1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from scipy.linalg import eigh
from sklearn.base import BaseEstimator, TransformerMixin
from .._fiff.pick import _picks_to_idx
from ..cov import Covariance, _regularized_covariance
from ..defaults import _handle_default
from ..filter import filter_data
from ..rank import compute_rank
from ..time_frequency import psd_array_welch
from ..utils import (
_check_option,
_time_mask,
_validate_type,
_verbose_safe_false,
fill_doc,
logger,
)
@fill_doc
class SSD(TransformerMixin, BaseEstimator):
"""
Signal decomposition using the Spatio-Spectral Decomposition (SSD).
SSD seeks to maximize the power at a frequency band of interest while
simultaneously minimizing it at the flanking (surrounding) frequency bins
(considered noise). It extremizes the covariance matrices associated with
signal and noise :footcite:`NikulinEtAl2011`.
SSD can either be used as a dimensionality reduction method or a
‘denoised’ low rank factorization method :footcite:`HaufeEtAl2014b`.
Parameters
----------
%(info_not_none)s Must match the input data.
filt_params_signal : dict
Filtering for the frequencies of interest.
filt_params_noise : dict
Filtering for the frequencies of non-interest.
reg : float | str | None (default)
Which covariance estimator to use.
If not None (same as 'empirical'), allow regularization for covariance
estimation. If float, shrinkage is used (0 <= shrinkage <= 1). For str
options, reg will be passed to method :func:`mne.compute_covariance`.
n_components : int | None (default None)
The number of components to extract from the signal.
If None, the number of components equal to the rank of the data are
returned (see ``rank``).
picks : array of int | None (default None)
The indices of good channels.
sort_by_spectral_ratio : bool (default True)
If set to True, the components are sorted according to the spectral
ratio.
See Eq. (24) in :footcite:`NikulinEtAl2011`.
return_filtered : bool (default False)
If return_filtered is True, data is bandpassed and projected onto the
SSD components.
n_fft : int (default None)
If sort_by_spectral_ratio is set to True, then the SSD sources will be
sorted according to their spectral ratio which is calculated based on
:func:`mne.time_frequency.psd_array_welch`. The n_fft parameter sets the
length of FFT used.
See :func:`mne.time_frequency.psd_array_welch` for more information.
cov_method_params : dict | None (default None)
As in :class:`mne.decoding.SPoC`
The default is None.
rank : None | dict | ‘info’ | ‘full’
As in :class:`mne.decoding.SPoC`
This controls the rank computation that can be read from the
measurement info or estimated from the data, which determines the
maximum possible number of components.
See Notes of :func:`mne.compute_rank` for details.
We recommend to use 'full' when working with epoched data.
Attributes
----------
filters_ : array, shape (n_channels, n_components)
The spatial filters to be multiplied with the signal.
patterns_ : array, shape (n_components, n_channels)
The patterns for reconstructing the signal from the filtered data.
References
----------
.. footbibliography::
"""
def __init__(
self,
info,
filt_params_signal,
filt_params_noise,
reg=None,
n_components=None,
picks=None,
sort_by_spectral_ratio=True,
return_filtered=False,
n_fft=None,
cov_method_params=None,
rank=None,
):
"""Initialize instance."""
dicts = {"signal": filt_params_signal, "noise": filt_params_noise}
for param, dd in [("l", 0), ("h", 0), ("l", 1), ("h", 1)]:
key = ("signal", "noise")[dd]
if param + "_freq" not in dicts[key]:
raise ValueError(
f"{param + '_freq'} must be defined in filter parameters for {key}"
)
val = dicts[key][param + "_freq"]
if not isinstance(val, int | float):
_validate_type(val, ("numeric",), f"{key} {param}_freq")
# check freq bands
if (
filt_params_noise["l_freq"] > filt_params_signal["l_freq"]
or filt_params_signal["h_freq"] > filt_params_noise["h_freq"]
):
raise ValueError(
"Wrongly specified frequency bands!\n"
"The signal band-pass must be within the noise "
"band-pass!"
