1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import platform
from inspect import signature
import numpy as np
import pytest
from numpy.testing import assert_array_equal, assert_equal
sklearn = pytest.importorskip("sklearn")
from sklearn.base import BaseEstimator, clone, is_classifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge
from sklearn.metrics import make_scorer, roc_auc_score
from sklearn.model_selection import cross_val_predict
from sklearn.multiclass import OneVsRestClassifier
from sklearn.pipeline import make_pipeline
from sklearn.svm import SVC
from sklearn.utils.estimator_checks import parametrize_with_checks
from mne.decoding.search_light import GeneralizingEstimator, SlidingEstimator
from mne.decoding.transformer import Vectorizer
from mne.utils import check_version, use_log_level
NEW_MULTICLASS_SAMPLE_WEIGHT = check_version("sklearn", "1.4")
def make_data():
"""Make data."""
n_epochs, n_chan, n_time = 50, 32, 10
X = np.random.rand(n_epochs, n_chan, n_time)
y = np.arange(n_epochs) % 2
for ii in range(n_time):
coef = np.random.randn(n_chan)
X[y == 0, :, ii] += coef
X[y == 1, :, ii] -= coef
return X, y
def test_search_light():
"""Test SlidingEstimator."""
# https://github.com/scikit-learn/scikit-learn/issues/27711
if platform.system() == "Windows" and check_version("numpy", "2.0.0.dev0"):
pytest.skip("sklearn int_t / long long mismatch")
logreg = OneVsRestClassifier(LogisticRegression(solver="liblinear", random_state=0))
X, y = make_data()
n_epochs, _, n_time = X.shape
# init
pytest.raises(ValueError, SlidingEstimator, "foo")
sl = SlidingEstimator(Ridge())
assert not is_classifier(sl)
sl = SlidingEstimator(LogisticRegression(solver="liblinear"))
assert is_classifier(sl.base_estimator)
assert is_classifier(sl)
# fit
assert_equal(sl.__repr__()[:18], "<SlidingEstimator(")
sl.fit(X, y)
assert_equal(sl.__repr__()[-28:], ", fitted with 10 estimators>")
pytest.raises(ValueError, sl.fit, X[1:], y)
pytest.raises(ValueError, sl.fit, X[:, :, 0], y)
sl.fit(X, y, sample_weight=np.ones_like(y))
# transforms
pytest.raises(ValueError, sl.predict, X[:, :, :2])
y_trans = sl.transform(X)
assert X.dtype == y_trans.dtype == np.dtype(float)
y_pred = sl.predict(X)
assert y_pred.dtype == np.dtype(int)
assert_array_equal(y_pred.shape, [n_epochs, n_time])
y_proba = sl.predict_proba(X)
assert y_proba.dtype == np.dtype(float)
assert_array_equal(y_proba.shape, [n_epochs, n_time, 2])
# score
score = sl.score(X, y)
assert_array_equal(score.shape, [n_time])
assert np.sum(np.abs(score)) != 0
assert score.dtype == np.dtype(float)
sl = SlidingEstimator(logreg)
assert_equal(sl.scoring, None)
# Scoring method
for scoring in ["foo", 999]:
sl = SlidingEstimator(logreg, scoring=scoring)
sl.fit(X, y)
pytest.raises((ValueError, TypeError), sl.score, X, y)
# Check sklearn's roc_auc fix: scikit-learn/scikit-learn#6874
# -- 3 class problem
sl = SlidingEstimator(logreg, scoring="roc_auc")
y = np.arange(len(X)) % 3
sl.fit(X, y)
with pytest.raises(ValueError, match="for two-class"):
sl.score(X, y)
# But check that valid ones should work with new enough sklearn
kwargs = dict()
if check_version("sklearn", "1.4"):
kwargs["response_method"] = "predict_proba"
else:
kwargs["needs_proba"] = True
if "multi_class" in signature(roc_auc_score).parameters:
scoring = make_scorer(roc_auc_score, multi_class="ovo", **kwargs)
sl = SlidingEstimator(logreg, scoring=scoring)
sl.fit(X, y)
sl.score(X, y) # smoke test
# -- 2 class problem not in [0, 1]
y = np.arange(len(X)) % 2 + 1
sl.fit(X, y)
score = sl.score(X, y)
assert_array_equal(
score,
[roc_auc_score(y - 1, _y_pred - 1) for _y_pred in sl.decision_function(X).T],
)
y = np.arange(len(X)) % 2
