File: fixes.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (726 lines) | stat: -rw-r--r-- 22,817 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
"""Compatibility fixes for older versions of libraries.

If you add content to this file, please give the version of the package
at which the fix is no longer needed.

# originally copied from scikit-learn

"""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

# NOTE:
# Imports for SciPy submodules need to stay nested in this module
# because this module is imported many places (but not always used)!

import inspect
import operator as operator_module
import os
import warnings
from math import log

import numpy as np

###############################################################################
# distutils

# distutils has been deprecated since Python 3.10 and was removed
# from the standard library with the release of Python 3.12.


def _compare_version(version_a, operator, version_b):
    """Compare two version strings via a user-specified operator.

    Parameters
    ----------
    version_a : str
        First version string.
    operator : '==' | '>' | '<' | '>=' | '<='
        Operator to compare ``version_a`` and ``version_b`` in the form of
        ``version_a operator version_b``.
    version_b : str
        Second version string.

    Returns
    -------
    bool
        The result of the version comparison.
    """
    from packaging.version import parse

    mapping = {"<": "lt", "<=": "le", "==": "eq", "!=": "ne", ">=": "ge", ">": "gt"}
    with warnings.catch_warnings(record=True):
        warnings.simplefilter("ignore")
        ver_a = parse(version_a)
        ver_b = parse(version_b)
        return getattr(operator_module, mapping[operator])(ver_a, ver_b)


###############################################################################
# Misc


def _median_complex(data, axis):
    """Compute marginal median on complex data safely.

    Can be removed when numpy introduces a fix.
    See: https://github.com/scipy/scipy/pull/12676/.
    """
    # np.median must be passed real arrays for the desired result
    if np.iscomplexobj(data):
        data = np.median(np.real(data), axis=axis) + 1j * np.median(
            np.imag(data), axis=axis
        )
    else:
        data = np.median(data, axis=axis)
    return data


def _safe_svd(A, **kwargs):
    """Get around the SVD did not converge error of death."""
    # Intel has a bug with their GESVD driver:
    #     https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049  # noqa: E501
    # For SciPy 0.18 and up, we can work around it by using
    # lapack_driver='gesvd' instead.
    from scipy import linalg

    if kwargs.get("overwrite_a", False):
        raise ValueError("Cannot set overwrite_a=True with this function")
    try:
        return linalg.svd(A, **kwargs)
    except np.linalg.LinAlgError as exp:
        from .utils import warn

        warn(f"SVD error ({exp}), attempting to use GESVD instead of GESDD")
        return linalg.svd(A, lapack_driver="gesvd", **kwargs)


def _csc_array_cast(x):
    from scipy.sparse import csc_array

    return csc_array(x)


# Can be replaced with sparse.eye_array once we depend on SciPy >= 1.12
def _eye_array(n, *, format="csr"):  # noqa: A002
    from scipy import sparse

    return sparse.dia_array((np.ones(n), 0), shape=(n, n)).asformat(format)


###############################################################################
# NumPy Generator (NumPy 1.17)


def rng_uniform(rng):
    """Get the uniform/randint from the rng."""
    # prefer Generator.integers, fall back to RandomState.randint
    return getattr(rng, "integers", getattr(rng, "randint", None))


###############################################################################
# Misc utilities


# get_fdata() requires knowing the dtype ahead of time, so let's triage on our
# own instead
def _get_img_fdata(img):
    data = np.asanyarray(img.dataobj)
    dtype = np.complex128 if np.iscomplexobj(data) else np.float64
    return data.astype(dtype)


###############################################################################
# Copied from sklearn to simplify code paths


def empirical_covariance(X, assume_centered=False):
    """Compute the Maximum likelihood covariance estimator.

    Parameters
    ----------
    X : ndarray, shape (n_samples, n_features)
        Data from which to compute the covariance estimate

    assume_centered : Boolean
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False, data are centered before computation.

