1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
pytest.importorskip("sklearn")
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedKFold, cross_val_score
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.svm import SVC
from mne import Epochs, compute_proj_raw, io, pick_types, read_events
from mne.decoding import CSP, LinearModel, Scaler, SPoC, get_coef
from mne.decoding.csp import _ajd_pham
from mne.utils import catch_logging
data_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = data_dir / "test_raw.fif"
event_name = data_dir / "test-eve.fif"
tmin, tmax = -0.1, 0.2
event_id = dict(aud_l=1, vis_l=3)
# if stop is too small pca may fail in some cases, but we're okay on this file
start, stop = 0, 8
def simulate_data(target, n_trials=100, n_channels=10, random_state=42):
"""Simulate data according to an instantaneous mixin model.
Data are simulated in the statistical source space, where one source is
modulated according to a target variable, before being mixed with a
random mixing matrix.
"""
rs = np.random.RandomState(random_state)
# generate a orthogonal mixin matrix
mixing_mat = np.linalg.svd(rs.randn(n_channels, n_channels))[0]
S = rs.randn(n_trials, n_channels, 50)
S[:, 0] *= np.atleast_2d(np.sqrt(target)).T
S[:, 1:] *= 0.01 # less noise
X = np.dot(mixing_mat, S).transpose((1, 0, 2))
return X, mixing_mat
def deterministic_toy_data(classes=("class_a", "class_b")):
"""Generate a small deterministic toy data set.
Four independent sources are modulated by the target class and mixed
into signal space.
"""
sources_a = (
np.array(
[
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],
],
dtype=float,
)
* 2
- 1
)
sources_b = (
np.array(
[
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],
],
dtype=float,
)
* 2
- 1
)
sources_a[0, :] *= 1
sources_a[1, :] *= 2
sources_b[2, :] *= 3
sources_b[3, :] *= 4
mixing = np.array(
[
[1.0, 0.8, 0.6, 0.4],
[0.8, 1.0, 0.8, 0.6],
[0.6, 0.8, 1.0, 0.8],
[0.4, 0.6, 0.8, 1.0],
]
)
x_class_a = mixing @ sources_a
x_class_b = mixing @ sources_b
x = np.stack([x_class_a, x_class_b])
y = np.array(classes)
return x, y
@pytest.mark.slowtest
def test_csp():
"""Test Common Spatial Patterns algorithm on epochs."""
raw = io.read_raw_fif(raw_fname, preload=False)
events = read_events(event_name)
picks = pick_types(
raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)
picks = picks[2:12:3] # subselect channels -> disable proj!
raw.add_proj([], remove_existing=True)
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
baseline=(None, 0),
preload=True,
proj=False,
)
epochs_data = epochs.get_data(copy=False)
n_channels = epochs_data.shape[1]
y = epochs.events[:, -1]
# Init
pytest.raises(ValueError, CSP, n_components="foo", norm_trace=False)
for reg in ["foo", -0.1, 1.1]:
csp = CSP(reg=reg, norm_trace=False)
pytest.raises(ValueError, csp.fit, epochs_data, epochs.events[:, -1])
for reg in ["oas", "ledoit_wolf", 0, 0.5, 1.0]:
CSP(reg=reg, norm_trace=False)
for cov_est in ["foo", None]:
pytest.raises(ValueError, CSP, cov_est=cov_est, norm_trace=False)
with pytest.raises(TypeError, match="instance of bool"):
CSP(norm_trace="foo")
for cov_est in ["concat", "epoch"]:
CSP(cov_est=cov_est, norm_trace=False)
n_components = 3
# Fit
for norm_trace in [True, False]:
csp = CSP(n_components=n_components, norm_trace=norm_trace)
csp.fit(epochs_data, epochs.events[:, -1])
assert_equal(len(csp.mean_), n_components)
assert_equal(len(csp.std_), n_components)
