1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from itertools import compress
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from mne import Epochs, pick_channels, pick_types, read_events
from mne._fiff.constants import FIFF
from mne._fiff.proj import _has_eeg_average_ref_proj
from mne.channels import make_dig_montage
from mne.channels.interpolation import _make_interpolation_matrix
from mne.datasets import testing
from mne.io import RawArray, read_raw_ctf, read_raw_fif, read_raw_nirx
from mne.preprocessing.nirs import (
beer_lambert_law,
optical_density,
scalp_coupling_index,
)
from mne.utils import _record_warnings
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = base_dir / "test_raw.fif"
event_name = base_dir / "test-eve.fif"
raw_fname_ctf = base_dir / "test_ctf_raw.fif"
testing_path = testing.data_path(download=False)
event_id, tmin, tmax = 1, -0.2, 0.5
event_id_2 = 2
def _load_data(kind):
"""Load data."""
# It is more memory efficient to load data in a separate
# function so it's loaded on-demand
raw = read_raw_fif(raw_fname)
events = read_events(event_name)
# subselect channels for speed
if kind == "eeg":
picks = pick_types(raw.info, meg=False, eeg=True, exclude=[])[:15]
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
preload=True,
reject=dict(eeg=80e-6),
)
else:
picks = pick_types(raw.info, meg=True, eeg=False, exclude=[])[1:200:2]
assert kind == "meg"
with pytest.warns(RuntimeWarning, match="projection"):
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
preload=True,
reject=dict(grad=1000e-12, mag=4e-12),
)
return raw, epochs
@pytest.mark.parametrize("offset", (0.0, 0.1))
@pytest.mark.parametrize(
"avg_proj, ctol",
[
(True, (0.86, 0.93)),
(False, (0.97, 0.99)),
],
)
@pytest.mark.parametrize(
"method, atol",
[
pytest.param(None, 3e-6, marks=pytest.mark.slowtest), # slow on Azure
(dict(eeg="MNE"), 4e-6),
],
)
@pytest.mark.filterwarnings("ignore:.*than 20 mm from head frame origin.*")
def test_interpolation_eeg(offset, avg_proj, ctol, atol, method):
"""Test interpolation of EEG channels."""
raw, epochs_eeg = _load_data("eeg")
epochs_eeg = epochs_eeg.copy()
assert not _has_eeg_average_ref_proj(epochs_eeg.info)
# Offsetting the coordinate frame should have no effect on the output
for inst in (raw, epochs_eeg):
for ch in inst.info["chs"]:
if ch["kind"] == FIFF.FIFFV_EEG_CH:
ch["loc"][:3] += offset
ch["loc"][3:6] += offset
for d in inst.info["dig"]:
d["r"] += offset
# check that interpolation does nothing if no bads are marked
epochs_eeg.info["bads"] = []
evoked_eeg = epochs_eeg.average()
kw = dict(method=method)
with pytest.warns(RuntimeWarning, match="Doing nothing"):
evoked_eeg.interpolate_bads(**kw)
# create good and bad channels for EEG
epochs_eeg.info["bads"] = []
goods_idx = np.ones(len(epochs_eeg.ch_names), dtype=bool)
goods_idx[epochs_eeg.ch_names.index("EEG 012")] = False
bads_idx = ~goods_idx
pos = epochs_eeg._get_channel_positions()
evoked_eeg = epochs_eeg.average()
if avg_proj:
evoked_eeg.set_eeg_reference(projection=True).apply_proj()
assert_allclose(evoked_eeg.data.mean(0), 0.0, atol=1e-20)
ave_before = evoked_eeg.data[bads_idx]
# interpolate bad channels for EEG
epochs_eeg.info["bads"] = ["EEG 012"]
evoked_eeg = epochs_eeg.average()
if avg_proj:
evoked_eeg.set_eeg_reference(projection=True).apply_proj()
good_picks = pick_types(evoked_eeg.info, meg=False, eeg=True)
assert_allclose(evoked_eeg.data[good_picks].mean(0), 0.0, atol=1e-20)
evoked_eeg_bad = evoked_eeg.copy()
bads_picks = pick_channels(
epochs_eeg.ch_names, include=epochs_eeg.info["bads"], ordered=True
)
evoked_eeg_bad.data[bads_picks, :] = 1e10
# Test first the exclude parameter
evoked_eeg_2_bads = evoked_eeg_bad.copy()
evoked_eeg_2_bads.info["bads"] = ["EEG 004", "EEG 012"]
evoked_eeg_2_bads.data[
pick_channels(evoked_eeg_bad.ch_names, ["EEG 004", "EEG 012"])
] = 1e10
evoked_eeg_interp = evoked_eeg_2_bads.interpolate_bads(
origin=(0.0, 0.0, 0.0), exclude=["EEG 004"], **kw
)
assert evoked_eeg_interp.info["bads"] == ["EEG 004"]
assert np.all(evoked_eeg_interp.get_data("EEG 004") == 1e10)
assert np.all(evoked_eeg_interp.get_data("EEG 012") != 1e10)
# Now test without exclude parameter
evoked_eeg_bad.info["bads"] = ["EEG 012"]
evoked_eeg_interp = evoked_eeg_bad.copy().interpolate_bads(
origin=(0.0, 0.0, 0.0), **kw
)
if avg_proj:
assert_allclose(evoked_eeg_interp.data.mean(0), 0.0, atol=1e-6)
interp_zero = evoked_eeg_interp.data[bads_idx]
if method is None: # using
pos_good = pos[goods_idx]
pos_bad = pos[bads_idx]
interpolation = _make_interpolation_matrix(pos_good, pos_bad)
assert interpolation.shape == (1, len(epochs_eeg.ch_names) - 1)
interp_manual = np.dot(interpolation, evoked_eeg_bad.data[goods_idx])
assert_array_equal(interp_manual, interp_zero)
del interp_manual, interpolation, pos, pos_good, pos_bad
assert_allclose(ave_before, interp_zero, atol=atol)
assert ctol[0] < np.corrcoef(ave_before, interp_zero)[0, 1] < ctol[1]
interp_fit = evoked_eeg_bad.copy().interpolate_bads(**kw).data[bads_idx]
assert_allclose(ave_before, interp_fit, atol=2.5e-6)
assert ctol[1] < np.corrcoef(ave_before, interp_fit)[0, 1] # better
# check that interpolation fails when preload is False
epochs_eeg.preload = False
with pytest.raises(RuntimeError, match="requires epochs data to be load"):
epochs_eeg.interpolate_bads(**kw)
epochs_eeg.preload = True
# check that interpolation changes the data in raw
raw_eeg = RawArray(data=epochs_eeg._data[0], info=epochs_eeg.info)
raw_before = raw_eeg._data[bads_idx]
raw_after = raw_eeg.interpolate_bads(**kw)._data[bads_idx]
assert not np.all(raw_before == raw_after)
# check that interpolation fails when preload is False
for inst in [raw, epochs_eeg]:
assert hasattr(inst, "preload")
inst.preload = False
inst.info["bads"] = [inst.ch_names[1]]
with pytest.raises(RuntimeError, match="requires.*data to be loaded"):
inst.interpolate_bads(**kw)
# check that interpolation works with few channels
raw_few = raw.copy().crop(0, 0.1).load_data()
raw_few.pick(raw_few.ch_names[:1] + raw_few.ch_names[3:4])
assert len(raw_few.ch_names) == 2
raw_few.del_proj()
raw_few.info["bads"] = [raw_few.ch_names[-1]]
orig_data = raw_few[1][0]
with _record_warnings() as w:
raw_few.interpolate_bads(reset_bads=False, **kw)
assert len([ww for ww in w if "more than" not in str(ww.message)]) == 0
new_data = raw_few[1][0]
assert (new_data == 0).mean() < 0.5
assert np.corrcoef(new_data, orig_data)[0, 1] > 0.2
@pytest.mark.slowtest
def test_interpolation_meg():
"""Test interpolation of MEG channels."""