    Returns
    -------
    covariance : 2D ndarray, shape (n_features, n_features)
        Empirical covariance (Maximum Likelihood Estimator).
    """
    X = np.asarray(X)
    if X.ndim == 1:
        X = np.reshape(X, (1, -1))

    if X.shape[0] == 1:
        warnings.warn(
            "Only one sample available. You may want to reshape your data array"
        )

    if assume_centered:
        covariance = np.dot(X.T, X) / X.shape[0]
    else:
        covariance = np.cov(X.T, bias=1)

    if covariance.ndim == 0:
        covariance = np.array([[covariance]])
    return covariance


class _EstimatorMixin:
    def __sklearn_tags__(self):
        # If we get here, we should have sklearn installed
        from sklearn.utils import Tags, TargetTags

        return Tags(
            estimator_type=None,
            target_tags=TargetTags(required=False),
            transformer_tags=None,
            regressor_tags=None,
            classifier_tags=None,
        )

    def _param_names(self):
        return inspect.getfullargspec(self.__init__).args[1:]

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        """
        out = dict()
        for key in self._param_names():
            out[key] = getattr(self, key)
        return out

    def set_params(self, **params):
        """Set the parameters of this estimator.

        The method works on simple estimators as well as on nested objects
        (such as pipelines). The latter have parameters of the form
        ``<component>__<parameter>`` so that it's possible to update each
        component of a nested object.

        Parameters
        ----------
        **params : dict
            Estimator parameters.

        Returns
        -------
        self : object
            Estimator instance.
        """
        param_names = self._param_names()
        for key in params:
            if key in param_names:
                setattr(self, key, params[key])


class EmpiricalCovariance(_EstimatorMixin):
    """Maximum likelihood covariance estimator.

    Read more in the :ref:`User Guide <covariance>`.

    Parameters
    ----------
    store_precision : bool
        Specifies if the estimated precision is stored.

    assume_centered : bool
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False (default), data are centered before computation.

    Attributes
    ----------
    covariance_ : 2D ndarray, shape (n_features, n_features)
        Estimated covariance matrix

    precision_ : 2D ndarray, shape (n_features, n_features)
        Estimated pseudo-inverse matrix.
        (stored only if store_precision is True)
    """

    def __init__(self, store_precision=True, assume_centered=False):
        self.store_precision = store_precision
        self.assume_centered = assume_centered

    def _set_covariance(self, covariance):
        """Save the covariance and precision estimates.

        Storage is done accordingly to `self.store_precision`.
        Precision stored only if invertible.

        Parameters
        ----------
        covariance : 2D ndarray, shape (n_features, n_features)
            Estimated covariance matrix to be stored, and from which precision
            is computed.
        """
        from scipy import linalg

        # covariance = check_array(covariance)
        # set covariance
        self.covariance_ = covariance
        # set precision
        if self.store_precision:
            self.precision_ = linalg.pinvh(covariance)
        else:
            self.precision_ = None

    def get_precision(self):
        """Getter for the precision matrix.

        Returns
        -------
        precision_ : array-like,
            The precision matrix associated to the current covariance object.

        """
        from scipy import linalg

        if self.store_precision:
            precision = self.precision_
        else:
            precision = linalg.pinvh(self.covariance_)
        return precision

    def fit(self, X, y=None):
        """Fit the Maximum Likelihood Estimator covariance model.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
          Training data, where n_samples is the number of samples and
          n_features is the number of features.
        y : ndarray | None
            Not used, present for API consistency.

        Returns
        -------
        self : object
            Returns self.
        """  # noqa: E501
        # X = check_array(X)
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        covariance = empirical_covariance(X, assume_centered=self.assume_centered)
        self._set_covariance(covariance)

        return self

    def score(self, X_test, y=None):
        """Compute the log-likelihood of a Gaussian dataset.

        Uses ``self.covariance_`` as an estimator of its covariance matrix.

        Parameters
        ----------
        X_test : array-like, shape = [n_samples, n_features]
            Test data of which we compute the likelihood, where n_samples is
            the number of samples and n_features is the number of features.
            X_test is assumed to be drawn from the same distribution than
            the data used in fit (including centering).
        y : ndarray | None
            Not used, present for API consistency.

