1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
"""Compatibility fixes for older versions of libraries.
If you add content to this file, please give the version of the package
at which the fix is no longer needed.
# originally copied from scikit-learn
"""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# NOTE:
# Imports for SciPy submodules need to stay nested in this module
# because this module is imported many places (but not always used)!
import inspect
import operator as operator_module
import os
import warnings
from math import log
import numpy as np
###############################################################################
# distutils
# distutils has been deprecated since Python 3.10 and was removed
# from the standard library with the release of Python 3.12.
def _compare_version(version_a, operator, version_b):
"""Compare two version strings via a user-specified operator.
Parameters
----------
version_a : str
First version string.
operator : '==' | '>' | '<' | '>=' | '<='
Operator to compare ``version_a`` and ``version_b`` in the form of
``version_a operator version_b``.
version_b : str
Second version string.
Returns
-------
bool
The result of the version comparison.
"""
from packaging.version import parse
mapping = {"<": "lt", "<=": "le", "==": "eq", "!=": "ne", ">=": "ge", ">": "gt"}
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
ver_a = parse(version_a)
ver_b = parse(version_b)
return getattr(operator_module, mapping[operator])(ver_a, ver_b)
###############################################################################
# Misc
def _median_complex(data, axis):
"""Compute marginal median on complex data safely.
Can be removed when numpy introduces a fix.
See: https://github.com/scipy/scipy/pull/12676/.
"""
# np.median must be passed real arrays for the desired result
if np.iscomplexobj(data):
data = np.median(np.real(data), axis=axis) + 1j * np.median(
np.imag(data), axis=axis
)
else:
data = np.median(data, axis=axis)
return data
def _safe_svd(A, **kwargs):
"""Get around the SVD did not converge error of death."""
# Intel has a bug with their GESVD driver:
# https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049 # noqa: E501
# For SciPy 0.18 and up, we can work around it by using
# lapack_driver='gesvd' instead.
from scipy import linalg
if kwargs.get("overwrite_a", False):
raise ValueError("Cannot set overwrite_a=True with this function")
try:
return linalg.svd(A, **kwargs)
except np.linalg.LinAlgError as exp:
from .utils import warn
warn(f"SVD error ({exp}), attempting to use GESVD instead of GESDD")
return linalg.svd(A, lapack_driver="gesvd", **kwargs)
def _csc_array_cast(x):
from scipy.sparse import csc_array
return csc_array(x)
# Can be replaced with sparse.eye_array once we depend on SciPy >= 1.12
def _eye_array(n, *, format="csr"): # noqa: A002
from scipy import sparse
return sparse.dia_array((np.ones(n), 0), shape=(n, n)).asformat(format)
###############################################################################
# NumPy Generator (NumPy 1.17)
def rng_uniform(rng):
"""Get the uniform/randint from the rng."""
# prefer Generator.integers, fall back to RandomState.randint
return getattr(rng, "integers", getattr(rng, "randint", None))
###############################################################################
# Misc utilities
# get_fdata() requires knowing the dtype ahead of time, so let's triage on our
# own instead
def _get_img_fdata(img):
data = np.asanyarray(img.dataobj)
dtype = np.complex128 if np.iscomplexobj(data) else np.float64
return data.astype(dtype)
###############################################################################
# Copied from sklearn to simplify code paths
def empirical_covariance(X, assume_centered=False):
"""Compute the Maximum likelihood covariance estimator.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Data from which to compute the covariance estimate
assume_centered : Boolean
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Returns
-------
covariance : 2D ndarray, shape (n_features, n_features)
Empirical covariance (Maximum Likelihood Estimator).
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (1, -1))
if X.shape[0] == 1:
warnings.warn(
"Only one sample available. You may want to reshape your data array"
)
if assume_centered:
covariance = np.dot(X.T, X) / X.shape[0]
else:
covariance = np.cov(X.T, bias=1)
if covariance.ndim == 0:
covariance = np.array([[covariance]])
return covariance
class _EstimatorMixin:
def __sklearn_tags__(self):
# If we get here, we should have sklearn installed
from sklearn.utils import Tags, TargetTags
return Tags(
estimator_type=None,
target_tags=TargetTags(required=False),
transformer_tags=None,
regressor_tags=None,
classifier_tags=None,
)
def _param_names(self):
return inspect.getfullargspec(self.__init__).args[1:]
def get_params(self, deep=True):
"""Get parameters for this estimator.
Parameters
----------
deep : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : dict
Parameter names mapped to their values.
"""
out = dict()
for key in self._param_names():
out[key] = getattr(self, key)
return out
def set_params(self, **params):
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Parameters
----------
**params : dict
Estimator parameters.