# Transform
X = csp.fit_transform(epochs_data, y)
sources = csp.transform(epochs_data)
assert sources.shape[1] == n_components
assert csp.filters_.shape == (n_channels, n_channels)
assert csp.patterns_.shape == (n_channels, n_channels)
assert_array_almost_equal(sources, X)
# Test data exception
pytest.raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events))
pytest.raises(ValueError, csp.fit, epochs, y)
pytest.raises(ValueError, csp.transform, epochs)
# Test plots
epochs.pick(picks="mag")
cmap = ("RdBu", True)
components = np.arange(n_components)
for plot in (csp.plot_patterns, csp.plot_filters):
plot(epochs.info, components=components, res=12, show=False, cmap=cmap)
# Test with more than 2 classes
epochs = Epochs(
raw,
events,
tmin=tmin,
tmax=tmax,
picks=picks,
event_id=dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4),
baseline=(None, 0),
proj=False,
preload=True,
)
epochs_data = epochs.get_data(copy=False)
n_channels = epochs_data.shape[1]
n_channels = epochs_data.shape[1]
for cov_est in ["concat", "epoch"]:
csp = CSP(n_components=n_components, cov_est=cov_est, norm_trace=False)
csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
assert_equal(len(csp._classes), 4)
assert_array_equal(csp.filters_.shape, [n_channels, n_channels])
assert_array_equal(csp.patterns_.shape, [n_channels, n_channels])
# Test average power transform
n_components = 2
assert csp.transform_into == "average_power"
feature_shape = [len(epochs_data), n_components]
X_trans = dict()
for log in (None, True, False):
csp = CSP(n_components=n_components, log=log, norm_trace=False)
assert csp.log is log
Xt = csp.fit_transform(epochs_data, epochs.events[:, 2])
assert_array_equal(Xt.shape, feature_shape)
X_trans[str(log)] = Xt
# log=None => log=True
assert_array_almost_equal(X_trans["None"], X_trans["True"])
# Different normalization return different transform
assert np.sum((X_trans["True"] - X_trans["False"]) ** 2) > 1.0
# Check wrong inputs
pytest.raises(ValueError, CSP, transform_into="average_power", log="foo")
# Test csp space transform
csp = CSP(transform_into="csp_space", norm_trace=False)
assert csp.transform_into == "csp_space"
for log in ("foo", True, False):
pytest.raises(
ValueError, CSP, transform_into="csp_space", log=log, norm_trace=False
)
n_components = 2
csp = CSP(n_components=n_components, transform_into="csp_space", norm_trace=False)
Xt = csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
feature_shape = [len(epochs_data), n_components, epochs_data.shape[2]]
assert_array_equal(Xt.shape, feature_shape)
# Check mixing matrix on simulated data
y = np.array([100] * 50 + [1] * 50)
X, A = simulate_data(y)
for cov_est in ["concat", "epoch"]:
# fit csp
csp = CSP(n_components=1, cov_est=cov_est, norm_trace=False)
csp.fit(X, y)
# check the first pattern match the mixing matrix
# the sign might change
corr = np.abs(np.corrcoef(csp.patterns_[0, :].T, A[:, 0])[0, 1])
assert np.abs(corr) > 0.99
# check output
out = csp.transform(X)
corr = np.abs(np.corrcoef(out[:, 0], y)[0, 1])
assert np.abs(corr) > 0.95
# Even the "reg is None and rank is None" case should pass now thanks to the
# do_compute_rank
@pytest.mark.parametrize("ch_type", ("mag", "eeg", ("mag", "eeg")))
@pytest.mark.parametrize("rank", (None, "full", "correct"))
@pytest.mark.parametrize("reg", [None, 0.001, "oas"])
def test_regularized_csp(ch_type, rank, reg):
"""Test Common Spatial Patterns algorithm using regularized covariance."""