        Returns
        -------
        res : float
            The likelihood of the data set with `self.covariance_` as an
            estimator of its covariance matrix.
        """
        # compute empirical covariance of the test set
        test_cov = empirical_covariance(X_test - self.location_, assume_centered=True)
        # compute log likelihood
        res = log_likelihood(test_cov, self.get_precision())

        return res

    def error_norm(self, comp_cov, norm="frobenius", scaling=True, squared=True):
        """Compute the Mean Squared Error between two covariance estimators.

        Parameters
        ----------
        comp_cov : array-like, shape = [n_features, n_features]
            The covariance to compare with.
        norm : str
            The type of norm used to compute the error. Available error types:
            - 'frobenius' (default): sqrt(tr(A^t.A))
            - 'spectral': sqrt(max(eigenvalues(A^t.A))
            where A is the error ``(comp_cov - self.covariance_)``.
        scaling : bool
            If True (default), the squared error norm is divided by n_features.
            If False, the squared error norm is not rescaled.
        squared : bool
            Whether to compute the squared error norm or the error norm.
            If True (default), the squared error norm is returned.
            If False, the error norm is returned.

        Returns
        -------
        The Mean Squared Error (in the sense of the Frobenius norm) between
        `self` and `comp_cov` covariance estimators.
        """
        from scipy import linalg

        # compute the error
        error = comp_cov - self.covariance_
        # compute the error norm
        if norm == "frobenius":
            squared_norm = np.sum(error**2)
        elif norm == "spectral":
            squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
        else:
            raise NotImplementedError(
                "Only spectral and frobenius norms are implemented"
            )
        # optionally scale the error norm
        if scaling:
            squared_norm = squared_norm / error.shape[0]
        # finally get either the squared norm or the norm
        if squared:
            result = squared_norm
        else:
            result = np.sqrt(squared_norm)

        return result

    def mahalanobis(self, observations):
        """Compute the squared Mahalanobis distances of given observations.

        Parameters
        ----------
        observations : array-like, shape = [n_observations, n_features]
            The observations, the Mahalanobis distances of the which we
            compute. Observations are assumed to be drawn from the same
            distribution than the data used in fit.

        Returns
        -------
        mahalanobis_distance : array, shape = [n_observations,]
            Squared Mahalanobis distances of the observations.
        """
        precision = self.get_precision()
        # compute mahalanobis distances
        centered_obs = observations - self.location_
        mahalanobis_dist = np.sum(np.dot(centered_obs, precision) * centered_obs, 1)

        return mahalanobis_dist


def log_likelihood(emp_cov, precision):
    """Compute the sample mean of the log_likelihood under a covariance model.

    computes the empirical expected log-likelihood (accounting for the
    normalization terms and scaling), allowing for universal comparison (beyond
    this software package)

    Parameters
    ----------
    emp_cov : 2D ndarray (n_features, n_features)
        Maximum Likelihood Estimator of covariance

    precision : 2D ndarray (n_features, n_features)
        The precision matrix of the covariance model to be tested

    Returns
    -------
    sample mean of the log-likelihood
    """
    p = precision.shape[0]
    log_likelihood_ = -np.sum(emp_cov * precision) + _logdet(precision)
    log_likelihood_ -= p * np.log(2 * np.pi)
    log_likelihood_ /= 2.0
    return log_likelihood_


# sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues


def _logdet(A):
    """Compute the log det of a positive semidefinite matrix."""
    from scipy import linalg

    vals = linalg.eigvalsh(A)
    # avoid negative (numerical errors) or zero (semi-definite matrix) values
    tol = vals.max() * vals.size * np.finfo(np.float64).eps
    vals = np.where(vals > tol, vals, tol)
    return np.sum(np.log(vals))


def _infer_dimension_(spectrum, n_samples, n_features):
    """Infer the dimension of a dataset of shape (n_samples, n_features).