Returns
-------
self : object
Estimator instance.
"""
param_names = self._param_names()
for key in params:
if key in param_names:
setattr(self, key, params[key])
class EmpiricalCovariance(_EstimatorMixin):
"""Maximum likelihood covariance estimator.
Read more in the :ref:`User Guide <covariance>`.
Parameters
----------
store_precision : bool
Specifies if the estimated precision is stored.
assume_centered : bool
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False (default), data are centered before computation.
Attributes
----------
covariance_ : 2D ndarray, shape (n_features, n_features)
Estimated covariance matrix
precision_ : 2D ndarray, shape (n_features, n_features)
Estimated pseudo-inverse matrix.
(stored only if store_precision is True)
"""
def __init__(self, store_precision=True, assume_centered=False):
self.store_precision = store_precision
self.assume_centered = assume_centered
def _set_covariance(self, covariance):
"""Save the covariance and precision estimates.
Storage is done accordingly to `self.store_precision`.
Precision stored only if invertible.
Parameters
----------
covariance : 2D ndarray, shape (n_features, n_features)
Estimated covariance matrix to be stored, and from which precision
is computed.
"""
from scipy import linalg
# covariance = check_array(covariance)
# set covariance
self.covariance_ = covariance
# set precision
if self.store_precision:
self.precision_ = linalg.pinvh(covariance)
else:
self.precision_ = None
def get_precision(self):
"""Getter for the precision matrix.
Returns
-------
precision_ : array-like,
The precision matrix associated to the current covariance object.
"""
from scipy import linalg
if self.store_precision:
precision = self.precision_
else:
precision = linalg.pinvh(self.covariance_)
return precision
def fit(self, X, y=None):
"""Fit the Maximum Likelihood Estimator covariance model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples and
n_features is the number of features.
y : ndarray | None
Not used, present for API consistency.
Returns
-------
self : object
Returns self.
""" # noqa: E501
# X = check_array(X)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
covariance = empirical_covariance(X, assume_centered=self.assume_centered)
self._set_covariance(covariance)
return self
def score(self, X_test, y=None):
"""Compute the log-likelihood of a Gaussian dataset.
Uses ``self.covariance_`` as an estimator of its covariance matrix.
Parameters
----------
X_test : array-like, shape = [n_samples, n_features]
Test data of which we compute the likelihood, where n_samples is
the number of samples and n_features is the number of features.
X_test is assumed to be drawn from the same distribution than
the data used in fit (including centering).
y : ndarray | None
Not used, present for API consistency.
Returns
-------
res : float
The likelihood of the data set with `self.covariance_` as an
estimator of its covariance matrix.
"""
# compute empirical covariance of the test set
test_cov = empirical_covariance(X_test - self.location_, assume_centered=True)
# compute log likelihood
res = log_likelihood(test_cov, self.get_precision())
return res
def error_norm(self, comp_cov, norm="frobenius", scaling=True, squared=True):
"""Compute the Mean Squared Error between two covariance estimators.
Parameters
----------
comp_cov : array-like, shape = [n_features, n_features]
The covariance to compare with.
norm : str
The type of norm used to compute the error. Available error types:
- 'frobenius' (default): sqrt(tr(A^t.A))
- 'spectral': sqrt(max(eigenvalues(A^t.A))
where A is the error ``(comp_cov - self.covariance_)``.
scaling : bool
If True (default), the squared error norm is divided by n_features.
If False, the squared error norm is not rescaled.
squared : bool
Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned.
If False, the error norm is returned.
Returns
-------
The Mean Squared Error (in the sense of the Frobenius norm) between
`self` and `comp_cov` covariance estimators.
"""
from scipy import linalg
# compute the error
error = comp_cov - self.covariance_
# compute the error norm
if norm == "frobenius":
squared_norm = np.sum(error**2)
elif norm == "spectral":
squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
else:
raise NotImplementedError(
"Only spectral and frobenius norms are implemented"
)
# optionally scale the error norm
if scaling:
squared_norm = squared_norm / error.shape[0]
# finally get either the squared norm or the norm
if squared:
result = squared_norm
else:
result = np.sqrt(squared_norm)
return result
def mahalanobis(self, observations):
"""Compute the squared Mahalanobis distances of given observations.
Parameters
----------
observations : array-like, shape = [n_observations, n_features]
The observations, the Mahalanobis distances of the which we
compute. Observations are assumed to be drawn from the same
distribution than the data used in fit.