)
self.picks = picks
del picks
self.info = info
self.freqs_signal = (filt_params_signal["l_freq"], filt_params_signal["h_freq"])
self.freqs_noise = (filt_params_noise["l_freq"], filt_params_noise["h_freq"])
self.filt_params_signal = filt_params_signal
self.filt_params_noise = filt_params_noise
# check if boolean
if not isinstance(sort_by_spectral_ratio, (bool)):
raise ValueError("sort_by_spectral_ratio must be boolean")
self.sort_by_spectral_ratio = sort_by_spectral_ratio
if n_fft is None:
self.n_fft = int(self.info["sfreq"])
else:
self.n_fft = int(n_fft)
# check if boolean
if not isinstance(return_filtered, (bool)):
raise ValueError("return_filtered must be boolean")
self.return_filtered = return_filtered
self.reg = reg
self.n_components = n_components
self.rank = rank
self.cov_method_params = cov_method_params
def _check_X(self, X):
"""Check input data."""
_validate_type(X, np.ndarray, "X")
_check_option("X.ndim", X.ndim, (2, 3))
n_chan = X.shape[-2]
if n_chan != self.info["nchan"]:
raise ValueError(
"Info must match the input data."
f"Found {n_chan} channels but expected {self.info['nchan']}."
)
def fit(self, X, y=None):
"""Estimate the SSD decomposition on raw or epoched data.
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array
obtained from continuous data or 3D array obtained from epoched
data.
y : None
Ignored; exists for compatibility with scikit-learn pipelines.
Returns
-------
self : instance of SSD
Returns the modified instance.
"""
ch_types = self.info.get_channel_types(picks=self.picks, unique=True)
if len(ch_types) > 1:
raise ValueError(
"At this point SSD only supports fitting "
f"single channel types. Your info has {len(ch_types)} types."
)
self.picks_ = _picks_to_idx(self.info, self.picks, none="data", exclude="bads")
self._check_X(X)
X_aux = X[..., self.picks_, :]
X_signal = filter_data(X_aux, self.info["sfreq"], **self.filt_params_signal)
X_noise = filter_data(X_aux, self.info["sfreq"], **self.filt_params_noise)
X_noise -= X_signal
if X.ndim == 3:
X_signal = np.hstack(X_signal)
X_noise = np.hstack(X_noise)
# prevent rank change when computing cov with rank='full'
cov_signal = _regularized_covariance(
X_signal,
reg=self.reg,
method_params=self.cov_method_params,
rank="full",
info=self.info,
)
cov_noise = _regularized_covariance(
X_noise,
reg=self.reg,
method_params=self.cov_method_params,
rank="full",
info=self.info,
)
# project cov to rank subspace
cov_signal, cov_noise, rank_proj = _dimensionality_reduction(
cov_signal, cov_noise, self.info, self.rank
)
eigvals_, eigvects_ = eigh(cov_signal, cov_noise)
# sort in descending order
ix = np.argsort(eigvals_)[::-1]
self.eigvals_ = eigvals_[ix]
# project back to sensor space
self.filters_ = np.matmul(rank_proj, eigvects_[:, ix])
self.patterns_ = np.linalg.pinv(self.filters_)
# We assume that ordering by spectral ratio is more important
# than the initial ordering. This ordering should be also learned when
# fitting.
X_ssd = self.filters_.T @ X[..., self.picks_, :]
sorter_spec = Ellipsis
if self.sort_by_spectral_ratio:
_, sorter_spec = self.get_spectral_ratio(ssd_sources=X_ssd)
self.sorter_spec = sorter_spec
logger.info("Done.")
return self
def transform(self, X):
"""Estimate epochs sources given the SSD filters.
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array
obtained from continuous data or 3D array obtained from epoched
data.
Returns
-------
X_ssd : array, shape ([n_epochs, ]n_components, n_times)
The processed data.
"""
self._check_X(X)
if self.filters_ is None:
raise RuntimeError("No filters available. Please first call fit")
if self.return_filtered:
X_aux = X[..., self.picks_, :]
X = filter_data(X_aux, self.info["sfreq"], **self.filt_params_signal)
X_ssd = self.filters_.T @ X[..., self.picks_, :]
if X.ndim == 2:
X_ssd = X_ssd[self.sorter_spec][: self.n_components]
else:
X_ssd = X_ssd[:, self.sorter_spec, :][:, : self.n_components, :]
return X_ssd
def fit_transform(self, X, y=None, **fit_params):
"""Fit SSD to data, then transform it.
Fits transformer to ``X`` and ``y`` with optional parameters ``fit_params``, and
returns a transformed version of ``X``.