    The dataset is described by its spectrum `spectrum`.
    """
    n_spectrum = len(spectrum)
    ll = np.empty(n_spectrum)
    for rank in range(n_spectrum):
        ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features)
    return ll.argmax()


def _assess_dimension_(spectrum, rank, n_samples, n_features):
    from scipy.special import gammaln

    if rank > len(spectrum):
        raise ValueError("The tested rank cannot exceed the rank of the dataset")

    pu = -rank * log(2.0)
    for i in range(rank):
        pu += gammaln((n_features - i) / 2.0) - log(np.pi) * (n_features - i) / 2.0

    pl = np.sum(np.log(spectrum[:rank]))
    pl = -pl * n_samples / 2.0

    if rank == n_features:
        pv = 0
        v = 1
    else:
        v = np.sum(spectrum[rank:]) / (n_features - rank)
        pv = -np.log(v) * n_samples * (n_features - rank) / 2.0

    m = n_features * rank - rank * (rank + 1.0) / 2.0
    pp = log(2.0 * np.pi) * (m + rank + 1.0) / 2.0

    pa = 0.0
    spectrum_ = spectrum.copy()
    spectrum_[rank:n_features] = v
    for i in range(rank):
        for j in range(i + 1, len(spectrum)):
            pa += log(
                (spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])
            ) + log(n_samples)

    ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0

    return ll


def svd_flip(u, v, u_based_decision=True):  # noqa: D103
    if u_based_decision:
        # columns of u, rows of v
        max_abs_cols = np.argmax(np.abs(u), axis=0)
        signs = np.sign(u[max_abs_cols, np.arange(u.shape[1])])
        u *= signs
        v *= signs[:, np.newaxis]
    else:
        # rows of v, columns of u
        max_abs_rows = np.argmax(np.abs(v), axis=1)
        signs = np.sign(v[np.arange(v.shape[0]), max_abs_rows])
        u *= signs
        v *= signs[:, np.newaxis]
    return u, v


def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
    """Use high precision for cumsum and check that final value matches sum.

    Parameters
    ----------
    arr : array-like
        To be cumulatively summed as flat
    axis : int, optional
        Axis along which the cumulative sum is computed.
        The default (None) is to compute the cumsum over the flattened array.
    rtol : float
        Relative tolerance, see ``np.allclose``
    atol : float
        Absolute tolerance, see ``np.allclose``
    """
    out = np.cumsum(arr, axis=axis, dtype=np.float64)
    expected = np.sum(arr, axis=axis, dtype=np.float64)
    if not np.all(
        np.isclose(
            out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True
        )
    ):
        warnings.warn(
            "cumsum was found to be unstable: "
            "its last element does not correspond to sum",
            RuntimeWarning,
        )
    return out


###############################################################################
# From nilearn


def _crop_colorbar(cbar, cbar_vmin, cbar_vmax):
    """Crop a colorbar to show from cbar_vmin to cbar_vmax.

    Used when symmetric_cbar=False is used.
    """
    if (cbar_vmin is None) and (cbar_vmax is None):
        return
    cbar_tick_locs = cbar.locator.locs
    if cbar_vmax is None:
        cbar_vmax = cbar_tick_locs.max()
    if cbar_vmin is None:
        cbar_vmin = cbar_tick_locs.min()
    new_tick_locs = np.linspace(cbar_vmin, cbar_vmax, len(cbar_tick_locs))

    cbar.ax.set_ylim(cbar_vmin, cbar_vmax)
    X = cbar._mesh()[0]
    X = np.array([X[0], X[-1]])
    Y = np.array([[cbar_vmin, cbar_vmin], [cbar_vmax, cbar_vmax]])
    N = X.shape[0]
    ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0]
    x = X.T.reshape(-1)[ii]
    y = Y.T.reshape(-1)[ii]
    xy = (
        np.column_stack([y, x])
        if cbar.orientation == "horizontal"
        else np.column_stack([x, y])
    )
    cbar.outline.set_xy(xy)

    cbar.set_ticks(new_tick_locs)
    cbar.update_ticks()