raw = io.read_raw_fif(raw_fname).pick(ch_type, exclude="bads").load_data()
n_orig = len(raw.ch_names)
ch_decim = 2
raw.pick_channels(raw.ch_names[::ch_decim])
raw.info.normalize_proj()
if "eeg" in ch_type:
raw.set_eeg_reference(projection=True)
# TODO: for some reason we need to add a second EEG projector in order to get
# the non-semidefinite error for EEG data. Hopefully this won't make much
# difference in practice given our default is rank=None and regularization
# is easy to use.
raw.add_proj(compute_proj_raw(raw, n_eeg=1, n_mag=0, n_grad=0, n_jobs=1))
n_eig = len(raw.ch_names) - len(raw.info["projs"])
n_ch = n_orig // ch_decim
if ch_type == "eeg":
assert n_eig == n_ch - 2
elif ch_type == "mag":
assert n_eig == n_ch - 3
else:
assert n_eig == n_ch - 5
if rank == "correct":
if isinstance(ch_type, str):
rank = {ch_type: n_eig}
else:
assert ch_type == ("mag", "eeg")
rank = dict(
mag=102 // ch_decim - 3,
eeg=60 // ch_decim - 2,
)
else:
assert rank is None or rank == "full", rank
if rank == "full":
n_eig = n_ch
raw.filter(2, 40).apply_proj()
events = read_events(event_name)
# map make left and right events the same
events[events[:, 2] == 2, 2] = 1
events[events[:, 2] == 4, 2] = 3
epochs = Epochs(raw, events, event_id, tmin, tmax, decim=5, preload=True)
epochs.equalize_event_counts()
assert 25 < len(epochs) < 30
epochs_data = epochs.get_data(copy=False)
n_channels = epochs_data.shape[1]
assert n_channels == n_ch
n_components = 3
sc = Scaler(epochs.info)
epochs_data_orig = epochs_data.copy()
epochs_data = sc.fit_transform(epochs_data)
csp = CSP(n_components=n_components, reg=reg, norm_trace=False, rank=rank)
if rank == "full" and reg is None:
with pytest.raises(np.linalg.LinAlgError, match="leading minor"):
csp.fit(epochs_data, epochs.events[:, -1])
return
with catch_logging(verbose=True) as log:
X = csp.fit_transform(epochs_data, epochs.events[:, -1])
log = log.getvalue()
assert "Setting small MAG" not in log
if rank != "full":
assert "Setting small data eigen" in log
else:
assert "Setting small data eigen" not in log
if rank is None:
assert "Computing rank from data" in log
assert " mag: rank" not in log.lower()
assert " data: rank" in log
assert "rank (mag)" not in log.lower()
assert "rank (data)" in log
elif rank != "full": # if rank is passed no computation is done
assert "Computing rank" not in log
assert ": rank" not in log
assert "rank (" not in log
assert "reducing mag" not in log.lower()
assert f"Reducing data rank from {n_channels} " in log
y = epochs.events[:, -1]
assert csp.filters_.shape == (n_eig, n_channels)
assert csp.patterns_.shape == (n_eig, n_channels)
assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data), X)
# test init exception
pytest.raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events))
pytest.raises(ValueError, csp.fit, epochs, y)
pytest.raises(ValueError, csp.transform, epochs)
csp.n_components = n_components
sources = csp.transform(epochs_data)
assert sources.shape[1] == n_components
cv = StratifiedKFold(5)
clf = make_pipeline(
sc,
csp,
LinearModel(LogisticRegression(solver="liblinear")),
)
score = cross_val_score(clf, epochs_data_orig, y, cv=cv, scoring="roc_auc").mean()
assert 0.75 <= score <= 1.0
# Test get_coef on CSP
clf.fit(epochs_data_orig, y)
coef = csp.patterns_[:n_components]
assert coef.shape == (n_components, n_channels), coef.shape
coef = sc.inverse_transform(coef.T[np.newaxis])[0]
assert coef.shape == (len(epochs.ch_names), n_components), coef.shape
coef_mne = get_coef(clf, "patterns_", inverse_transform=True, verbose="debug")
assert coef.shape == coef_mne.shape
coef_mne /= np.linalg.norm(coef_mne, axis=0)
coef /= np.linalg.norm(coef, axis=0)
coef *= np.sign(np.sum(coef_mne * coef, axis=0))
assert_allclose(coef_mne, coef)
def test_csp_pipeline():
"""Test if CSP works in a pipeline."""
csp = CSP(reg=1, norm_trace=False)
svc = SVC()
pipe = Pipeline([("CSP", csp), ("SVC", svc)])
pipe.set_params(CSP__reg=0.2)
assert pipe.get_params()["CSP__reg"] == 0.2
def test_ajd():
"""Test approximate joint diagonalization."""