# speed accuracy tradeoff: channel subselection is faster but the
# correlation drops
thresh = 0.68
raw, epochs_meg = _load_data("meg")
# check that interpolation works when non M/EEG channels are present
# before MEG channels
raw.crop(0, 0.1).load_data().pick(epochs_meg.ch_names)
raw.info.normalize_proj()
raw.set_channel_types({raw.ch_names[0]: "stim"}, on_unit_change="ignore")
raw.info["bads"] = [raw.ch_names[1]]
raw.load_data()
raw.interpolate_bads(mode="fast")
del raw
# check that interpolation works for MEG
epochs_meg.info["bads"] = ["MEG 0141"]
evoked = epochs_meg.average()
pick = pick_channels(epochs_meg.info["ch_names"], epochs_meg.info["bads"])
# MEG -- raw
raw_meg = RawArray(data=epochs_meg._data[0], info=epochs_meg.info)
raw_meg.info["bads"] = ["MEG 0141"]
data1 = raw_meg[pick, :][0][0]
raw_meg.info.normalize_proj()
data2 = raw_meg.interpolate_bads(reset_bads=False, mode="fast")[pick, :][0][0]
assert np.corrcoef(data1, data2)[0, 1] > thresh
# the same number of bads as before
assert len(raw_meg.info["bads"]) == len(raw_meg.info["bads"])
# MEG -- epochs
data1 = epochs_meg.get_data(pick).ravel()
epochs_meg.info.normalize_proj()
epochs_meg.interpolate_bads(mode="fast")
data2 = epochs_meg.get_data(pick).ravel()
assert np.corrcoef(data1, data2)[0, 1] > thresh
assert len(epochs_meg.info["bads"]) == 0
# MEG -- evoked (plus auto origin)
data1 = evoked.data[pick]
evoked.info.normalize_proj()
data2 = evoked.interpolate_bads(origin="auto").data[pick]
assert np.corrcoef(data1, data2)[0, 1] > thresh
# MEG -- with exclude
evoked.info["bads"] = ["MEG 0141", "MEG 0121"]
pick = pick_channels(evoked.ch_names, evoked.info["bads"], ordered=True)
evoked.data[pick[-1]] = 1e10
data1 = evoked.data[pick]
evoked.info.normalize_proj()
data2 = evoked.interpolate_bads(origin="auto", exclude=["MEG 0121"]).data[pick]
assert np.corrcoef(data1[0], data2[0])[0, 1] > thresh
assert np.all(data2[1] == 1e10)
def _this_interpol(inst, ref_meg=False):
from mne.channels.interpolation import _interpolate_bads_meg
_interpolate_bads_meg(inst, ref_meg=ref_meg, mode="fast")
return inst
@pytest.mark.slowtest
def test_interpolate_meg_ctf():
"""Test interpolation of MEG channels from CTF system."""
thresh = 0.85
tol = 0.05 # assert the new interpol correlates at least .05 "better"
bad = "MLC22-2622" # select a good channel to test the interpolation
raw = read_raw_fif(raw_fname_ctf).crop(0, 1.0).load_data() # 3 secs
raw.apply_gradient_compensation(3)
# Show that we have to exclude ref_meg for interpolating CTF MEG-channels
# (fixed in #5965):
raw.info["bads"] = [bad]
pick_bad = pick_channels(raw.info["ch_names"], raw.info["bads"])
data_orig = raw[pick_bad, :][0]
# mimic old behavior (the ref_meg-arg in _interpolate_bads_meg only serves
# this purpose):
data_interp_refmeg = _this_interpol(raw, ref_meg=True)[pick_bad, :][0]
# new:
data_interp_no_refmeg = _this_interpol(raw, ref_meg=False)[pick_bad, :][0]
R = dict()
R["no_refmeg"] = np.corrcoef(data_orig, data_interp_no_refmeg)[0, 1]
R["with_refmeg"] = np.corrcoef(data_orig, data_interp_refmeg)[0, 1]
print("Corrcoef of interpolated with original channel: ", R)
assert R["no_refmeg"] > R["with_refmeg"] + tol
assert R["no_refmeg"] > thresh
@testing.requires_testing_data
def test_interpolation_ctf_comp():
"""Test interpolation with compensated CTF data."""
raw_fname = testing_path / "CTF" / "somMDYO-18av.ds"
raw = read_raw_ctf(raw_fname, preload=True)
raw.info["bads"] = [raw.ch_names[5], raw.ch_names[-5]]
raw.interpolate_bads(mode="fast", origin=(0.0, 0.0, 0.04))
assert raw.info["bads"] == []
@testing.requires_testing_data
def test_interpolation_nirs():
"""Test interpolating bad nirs channels."""
pytest.importorskip("pymatreader")
fname = testing_path / "NIRx" / "nirscout" / "nirx_15_2_recording_w_overlap"
raw_intensity = read_raw_nirx(fname, preload=False)
raw_od = optical_density(raw_intensity)
sci = scalp_coupling_index(raw_od)
raw_od.info["bads"] = list(compress(raw_od.ch_names, sci < 0.5))
bad_0 = np.where([name == raw_od.info["bads"][0] for name in raw_od.ch_names])[0][0]
bad_0_std_pre_interp = np.std(raw_od._data[bad_0])
bads_init = list(raw_od.info["bads"])
raw_od.interpolate_bads(exclude=bads_init[:2])
assert raw_od.info["bads"] == bads_init[:2]
raw_od.interpolate_bads()
assert raw_od.info["bads"] == []
assert bad_0_std_pre_interp > np.std(raw_od._data[bad_0])
raw_haemo = beer_lambert_law(raw_od, ppf=6)
raw_haemo.info["bads"] = raw_haemo.ch_names[2:4]
assert raw_haemo.info["bads"] == ["S1_D2 hbo", "S1_D2 hbr"]
raw_haemo.interpolate_bads()
assert raw_haemo.info["bads"] == []
@testing.requires_testing_data
def test_interpolation_ecog():
"""Test interpolation for ECoG."""