Returns
-------
mahalanobis_distance : array, shape = [n_observations,]
Squared Mahalanobis distances of the observations.
"""
precision = self.get_precision()
# compute mahalanobis distances
centered_obs = observations - self.location_
mahalanobis_dist = np.sum(np.dot(centered_obs, precision) * centered_obs, 1)
return mahalanobis_dist
def log_likelihood(emp_cov, precision):
"""Compute the sample mean of the log_likelihood under a covariance model.
computes the empirical expected log-likelihood (accounting for the
normalization terms and scaling), allowing for universal comparison (beyond
this software package)
Parameters
----------
emp_cov : 2D ndarray (n_features, n_features)
Maximum Likelihood Estimator of covariance
precision : 2D ndarray (n_features, n_features)
The precision matrix of the covariance model to be tested
Returns
-------
sample mean of the log-likelihood
"""
p = precision.shape[0]
log_likelihood_ = -np.sum(emp_cov * precision) + _logdet(precision)
log_likelihood_ -= p * np.log(2 * np.pi)
log_likelihood_ /= 2.0
return log_likelihood_
# sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues
def _logdet(A):
"""Compute the log det of a positive semidefinite matrix."""
from scipy import linalg
vals = linalg.eigvalsh(A)
# avoid negative (numerical errors) or zero (semi-definite matrix) values
tol = vals.max() * vals.size * np.finfo(np.float64).eps
vals = np.where(vals > tol, vals, tol)
return np.sum(np.log(vals))
def _infer_dimension_(spectrum, n_samples, n_features):
"""Infer the dimension of a dataset of shape (n_samples, n_features).
The dataset is described by its spectrum `spectrum`.
"""
n_spectrum = len(spectrum)
ll = np.empty(n_spectrum)
for rank in range(n_spectrum):
ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features)
return ll.argmax()
def _assess_dimension_(spectrum, rank, n_samples, n_features):
from scipy.special import gammaln
if rank > len(spectrum):
raise ValueError("The tested rank cannot exceed the rank of the dataset")
pu = -rank * log(2.0)
for i in range(rank):
pu += gammaln((n_features - i) / 2.0) - log(np.pi) * (n_features - i) / 2.0
pl = np.sum(np.log(spectrum[:rank]))
pl = -pl * n_samples / 2.0
if rank == n_features:
pv = 0
v = 1
else:
v = np.sum(spectrum[rank:]) / (n_features - rank)
pv = -np.log(v) * n_samples * (n_features - rank) / 2.0
m = n_features * rank - rank * (rank + 1.0) / 2.0
pp = log(2.0 * np.pi) * (m + rank + 1.0) / 2.0
pa = 0.0
spectrum_ = spectrum.copy()
spectrum_[rank:n_features] = v
for i in range(rank):
for j in range(i + 1, len(spectrum)):
pa += log(
(spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])
) + log(n_samples)
ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0
return ll
def svd_flip(u, v, u_based_decision=True): # noqa: D103
if u_based_decision:
# columns of u, rows of v
max_abs_cols = np.argmax(np.abs(u), axis=0)
signs = np.sign(u[max_abs_cols, np.arange(u.shape[1])])
u *= signs
v *= signs[:, np.newaxis]
else:
# rows of v, columns of u
max_abs_rows = np.argmax(np.abs(v), axis=1)
signs = np.sign(v[np.arange(v.shape[0]), max_abs_rows])
u *= signs
v *= signs[:, np.newaxis]
return u, v
def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
"""Use high precision for cumsum and check that final value matches sum.
Parameters
----------
arr : array-like
To be cumulatively summed as flat
axis : int, optional
Axis along which the cumulative sum is computed.
The default (None) is to compute the cumsum over the flattened array.
rtol : float
Relative tolerance, see ``np.allclose``
atol : float
Absolute tolerance, see ``np.allclose``
"""
out = np.cumsum(arr, axis=axis, dtype=np.float64)
expected = np.sum(arr, axis=axis, dtype=np.float64)
if not np.all(
np.isclose(
out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True
)
):
warnings.warn(
"cumsum was found to be unstable: "
"its last element does not correspond to sum",
RuntimeWarning,
)
return out
###############################################################################
# From nilearn
def _crop_colorbar(cbar, cbar_vmin, cbar_vmax):
"""Crop a colorbar to show from cbar_vmin to cbar_vmax.
Used when symmetric_cbar=False is used.