# The implementation should obtain the same
# results as the Matlab implementation by Pham Dinh-Tuan.
# Generate a set of cavariances matrices for test purpose
n_times, n_channels = 10, 3
seed = np.random.RandomState(0)
diags = 2.0 + 0.1 * seed.randn(n_times, n_channels)
A = 2 * seed.rand(n_channels, n_channels) - 1
A /= np.atleast_2d(np.sqrt(np.sum(A**2, 1))).T
covmats = np.empty((n_times, n_channels, n_channels))
for i in range(n_times):
covmats[i] = np.dot(np.dot(A, np.diag(diags[i])), A.T)
V, D = _ajd_pham(covmats)
# Results obtained with original matlab implementation
V_matlab = [
[-3.507280775058041, -5.498189967306344, 7.720624541198574],
[0.694689013234610, 0.775690358505945, -1.162043086446043],
[-0.592603135588066, -0.598996925696260, 1.009550086271192],
]
assert_array_almost_equal(V, V_matlab)
def test_spoc():
"""Test SPoC."""
X = np.random.randn(10, 10, 20)
y = np.random.randn(10)
spoc = SPoC(n_components=4)
spoc.fit(X, y)
Xt = spoc.transform(X)
assert_array_equal(Xt.shape, [10, 4])
spoc = SPoC(n_components=4, transform_into="csp_space")
spoc.fit(X, y)
Xt = spoc.transform(X)
assert_array_equal(Xt.shape, [10, 4, 20])
assert_array_equal(spoc.filters_.shape, [10, 10])
assert_array_equal(spoc.patterns_.shape, [10, 10])
# check y
pytest.raises(ValueError, spoc.fit, X, y * 0)
# Check that doesn't take CSP-spcific input
pytest.raises(TypeError, SPoC, cov_est="epoch")
# Check mixing matrix on simulated data
rs = np.random.RandomState(42)
y = rs.rand(100) * 50 + 1
X, A = simulate_data(y)
# fit spoc
spoc = SPoC(n_components=1)
spoc.fit(X, y)
# check the first patterns match the mixing matrix
corr = np.abs(np.corrcoef(spoc.patterns_[0, :].T, A[:, 0])[0, 1])
assert np.abs(corr) > 0.99
# check output
out = spoc.transform(X)
corr = np.abs(np.corrcoef(out[:, 0], y)[0, 1])
assert np.abs(corr) > 0.85
def test_csp_twoclass_symmetry():
"""Test that CSP is symmetric when swapping classes."""
x, y = deterministic_toy_data(["class_a", "class_b"])
csp = CSP(norm_trace=False, transform_into="average_power", log=True)
log_power = csp.fit_transform(x, y)
log_power_ratio_ab = log_power[0] - log_power[1]
x, y = deterministic_toy_data(["class_b", "class_a"])
csp = CSP(norm_trace=False, transform_into="average_power", log=True)
log_power = csp.fit_transform(x, y)
log_power_ratio_ba = log_power[0] - log_power[1]
assert_array_almost_equal(log_power_ratio_ab, log_power_ratio_ba)
def test_csp_component_ordering():
"""Test that CSP component ordering works as expected."""
x, y = deterministic_toy_data(["class_a", "class_b"])
pytest.raises(ValueError, CSP, component_order="invalid")
# component_order='alternate' only works with two classes
csp = CSP(component_order="alternate")
with pytest.raises(ValueError):
csp.fit(np.zeros((3, 0, 0)), ["a", "b", "c"])
p_alt = CSP(component_order="alternate").fit(x, y).patterns_
p_mut = CSP(component_order="mutual_info").fit(x, y).patterns_
# This permutation of p_alt and p_mut is explained by the particular
# eigenvalues of the toy data: [0.06, 0.1, 0.5, 0.8].
# p_alt arranges them to [0.8, 0.06, 0.5, 0.1]
# p_mut arranges them to [0.06, 0.1, 0.8, 0.5]
assert_array_almost_equal(p_alt, p_mut[[2, 0, 3, 1]])
|