File: test_transformer.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (301 lines) | stat: -rw-r--r-- 9,459 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

from pathlib import Path

import numpy as np
import pytest
from numpy.testing import (
    assert_allclose,
    assert_array_almost_equal,
    assert_array_equal,
    assert_equal,
)

pytest.importorskip("sklearn")

from sklearn.decomposition import PCA
from sklearn.kernel_ridge import KernelRidge

from mne import Epochs, io, pick_types, read_events
from mne.decoding import (
    FilterEstimator,
    PSDEstimator,
    Scaler,
    TemporalFilter,
    UnsupervisedSpatialFilter,
    Vectorizer,
)
from mne.defaults import DEFAULTS
from mne.utils import use_log_level

tmin, tmax = -0.2, 0.5
event_id = dict(aud_l=1, vis_l=3)
start, stop = 0, 8
data_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = data_dir / "test_raw.fif"
event_name = data_dir / "test-eve.fif"


@pytest.mark.parametrize(
    "info, method",
    [
        (True, None),
        (True, dict(mag=5, grad=10, eeg=20)),
        (False, "mean"),
        (False, "median"),
    ],
)
def test_scaler(info, method):
    """Test methods of Scaler."""
    raw = io.read_raw_fif(raw_fname)
    events = read_events(event_name)
    picks = pick_types(
        raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
    )
    picks = picks[1:13:3]

    epochs = Epochs(
        raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
    )
    epochs_data = epochs.get_data(copy=False)
    y = epochs.events[:, -1]

    epochs_data_t = epochs_data.transpose([1, 0, 2])

    if info:
        info = epochs.info
    scaler = Scaler(info, method)
    X = scaler.fit_transform(epochs_data, y)
    assert_equal(X.shape, epochs_data.shape)
    if method is None or isinstance(method, dict):
        sd = DEFAULTS["scalings"] if method is None else method
        stds = np.zeros(len(picks))
        for key in ("mag", "grad"):
            stds[pick_types(epochs.info, meg=key)] = 1.0 / sd[key]
        stds[pick_types(epochs.info, meg=False, eeg=True)] = 1.0 / sd["eeg"]
        means = np.zeros(len(epochs.ch_names))
    elif method == "mean":
        stds = np.array([np.std(ch_data) for ch_data in epochs_data_t])
        means = np.array([np.mean(ch_data) for ch_data in epochs_data_t])
    else:  # median
        percs = np.array(
            [np.percentile(ch_data, [25, 50, 75]) for ch_data in epochs_data_t]
        )
        stds = percs[:, 2] - percs[:, 0]
        means = percs[:, 1]
    assert_allclose(
        X * stds[:, np.newaxis] + means[:, np.newaxis],
        epochs_data,
        rtol=1e-12,
        atol=1e-20,
        err_msg=method,
    )

    X2 = scaler.fit(epochs_data, y).transform(epochs_data)
    assert_array_equal(X, X2)

    # inverse_transform
    Xi = scaler.inverse_transform(X)
    assert_array_almost_equal(epochs_data, Xi)

    # Test init exception
    pytest.raises(ValueError, Scaler, None, None)
    pytest.raises(TypeError, scaler.fit, epochs, y)
    pytest.raises(TypeError, scaler.transform, epochs)
    epochs_bad = Epochs(
        raw,
        events,
        event_id,
        0,
        0.01,
        baseline=None,
        picks=np.arange(len(raw.ch_names)),
    )  # non-data chs
    scaler = Scaler(epochs_bad.info, None)
    pytest.raises(ValueError, scaler.fit, epochs_bad.get_data(copy=False), y)


def test_filterestimator():
    """Test methods of FilterEstimator."""
    raw = io.read_raw_fif(raw_fname)
    events = read_events(event_name)
    picks = pick_types(
        raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
    )
    picks = picks[1:13:3]
    epochs = Epochs(
        raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
    )
    epochs_data = epochs.get_data(copy=False)

    # Add tests for different combinations of l_freq and h_freq
    filt = FilterEstimator(epochs.info, l_freq=40, h_freq=80)
    y = epochs.events[:, -1]
    X = filt.fit_transform(epochs_data, y)
    assert X.shape == epochs_data.shape
    assert_array_equal(filt.fit(epochs_data, y).transform(epochs_data), X)

    filt = FilterEstimator(
        epochs.info,
        l_freq=None,
        h_freq=40,
        filter_length="auto",
        l_trans_bandwidth="auto",
        h_trans_bandwidth="auto",
    )
    y = epochs.events[:, -1]
    X = filt.fit_transform(epochs_data, y)

    filt = FilterEstimator(epochs.info, l_freq=1, h_freq=1)
    y = epochs.events[:, -1]
    with pytest.warns(RuntimeWarning, match="longer than the signal"):
        pytest.raises(ValueError, filt.fit_transform, epochs_data, y)

    filt = FilterEstimator(
        epochs.info,
        l_freq=40,
        h_freq=None,
        filter_length="auto",
        l_trans_bandwidth="auto",
        h_trans_bandwidth="auto",
    )
    X = filt.fit_transform(epochs_data, y)

