File: test_rap_music.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (222 lines) | stat: -rw-r--r-- 7,954 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy import linalg

import mne
from mne.beamformer import rap_music, trap_music
from mne.cov import regularize
from mne.datasets import testing
from mne.minimum_norm.tests.test_inverse import assert_var_exp_log
from mne.utils import catch_logging

data_path = testing.data_path(download=False)
fname_ave = data_path / "MEG" / "sample" / "sample_audvis-ave.fif"
fname_cov = data_path / "MEG" / "sample" / "sample_audvis_trunc-cov.fif"
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-fwd.fif"


def _get_data(ch_decim=1):
    """Read in data used in tests."""
    # Read evoked
    evoked = mne.read_evokeds(fname_ave, 0, baseline=(None, 0))
    evoked.info["bads"] = ["MEG 2443"]
    with evoked.info._unlock():
        evoked.info["lowpass"] = 16  # fake for decim
    evoked.decimate(12)
    evoked.crop(0.0, 0.3)
    picks = mne.pick_types(evoked.info, meg=True, eeg=False)
    picks = picks[::ch_decim]
    evoked.pick([evoked.ch_names[pick] for pick in picks])
    evoked.info.normalize_proj()

    noise_cov = mne.read_cov(fname_cov)
    noise_cov["projs"] = []
    noise_cov = regularize(noise_cov, evoked.info, rank="full", proj=False)
    return evoked, noise_cov


def simu_data(evoked, forward, noise_cov, n_dipoles, times, nave=1):
    """Simulate an evoked dataset with 2 sources.

    One source is put in each hemisphere.
    """
    # Generate the two dipoles data
    mu, sigma = 0.1, 0.005
    s1 = (
        1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-((times - mu) ** 2) / (2 * sigma**2))
    )

    mu, sigma = 0.075, 0.008
    s2 = (
        -1
        / (sigma * np.sqrt(2 * np.pi))
        * np.exp(-((times - mu) ** 2) / (2 * sigma**2))
    )
    data = np.array([s1, s2]) * 1e-9

    src = forward["src"]
    rng = np.random.RandomState(42)

    rndi = rng.randint(len(src[0]["vertno"]))
    lh_vertno = src[0]["vertno"][[rndi]]

    rndi = rng.randint(len(src[1]["vertno"]))
    rh_vertno = src[1]["vertno"][[rndi]]

    vertices = [lh_vertno, rh_vertno]
    tmin, tstep = times.min(), 1 / evoked.info["sfreq"]
    stc = mne.SourceEstimate(data, vertices=vertices, tmin=tmin, tstep=tstep)

    sim_evoked = mne.simulation.simulate_evoked(
        forward, stc, evoked.info, noise_cov, nave=nave, random_state=rng
    )

    return sim_evoked, stc


def _check_dipoles(dipoles, fwd, stc, evoked, residual=None):
    src = fwd["src"]
    pos1 = fwd["source_rr"][np.where(src[0]["vertno"] == stc.vertices[0])]
    pos2 = fwd["source_rr"][
        np.where(src[1]["vertno"] == stc.vertices[1])[0] + len(src[0]["vertno"])
    ]

    # Check the position of the two dipoles
    assert dipoles[0].pos[0] in np.array([pos1, pos2])
    assert dipoles[1].pos[0] in np.array([pos1, pos2])

    ori1 = fwd["source_nn"][np.where(src[0]["vertno"] == stc.vertices[0])[0]][0]
    ori2 = fwd["source_nn"][
        np.where(src[1]["vertno"] == stc.vertices[1])[0] + len(src[0]["vertno"])
    ][0]

    # Check the orientation of the dipoles
    assert np.max(np.abs(np.dot(dipoles[0].ori[0], np.array([ori1, ori2]).T))) > 0.99

    assert np.max(np.abs(np.dot(dipoles[1].ori[0], np.array([ori1, ori2]).T))) > 0.99

    if residual is not None:
        picks_grad = mne.pick_types(residual.info, meg="grad")
        picks_mag = mne.pick_types(residual.info, meg="mag")
        rel_tol = 0.02
        for picks in [picks_grad, picks_mag]:
            assert linalg.norm(residual.data[picks], ord="fro") < rel_tol * linalg.norm(
                evoked.data[picks], ord="fro"
            )