"""
if (cbar_vmin is None) and (cbar_vmax is None):
return
cbar_tick_locs = cbar.locator.locs
if cbar_vmax is None:
cbar_vmax = cbar_tick_locs.max()
if cbar_vmin is None:
cbar_vmin = cbar_tick_locs.min()
new_tick_locs = np.linspace(cbar_vmin, cbar_vmax, len(cbar_tick_locs))
cbar.ax.set_ylim(cbar_vmin, cbar_vmax)
X = cbar._mesh()[0]
X = np.array([X[0], X[-1]])
Y = np.array([[cbar_vmin, cbar_vmin], [cbar_vmax, cbar_vmax]])
N = X.shape[0]
ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0]
x = X.T.reshape(-1)[ii]
y = Y.T.reshape(-1)[ii]
xy = (
np.column_stack([y, x])
if cbar.orientation == "horizontal"
else np.column_stack([x, y])
)
cbar.outline.set_xy(xy)
cbar.set_ticks(new_tick_locs)
cbar.update_ticks()
###############################################################################
# Numba (optional requirement)
# Here we choose different defaults to speed things up by default
try:
import numba
if _compare_version(numba.__version__, "<", "0.56.4"):
raise ImportError
prange = numba.prange
def jit(nopython=True, nogil=True, fastmath=True, cache=True, **kwargs): # noqa
return numba.jit(
nopython=nopython, nogil=nogil, fastmath=fastmath, cache=cache, **kwargs
)
except Exception: # could be ImportError, SystemError, etc.
has_numba = False
else:
has_numba = os.getenv("MNE_USE_NUMBA", "true").lower() == "true"
if not has_numba:
def jit(**kwargs): # noqa
def _jit(func):
return func
return _jit
prange = range
bincount = np.bincount
else:
@jit()
def bincount(x, weights, minlength): # noqa: D103
out = np.zeros(minlength)
for idx, w in zip(x, weights):
out[idx] += w
return out
###############################################################################
# Matplotlib
# workaround: plt.close() doesn't spawn close_event on Agg backend
# https://github.com/matplotlib/matplotlib/issues/18609
def _close_event(fig):
"""Force calling of the MPL figure close event."""
from matplotlib import backend_bases
from .utils import logger
try:
fig.canvas.callbacks.process(
"close_event",
backend_bases.CloseEvent(name="close_event", canvas=fig.canvas),
)
logger.debug(f"Called {fig!r}.canvas.close_event()")
except ValueError: # old mpl with Qt
logger.debug(f"Calling {fig!r}.canvas.close_event() failed")
pass # pragma: no cover
###############################################################################
# SciPy 1.14+ minimum_phase half=True option
def minimum_phase(h, method="homomorphic", n_fft=None, *, half=True):
"""Wrap scipy.signal.minimum_phase with half option."""
# Can be removed once
from scipy.fft import fft, ifft
from scipy.signal import minimum_phase as sp_minimum_phase
assert isinstance(method, str) and method == "homomorphic"
if "half" in inspect.getfullargspec(sp_minimum_phase).kwonlyargs:
return sp_minimum_phase(h, method=method, n_fft=n_fft, half=half)
h = np.asarray(h)
if np.iscomplexobj(h):
raise ValueError("Complex filters not supported")
if h.ndim != 1 or h.size <= 2:
raise ValueError("h must be 1-D and at least 2 samples long")
n_half = len(h) // 2
if not np.allclose(h[-n_half:][::-1], h[:n_half]):
warnings.warn(
"h does not appear to by symmetric, conversion may fail",
RuntimeWarning,
stacklevel=2,
)
if n_fft is None:
n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
n_fft = int(n_fft)
if n_fft < len(h):
raise ValueError(f"n_fft must be at least len(h)=={len(h)}")
# zero-pad; calculate the DFT
h_temp = np.abs(fft(h, n_fft))
# take 0.25*log(|H|**2) = 0.5*log(|H|)
h_temp += 1e-7 * h_temp[h_temp > 0].min() # don't let log blow up
np.log(h_temp, out=h_temp)
if half: # halving of magnitude spectrum optional
h_temp *= 0.5
# IDFT
h_temp = ifft(h_temp).real
# multiply pointwise by the homomorphic filter
# lmin[n] = 2u[n] - d[n]
# i.e., double the positive frequencies and zero out the negative ones;
# Oppenheim+Shafer 3rd ed p991 eq13.42b and p1004 fig13.7
win = np.zeros(n_fft)
win[0] = 1
stop = n_fft // 2
win[1:stop] = 2
if n_fft % 2:
win[stop] = 1
h_temp *= win
h_temp = ifft(np.exp(fft(h_temp)))
h_minimum = h_temp.real
n_out = (n_half + len(h) % 2) if half else len(h)
return h_minimum[:n_out]
|