# Cannot pass a metric as a scoring parameter
sl1 = SlidingEstimator(logreg, scoring=roc_auc_score)
sl1.fit(X, y)
pytest.raises(ValueError, sl1.score, X, y)
# Now use string as scoring
sl1 = SlidingEstimator(logreg, scoring="roc_auc")
sl1.fit(X, y)
rng = np.random.RandomState(0)
X = rng.randn(*X.shape) # randomize X to avoid AUCs in [0, 1]
score_sl = sl1.score(X, y)
assert_array_equal(score_sl.shape, [n_time])
assert score_sl.dtype == np.dtype(float)
# Check that scoring was applied adequately
kwargs = dict()
if check_version("sklearn", "1.4"):
kwargs["response_method"] = ("decision_function", "predict_proba")
else:
kwargs["needs_threshold"] = True
scoring = make_scorer(roc_auc_score, **kwargs)
score_manual = [
scoring(est, x, y) for est, x in zip(sl1.estimators_, X.transpose(2, 0, 1))
]
assert_array_equal(score_manual, score_sl)
# n_jobs
sl = SlidingEstimator(logreg, n_jobs=None, scoring="roc_auc")
score_1job = sl.fit(X, y).score(X, y)
sl.n_jobs = 2
score_njobs = sl.fit(X, y).score(X, y)
assert_array_equal(score_1job, score_njobs)
sl.predict(X)
# n_jobs > n_estimators
sl.fit(X[..., [0]], y)
sl.predict(X[..., [0]])
# pipeline
class _LogRegTransformer(LogisticRegression):
def transform(self, X):
return super().predict_proba(X)[..., 1]
logreg_transformer = OneVsRestClassifier(_LogRegTransformer(random_state=0))
pipe = make_pipeline(SlidingEstimator(logreg_transformer), logreg)
pipe.fit(X, y)
pipe.predict(X)
# n-dimensional feature space
X = np.random.rand(10, 3, 4, 2)
y = np.arange(10) % 2
y_preds = list()
for n_jobs in [1, 2]:
pipe = SlidingEstimator(make_pipeline(Vectorizer(), logreg), n_jobs=n_jobs)
y_preds.append(pipe.fit(X, y).predict(X))
features_shape = pipe.estimators_[0].steps[0][1].features_shape_
assert_array_equal(features_shape, [3, 4])
assert_array_equal(y_preds[0], y_preds[1])
# Bagging classifiers
X = np.random.rand(10, 3, 4)
for n_jobs in (1, 2):
pipe = SlidingEstimator(BaggingClassifier(None, 2), n_jobs=n_jobs)
pipe.fit(X, y)
pipe.score(X, y)
assert isinstance(pipe.estimators_[0], BaggingClassifier)
@pytest.fixture()
def metadata_routing():
"""Temporarily enable metadata routing for new sklearn."""
if NEW_MULTICLASS_SAMPLE_WEIGHT:
sklearn.set_config(enable_metadata_routing=True)
yield
if NEW_MULTICLASS_SAMPLE_WEIGHT:
sklearn.set_config(enable_metadata_routing=False)
def test_generalization_light(metadata_routing):
"""Test GeneralizingEstimator."""
if NEW_MULTICLASS_SAMPLE_WEIGHT:
clf = LogisticRegression(random_state=0)
clf.set_fit_request(sample_weight=True)
logreg = OneVsRestClassifier(clf)
else:
logreg = LogisticRegression(
solver="liblinear",
random_state=0,
multi_class="ovr",
)
X, y = make_data()
n_epochs, _, n_time = X.shape
# fit
gl = GeneralizingEstimator(logreg)
assert_equal(repr(gl)[:23], "<GeneralizingEstimator(")
gl.fit(X, y)
gl.fit(X, y, sample_weight=np.ones_like(y))
assert_equal(gl.__repr__()[-28:], ", fitted with 10 estimators>")
# transforms
y_pred = gl.predict(X)
assert_array_equal(y_pred.shape, [n_epochs, n_time, n_time])
assert y_pred.dtype == np.dtype(int)
y_proba = gl.predict_proba(X)
assert y_proba.dtype == np.dtype(float)
assert_array_equal(y_proba.shape, [n_epochs, n_time, n_time, 2])
# transform to different datasize
y_pred = gl.predict(X[:, :, :2])
assert_array_equal(y_pred.shape, [n_epochs, n_time, 2])
# score
score = gl.score(X[:, :, :3], y)
assert_array_equal(score.shape, [n_time, 3])
assert np.sum(np.abs(score)) != 0
assert score.dtype == np.dtype(float)
gl = GeneralizingEstimator(logreg, scoring="roc_auc")
gl.fit(X, y)
score = gl.score(X, y)
auc = roc_auc_score(y, gl.estimators_[0].predict_proba(X[..., 0])[..., 1])
assert_equal(score[0, 0], auc)