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array obtained from
continuous data or 3D array obtained from epoched data.
y : None
Ignored; exists for compatibility with scikit-learn pipelines.
**fit_params : dict
Additional fitting parameters passed to the :meth:`mne.decoding.SSD.fit`
method. Not used for this class.
Returns
-------
X_ssd : array, shape ([n_epochs, ]n_components, n_times)
The processed data.
"""
# use parent TransformerMixin method but with custom docstring
return super().fit_transform(X, y=y, **fit_params)
def get_spectral_ratio(self, ssd_sources):
"""Get the spectal signal-to-noise ratio for each spatial filter.
Spectral ratio measure for best n_components selection
See :footcite:`NikulinEtAl2011`, Eq. (24).
Parameters
----------
ssd_sources : array
Data projected to SSD space.
Returns
-------
spec_ratio : array, shape (n_channels)
Array with the sprectal ratio value for each component.
sorter_spec : array, shape (n_channels)
Array of indices for sorting spec_ratio.
References
----------
.. footbibliography::
"""
psd, freqs = psd_array_welch(
ssd_sources, sfreq=self.info["sfreq"], n_fft=self.n_fft
)
sig_idx = _time_mask(freqs, *self.freqs_signal)
noise_idx = _time_mask(freqs, *self.freqs_noise)
if psd.ndim == 3:
mean_sig = psd[:, :, sig_idx].mean(axis=2).mean(axis=0)
mean_noise = psd[:, :, noise_idx].mean(axis=2).mean(axis=0)
spec_ratio = mean_sig / mean_noise
else:
mean_sig = psd[:, sig_idx].mean(axis=1)
mean_noise = psd[:, noise_idx].mean(axis=1)
spec_ratio = mean_sig / mean_noise
sorter_spec = spec_ratio.argsort()[::-1]
return spec_ratio, sorter_spec
def inverse_transform(self):
"""Not implemented yet."""
raise NotImplementedError("inverse_transform is not yet available.")
def apply(self, X):
"""Remove selected components from the signal.
This procedure will reconstruct M/EEG signals from which the dynamics
described by the excluded components is subtracted
(denoised by low-rank factorization).
See :footcite:`HaufeEtAl2014b` for more information.
.. note:: Unlike in other classes with an apply method,
only NumPy arrays are supported (not instances of MNE objects).
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array
obtained from continuous data or 3D array obtained from epoched
data.
Returns
-------
X : array, shape ([n_epochs, ]n_channels, n_times)
The processed data.
"""
X_ssd = self.transform(X)
pick_patterns = self.patterns_[self.sorter_spec][: self.n_components].T
X = pick_patterns @ X_ssd
return X
def _dimensionality_reduction(cov_signal, cov_noise, info, rank):
"""Perform dimensionality reduction on the covariance matrices."""
n_channels = cov_signal.shape[0]
# find ranks of covariance matrices
rank_signal = list(
compute_rank(
Covariance(
cov_signal,
info.ch_names,
list(),
list(),
0,
verbose=_verbose_safe_false(),
),
rank,
_handle_default("scalings_cov_rank", None),
info,
).values()
)[0]
rank_noise = list(
compute_rank(
Covariance(
cov_noise,
info.ch_names,
list(),
list(),
0,
verbose=_verbose_safe_false(),
),
rank,
_handle_default("scalings_cov_rank", None),
info,
).values()
)[0]
rank = np.min([rank_signal, rank_noise]) # should be identical
if rank < n_channels:
eigvals, eigvects = eigh(cov_signal)
# sort in descending order
ix = np.argsort(eigvals)[::-1]
eigvals = eigvals[ix]
eigvects = eigvects[:, ix]
# compute rank subspace projection matrix
rank_proj = np.matmul(
eigvects[:, :rank], np.eye(rank) * (eigvals[:rank] ** -0.5)
)
logger.info(
"Projecting covariance of %i channels to %i rank subspace",
n_channels,
rank,
)
else:
rank_proj = np.eye(n_channels)
logger.info("Preserving covariance rank (%i)", rank)
# project covariance matrices to rank subspace
cov_signal = np.matmul(rank_proj.T, np.matmul(cov_signal, rank_proj))
cov_noise = np.matmul(rank_proj.T, np.matmul(cov_noise, rank_proj))
return cov_signal, cov_noise, rank_proj
|