).data)
ori = filters["max_power_ori"][0]
assert ori.shape == (246, 3)
loc = np.abs(loc)
# Compute the percentage of sources for which there is no loc bias:
max_idx = np.argmax(loc, axis=0)
mask = want == max_idx # ones that localized properly
perc = mask.mean() * 100
assert lower <= perc <= upper
# Compute the dot products of our forward normals and
# assert we get some hopefully reasonable agreement
assert fwd["coord_frame"] == FIFF.FIFFV_COORD_HEAD
nn = np.concatenate([s["nn"][v] for s, v in zip(fwd["src"], filters["vertices"])])
nn = nn[want]
nn = apply_trans(invert_transform(fwd["mri_head_t"]), nn, move=False)
assert_allclose(np.linalg.norm(nn, axis=1), 1, atol=1e-6)
assert_allclose(np.linalg.norm(ori, axis=1), 1, atol=1e-12)
dots = np.abs((nn[mask] * ori[mask]).sum(-1))
assert_array_less(dots, 1)
assert_array_less(0, dots)
got = np.mean(dots)
assert lower_ori < got < upper_ori
@testing.requires_testing_data
@idx_param
@pytest.mark.parametrize("whiten", (False, True))
def test_make_dics_rank(_load_forward, idx, whiten):
"""Test making DICS beamformer filters with rank param."""
_, fwd_surf, fwd_fixed, _ = _load_forward
epochs, _, csd, _, label, _, _ = _simulate_data(fwd_fixed, idx)
if whiten:
noise_csd, want_rank = _make_rand_csd(epochs.info, csd)
kind = "mag + grad"
else:
noise_csd = None
epochs.pick(picks="grad")
want_rank = len(epochs.ch_names)
assert want_rank == 41
kind = "grad"
with catch_logging() as log:
filters = make_dics(
epochs.info, fwd_surf, csd, label=label, noise_csd=noise_csd, verbose=True
)
log = log.getvalue()
assert f"Estimated rank ({kind}): {want_rank}" in log, log
stc, _ = apply_dics_csd(csd, filters)
other_rank = want_rank - 1 # shouldn't make a huge difference
use_rank = dict(meg=other_rank)
if not whiten:
# XXX it's a bug that our rank functions don't treat "meg"
# properly here...
use_rank["grad"] = use_rank.pop("meg")
with catch_logging() as log:
filters_2 = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
noise_csd=noise_csd,
rank=use_rank,
verbose=True,
)
log = log.getvalue()
assert f"Computing rank from covariance with rank={use_rank}" in log, log
stc_2, _ = apply_dics_csd(csd, filters_2)
corr = np.corrcoef(stc_2.data.ravel(), stc.data.ravel())[0, 1]
assert 0.8 < corr < 0.999999
# degenerate conditions
if whiten:
# make rank deficient
data = noise_csd.get_data(0.0)
data[0] = data[:0] = 0
noise_csd._data[:, 0] = _sym_mat_to_vector(data)
with pytest.raises(ValueError, match="meg data rank.*the noise rank"):
filters = make_dics(
epochs.info,
fwd_surf,
csd,
label=label,
noise_csd=noise_csd,
verbose=True,
)
|