for scoring in ["foo", 999]:
gl = GeneralizingEstimator(logreg, scoring=scoring)
gl.fit(X, y)
pytest.raises((ValueError, TypeError), gl.score, X, y)
# Check sklearn's roc_auc fix: scikit-learn/scikit-learn#6874
# -- 3 class problem
gl = GeneralizingEstimator(logreg, scoring="roc_auc")
y = np.arange(len(X)) % 3
gl.fit(X, y)
pytest.raises(ValueError, gl.score, X, y)
# -- 2 class problem not in [0, 1]
y = np.arange(len(X)) % 2 + 1
gl.fit(X, y)
score = gl.score(X, y)
manual_score = [
[roc_auc_score(y - 1, _y_pred) for _y_pred in _y_preds]
for _y_preds in gl.decision_function(X).transpose(1, 2, 0)
]
assert_array_equal(score, manual_score)
# n_jobs
gl = GeneralizingEstimator(logreg, n_jobs=2)
gl.fit(X, y)
y_pred = gl.predict(X)
assert_array_equal(y_pred.shape, [n_epochs, n_time, n_time])
score = gl.score(X, y)
assert_array_equal(score.shape, [n_time, n_time])
# n_jobs > n_estimators
gl.fit(X[..., [0]], y)
gl.predict(X[..., [0]])
# n-dimensional feature space
X = np.random.rand(10, 3, 4, 2)
y = np.arange(10) % 2
y_preds = list()
for n_jobs in [1, 2]:
pipe = GeneralizingEstimator(make_pipeline(Vectorizer(), logreg), n_jobs=n_jobs)
y_preds.append(pipe.fit(X, y).predict(X))
features_shape = pipe.estimators_[0].steps[0][1].features_shape_
assert_array_equal(features_shape, [3, 4])
assert_array_equal(y_preds[0], y_preds[1])
@pytest.mark.parametrize(
"n_jobs, verbose", [(1, False), (2, False), (1, True), (2, "info")]
)
def test_verbose_arg(capsys, n_jobs, verbose):
"""Test controlling output with the ``verbose`` argument."""
X, y = make_data()
clf = SVC()
# shows progress bar and prints other messages to the console
with use_log_level(True):
for estimator_object in [SlidingEstimator, GeneralizingEstimator]:
estimator = estimator_object(clf, n_jobs=n_jobs, verbose=verbose)
estimator = estimator.fit(X, y)
estimator.score(X, y)
estimator.predict(X)
stdout, stderr = capsys.readouterr()
if isinstance(verbose, bool) and not verbose:
assert all(channel == "" for channel in (stdout, stderr))
else:
assert any(len(channel) > 0 for channel in (stdout, stderr))
def test_cross_val_predict():
"""Test cross_val_predict with predict_proba."""
rng = np.random.RandomState(42)
X = rng.randn(10, 1, 3)
y = rng.randint(0, 2, 10)
estimator = SlidingEstimator(LinearRegression())
cross_val_predict(estimator, X, y, cv=2)
class Classifier(BaseEstimator):
"""Moch class that does not have classes_ attribute."""
def __init__(self):
self.base_estimator = LinearDiscriminantAnalysis()
def fit(self, X, y):
self.estimator_ = clone(self.base_estimator).fit(X, y)
return self
def predict_proba(self, X):
return self.estimator_.predict_proba(X)
with pytest.raises(AttributeError, match="classes_ attribute"):
estimator = SlidingEstimator(Classifier())
cross_val_predict(estimator, X, y, method="predict_proba", cv=2)
estimator = SlidingEstimator(LinearDiscriminantAnalysis())
cross_val_predict(estimator, X, y, method="predict_proba", cv=2)
@pytest.mark.slowtest
@parametrize_with_checks([SlidingEstimator(LogisticRegression(), allow_2d=True)])
def test_sklearn_compliance(estimator, check):
"""Test LinearModel compliance with sklearn."""
ignores = (
"check_estimator_sparse_data", # we densify
"check_classifiers_one_label_sample_weights", # don't handle singleton
"check_classifiers_classes", # dim mismatch
"check_classifiers_train",
"check_decision_proba_consistency",
"check_parameters_default_constructible",
# Should probably fix these?
"check_estimators_unfitted",
"check_transformer_data_not_an_array",
"check_n_features_in",
"check_fit2d_predict1d",
"check_do_not_raise_errors_in_init_or_set_params",
)
if any(ignore in str(check) for ignore in ignores):
return
check(estimator)
|