raw, epochs_eeg = _load_data("eeg")
bads = ["EEG 012"]
bads_mask = np.isin(epochs_eeg.ch_names, bads)
epochs_ecog = epochs_eeg.set_channel_types(
{ch: "ecog" for ch in epochs_eeg.ch_names}
)
epochs_ecog.info["bads"] = bads
# check that interpolation changes the data in raw
raw_ecog = RawArray(data=epochs_ecog._data[0], info=epochs_ecog.info)
raw_before = raw_ecog.copy()
raw_after = raw_ecog.interpolate_bads(method=dict(ecog="spline"))
assert not np.all(raw_before._data[bads_mask] == raw_after._data[bads_mask])
assert_array_equal(raw_before._data[~bads_mask], raw_after._data[~bads_mask])
@testing.requires_testing_data
def test_interpolation_seeg():
"""Test interpolation for sEEG."""
raw, epochs_eeg = _load_data("eeg")
bads = ["EEG 012"]
bads_mask = np.isin(epochs_eeg.ch_names, bads)
epochs_seeg = epochs_eeg.set_channel_types(
{ch: "seeg" for ch in epochs_eeg.ch_names}
)
epochs_seeg.info["bads"] = bads
# check that interpolation changes the data in raw
raw_seeg = RawArray(data=epochs_seeg._data[0], info=epochs_seeg.info)
raw_before = raw_seeg.copy()
montage = raw_seeg.get_montage()
pos = montage.get_positions()
ch_pos = pos.pop("ch_pos")
n0 = ch_pos[epochs_seeg.ch_names[0]]
n1 = ch_pos[epochs_seeg.ch_names[1]]
for i, ch in enumerate(epochs_seeg.ch_names[2:]):
ch_pos[ch] = n0 + (n1 - n0) * (i + 2)
raw_seeg.set_montage(make_dig_montage(ch_pos, **pos))
raw_after = raw_seeg.interpolate_bads(method=dict(seeg="spline"))
assert not np.all(raw_before._data[bads_mask] == raw_after._data[bads_mask])
assert_array_equal(raw_before._data[~bads_mask], raw_after._data[~bads_mask])
# check interpolation on epochs
epochs_seeg.set_montage(make_dig_montage(ch_pos, **pos))
epochs_before = epochs_seeg.copy()
epochs_after = epochs_seeg.interpolate_bads(method=dict(seeg="spline"))
assert not np.all(
epochs_before._data[:, bads_mask] == epochs_after._data[:, bads_mask]
)
assert_array_equal(
epochs_before._data[:, ~bads_mask], epochs_after._data[:, ~bads_mask]
)
# test shaft all bad
epochs_seeg.info["bads"] = epochs_seeg.ch_names
with pytest.raises(RuntimeError, match="Not enough good channels"):
epochs_seeg.interpolate_bads(method=dict(seeg="spline"))
# test bad not on shaft
ch_pos[bads[0]] = np.array([10, 10, 10])
epochs_seeg.info["bads"] = bads
epochs_seeg.set_montage(make_dig_montage(ch_pos, **pos))
with pytest.raises(RuntimeError, match="No shaft found"):
epochs_seeg.interpolate_bads(method=dict(seeg="spline"))
def test_nan_interpolation(raw):
"""Test 'nan' method for interpolating bads."""
ch_to_interp = [raw.ch_names[1]] # don't use channel 0 (type is IAS not MEG)
raw.info["bads"] = ch_to_interp
# test that warning appears for reset_bads = True
with pytest.warns(RuntimeWarning, match="Consider setting reset_bads=False"):
raw.interpolate_bads(method="nan", reset_bads=True)
# despite warning, interpolation still happened, make sure the channel is NaN
bad_chs = raw.get_data(ch_to_interp)
assert np.isnan(bad_chs).all()
# make sure reset_bads=False works as expected
raw.info["bads"] = ch_to_interp
raw.interpolate_bads(method="nan", reset_bads=False)
assert raw.info["bads"] == ch_to_interp
# make sure other channels are untouched
raw.drop_channels(ch_to_interp)
good_chs = raw.get_data()
assert np.isfinite(good_chs).all()
@testing.requires_testing_data
def test_method_str():
"""Test method argument types."""
raw = read_raw_fif(
testing_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif",
preload=False,
)
raw.crop(0, 1).pick(("meg", "eeg"), exclude=()).load_data()
raw.copy().interpolate_bads(method="MNE")
with pytest.raises(ValueError, match="Invalid value for the"):
raw.interpolate_bads(method="spline")
raw.pick("eeg", exclude=())
raw.interpolate_bads(method="spline")
|