###############################################################################
# Numba (optional requirement)

# Here we choose different defaults to speed things up by default
try:
    import numba

    if _compare_version(numba.__version__, "<", "0.56.4"):
        raise ImportError
    prange = numba.prange

    def jit(nopython=True, nogil=True, fastmath=True, cache=True, **kwargs):  # noqa
        return numba.jit(
            nopython=nopython, nogil=nogil, fastmath=fastmath, cache=cache, **kwargs
        )

except Exception:  # could be ImportError, SystemError, etc.
    has_numba = False
else:
    has_numba = os.getenv("MNE_USE_NUMBA", "true").lower() == "true"


if not has_numba:

    def jit(**kwargs):  # noqa
        def _jit(func):
            return func

        return _jit

    prange = range
    bincount = np.bincount

else:

    @jit()
    def bincount(x, weights, minlength):  # noqa: D103
        out = np.zeros(minlength)
        for idx, w in zip(x, weights):
            out[idx] += w
        return out


###############################################################################
# Matplotlib


# workaround: plt.close() doesn't spawn close_event on Agg backend
# https://github.com/matplotlib/matplotlib/issues/18609
def _close_event(fig):
    """Force calling of the MPL figure close event."""
    from matplotlib import backend_bases

    from .utils import logger

    try:
        fig.canvas.callbacks.process(
            "close_event",
            backend_bases.CloseEvent(name="close_event", canvas=fig.canvas),
        )
        logger.debug(f"Called {fig!r}.canvas.close_event()")
    except ValueError:  # old mpl with Qt
        logger.debug(f"Calling {fig!r}.canvas.close_event() failed")
        pass  # pragma: no cover


###############################################################################
# SciPy 1.14+ minimum_phase half=True option


def minimum_phase(h, method="homomorphic", n_fft=None, *, half=True):
    """Wrap scipy.signal.minimum_phase with half option."""
    # Can be removed once
    from scipy.fft import fft, ifft
    from scipy.signal import minimum_phase as sp_minimum_phase

    assert isinstance(method, str) and method == "homomorphic"

    if "half" in inspect.getfullargspec(sp_minimum_phase).kwonlyargs:
        return sp_minimum_phase(h, method=method, n_fft=n_fft, half=half)
    h = np.asarray(h)
    if np.iscomplexobj(h):
        raise ValueError("Complex filters not supported")
    if h.ndim != 1 or h.size <= 2:
        raise ValueError("h must be 1-D and at least 2 samples long")
    n_half = len(h) // 2
    if not np.allclose(h[-n_half:][::-1], h[:n_half]):
        warnings.warn(
            "h does not appear to by symmetric, conversion may fail",
            RuntimeWarning,
            stacklevel=2,
        )
    if n_fft is None:
        n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
    n_fft = int(n_fft)
    if n_fft < len(h):
        raise ValueError(f"n_fft must be at least len(h)=={len(h)}")

    # zero-pad; calculate the DFT
    h_temp = np.abs(fft(h, n_fft))
    # take 0.25*log(|H|**2) = 0.5*log(|H|)
    h_temp += 1e-7 * h_temp[h_temp > 0].min()  # don't let log blow up
    np.log(h_temp, out=h_temp)
    if half:  # halving of magnitude spectrum optional
        h_temp *= 0.5
    # IDFT
    h_temp = ifft(h_temp).real
    # multiply pointwise by the homomorphic filter
    # lmin[n] = 2u[n] - d[n]
    # i.e., double the positive frequencies and zero out the negative ones;
    # Oppenheim+Shafer 3rd ed p991 eq13.42b and p1004 fig13.7
    win = np.zeros(n_fft)
    win[0] = 1
    stop = n_fft // 2
    win[1:stop] = 2
    if n_fft % 2:
        win[stop] = 1
    h_temp *= win
    h_temp = ifft(np.exp(fft(h_temp)))
    h_minimum = h_temp.real

    n_out = (n_half + len(h) % 2) if half else len(h)
    return h_minimum[:n_out]