@testing.requires_testing_data
def test_rap_music_simulated():
    """Test RAP-MUSIC with simulated evoked."""
    evoked, noise_cov = _get_data(ch_decim=16)
    forward = mne.read_forward_solution(fname_fwd)
    forward = mne.pick_channels_forward(forward, evoked.ch_names)
    forward_surf_ori = mne.convert_forward_solution(forward, surf_ori=True)
    forward_fixed = mne.convert_forward_solution(
        forward, force_fixed=True, surf_ori=True, use_cps=True
    )

    n_dipoles = 2
    sim_evoked, stc = simu_data(
        evoked, forward_fixed, noise_cov, n_dipoles, evoked.times, nave=evoked.nave
    )
    # Check dipoles for fixed ori
    with catch_logging() as log:
        dipoles = rap_music(
            sim_evoked, forward_fixed, noise_cov, n_dipoles=n_dipoles, verbose=True
        )
    assert_var_exp_log(log.getvalue(), 89, 91)
    _check_dipoles(dipoles, forward_fixed, stc, sim_evoked)
    assert 97 < dipoles[0].gof.max() < 100
    assert 91 < dipoles[1].gof.max() < 93
    assert dipoles[0].gof.min() >= 0.0

    nave = 100000  # add a tiny amount of noise to the simulated evokeds
    sim_evoked, stc = simu_data(
        evoked, forward_fixed, noise_cov, n_dipoles, evoked.times, nave=nave
    )
    dipoles, residual = rap_music(
        sim_evoked, forward_fixed, noise_cov, n_dipoles=n_dipoles, return_residual=True
    )
    _check_dipoles(dipoles, forward_fixed, stc, sim_evoked, residual)

    # Check dipoles for free ori
    dipoles, residual = rap_music(
        sim_evoked, forward, noise_cov, n_dipoles=n_dipoles, return_residual=True
    )
    _check_dipoles(dipoles, forward_fixed, stc, sim_evoked, residual)

    # Check dipoles for free surface ori
    dipoles, residual = rap_music(
        sim_evoked,
        forward_surf_ori,
        noise_cov,
        n_dipoles=n_dipoles,
        return_residual=True,
    )
    _check_dipoles(dipoles, forward_fixed, stc, sim_evoked, residual)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_rap_music_sphere():
    """Test RAP-MUSIC with real data, sphere model, MEG only."""
    evoked, noise_cov = _get_data(ch_decim=8)
    sphere = mne.make_sphere_model(r0=(0.0, 0.0, 0.04))
    src = mne.setup_volume_source_space(
        subject=None,
        pos=10.0,
        sphere=(0.0, 0.0, 40, 65.0),
        mindist=5.0,
        exclude=0.0,
        sphere_units="mm",
    )
    forward = mne.make_forward_solution(evoked.info, trans=None, src=src, bem=sphere)

    with catch_logging() as log:
        dipoles = rap_music(evoked, forward, noise_cov, n_dipoles=2, verbose=True)
    assert_var_exp_log(log.getvalue(), 47, 49)
    # Test that there is one dipole on each hemisphere
    pos = np.array([dip.pos[0] for dip in dipoles])
    assert pos.shape == (2, 3)
    assert (pos[:, 0] < 0).sum() == 1
    assert (pos[:, 0] > 0).sum() == 1
    # Check the amplitude scale
    assert 1e-10 < dipoles[0].amplitude[0] < 1e-7
    # Check the orientation
    dip_fit = mne.fit_dipole(evoked, noise_cov, sphere)[0]
    assert np.max(np.abs(np.dot(dip_fit.ori, dipoles[0].ori[0]))) > 0.99
    assert np.max(np.abs(np.dot(dip_fit.ori, dipoles[1].ori[0]))) > 0.99
    idx = dip_fit.gof.argmax()
    dist = np.linalg.norm(dipoles[0].pos[idx] - dip_fit.pos[idx])
    assert 0.004 <= dist < 0.007
    assert_allclose(dipoles[0].gof[idx], dip_fit.gof[idx], atol=3)


@testing.requires_testing_data
def test_rap_music_picks():
    """Test RAP-MUSIC with picking."""
    evoked = mne.read_evokeds(fname_ave, condition="Right Auditory", baseline=(None, 0))
    evoked.crop(tmin=0.05, tmax=0.15)  # select N100
    evoked.pick(picks="meg")
    forward = mne.read_forward_solution(fname_fwd)
    noise_cov = mne.read_cov(fname_cov)
    dipoles = rap_music(evoked, forward, noise_cov, n_dipoles=2)
    assert len(dipoles) == 2


@testing.requires_testing_data
def test_trap_music():
    """Test TRAP-MUSIC."""
    evoked = mne.read_evokeds(fname_ave, condition="Right Auditory", baseline=(None, 0))
    evoked.crop(tmin=0.05, tmax=0.15)  # select N100
    evoked.pick(picks="meg")
    forward = mne.read_forward_solution(fname_fwd)
    noise_cov = mne.read_cov(fname_cov)
    dipoles = trap_music(evoked, forward, noise_cov, n_dipoles=2)
    assert len(dipoles) == 2