    # Test init exception
    pytest.raises(ValueError, filt.fit, epochs, y)
    pytest.raises(ValueError, filt.transform, epochs)


def test_psdestimator():
    """Test methods of PSDEstimator."""
    raw = io.read_raw_fif(raw_fname)
    events = read_events(event_name)
    picks = pick_types(
        raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
    )
    picks = picks[1:13:3]
    epochs = Epochs(
        raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
    )
    epochs_data = epochs.get_data(copy=False)
    psd = PSDEstimator(2 * np.pi, 0, np.inf)
    y = epochs.events[:, -1]
    X = psd.fit_transform(epochs_data, y)

    assert X.shape[0] == epochs_data.shape[0]
    assert_array_equal(psd.fit(epochs_data, y).transform(epochs_data), X)

    # Test init exception
    pytest.raises(ValueError, psd.fit, epochs, y)
    pytest.raises(ValueError, psd.transform, epochs)


def test_vectorizer():
    """Test Vectorizer."""
    data = np.random.rand(150, 18, 6)
    vect = Vectorizer()
    result = vect.fit_transform(data)
    assert_equal(result.ndim, 2)

    # check inverse_trasnform
    orig_data = vect.inverse_transform(result)
    assert_equal(orig_data.ndim, 3)
    assert_array_equal(orig_data, data)
    assert_array_equal(vect.inverse_transform(result[1:]), data[1:])

    # check with different shape
    assert_equal(vect.fit_transform(np.random.rand(150, 18, 6, 3)).shape, (150, 324))
    assert_equal(vect.fit_transform(data[1:]).shape, (149, 108))

    # check if raised errors are working correctly
    vect.fit(np.random.rand(105, 12, 3))
    pytest.raises(ValueError, vect.transform, np.random.rand(105, 12, 3, 1))
    pytest.raises(ValueError, vect.inverse_transform, np.random.rand(102, 12, 12))


def test_unsupervised_spatial_filter():
    """Test unsupervised spatial filter."""
    raw = io.read_raw_fif(raw_fname)
    events = read_events(event_name)
    picks = pick_types(
        raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
    )
    picks = picks[1:13:3]
    epochs = Epochs(
        raw,
        events,
        event_id,
        tmin,
        tmax,
        picks=picks,
        preload=True,
        baseline=None,
        verbose=False,
    )

    # Test estimator
    pytest.raises(ValueError, UnsupervisedSpatialFilter, KernelRidge(2))

    # Test fit
    X = epochs.get_data(copy=False)
    n_components = 4
    usf = UnsupervisedSpatialFilter(PCA(n_components))
    usf.fit(X)
    usf1 = UnsupervisedSpatialFilter(PCA(n_components))

    # test transform
    assert_equal(usf.transform(X).ndim, 3)
    # test fit_transform
    assert_array_almost_equal(usf.transform(X), usf1.fit_transform(X))
    assert_equal(usf.transform(X).shape[1], n_components)
    assert_array_almost_equal(usf.inverse_transform(usf.transform(X)), X)

    # Test with average param
    usf = UnsupervisedSpatialFilter(PCA(4), average=True)
    usf.fit_transform(X)
    pytest.raises(ValueError, UnsupervisedSpatialFilter, PCA(4), 2)


def test_temporal_filter():
    """Test methods of TemporalFilter."""
    X = np.random.rand(5, 5, 1200)

    # Test init test
    values = (
        ("10hz", None, 100.0, "auto"),
        (5.0, "10hz", 100.0, "auto"),
        (10.0, 20.0, 5.0, "auto"),
        (None, None, 100.0, "5hz"),
    )
    for low, high, sf, ltrans in values:
        filt = TemporalFilter(low, high, sf, ltrans, fir_design="firwin")
        pytest.raises(ValueError, filt.fit_transform, X)

    # Add tests for different combinations of l_freq and h_freq
    for low, high in ((5.0, 15.0), (None, 15.0), (5.0, None)):
        filt = TemporalFilter(low, high, sfreq=100.0, fir_design="firwin")
        Xt = filt.fit_transform(X)
        assert_array_equal(filt.fit_transform(X), Xt)
        assert X.shape == Xt.shape

    # Test fit and transform numpy type check
    with pytest.raises(ValueError, match="Data to be filtered must be"):
        filt.transform([1, 2])

    # Test with 2 dimensional data array
    X = np.random.rand(101, 500)
    filt = TemporalFilter(
        l_freq=25.0, h_freq=50.0, sfreq=1000.0, filter_length=150, fir_design="firwin2"
    )
    with use_log_level("error"):  # warning about transition bandwidth
        assert_equal(filt.fit_transform(X).shape, X.shape)


def test_bad_triage():
    """Test for gh-10924."""
    filt = TemporalFilter(l_freq=8, h_freq=60, sfreq=160.0)
    # Used to fail with "ValueError: Effective band-stop frequency (135.0) is
    # too high (maximum based on Nyquist is 80.0)"
    filt.fit_transform(np.zeros((1, 1, 481)))