1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal
import mne
from mne import (
VectorSourceEstimate,
convert_forward_solution,
pick_types_forward,
read_cov,
read_evokeds,
read_forward_solution,
)
from mne.cov import regularize
from mne.datasets import testing
from mne.dipole import Dipole
from mne.inverse_sparse import gamma_map
from mne.inverse_sparse.mxne_inverse import make_stc_from_dipoles
from mne.minimum_norm.tests.test_inverse import assert_stc_res, assert_var_exp_log
from mne.utils import assert_stcs_equal, catch_logging
data_path = testing.data_path(download=False)
fname_evoked = data_path / "MEG" / "sample" / "sample_audvis-ave.fif"
fname_cov = data_path / "MEG" / "sample" / "sample_audvis-cov.fif"
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-6-fwd.fif"
subjects_dir = data_path / "subjects"
def _check_stc(
stc, evoked, idx, hemi, fwd, dist_limit=0.0, ratio=50.0, res=None, atol=1e-20
):
"""Check correctness."""
assert_array_almost_equal(stc.times, evoked.times, 5)
stc_orig = stc
if isinstance(stc, VectorSourceEstimate):
assert stc.data.any(1).any(1).all() # all dipoles should have some
stc = stc.magnitude()
amps = np.sum(stc.data**2, axis=1)
order = np.argsort(amps)[::-1]
amps = amps[order]
verts = np.concatenate(stc.vertices)[order]
hemi_idx = int(order[0] >= len(stc.vertices[1]))
hemis = ["lh", "rh"]
assert hemis[hemi_idx] == hemi
dist = (
np.linalg.norm(np.diff(fwd["src"][hemi_idx]["rr"][[idx, verts[0]]], axis=0)[0])
* 1000.0
)
assert dist <= dist_limit
assert amps[0] > ratio * amps[1]
if res is not None:
assert_stc_res(evoked, stc_orig, fwd, res, atol=atol)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_gamma_map_standard():
"""Test Gamma MAP inverse."""
forward = read_forward_solution(fname_fwd)
forward = convert_forward_solution(forward, surf_ori=True)
forward = pick_types_forward(forward, meg=False, eeg=True)
evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0), proj=False)
evoked.resample(50, npad=100)
evoked.crop(tmin=0.1, tmax=0.14) # crop to window around peak
cov = read_cov(fname_cov)
cov = regularize(cov, evoked.info)
alpha = 0.5
with catch_logging() as log:
stc = gamma_map(
evoked,
forward,
cov,
alpha,
tol=1e-4,
xyz_same_gamma=True,
update_mode=1,
verbose=True,
)
_check_stc(stc, evoked, 68477, "lh", fwd=forward)
assert_var_exp_log(log.getvalue(), 20, 22)
with catch_logging() as log:
stc_vec, res = gamma_map(
evoked,
forward,
cov,
alpha,
tol=1e-4,
xyz_same_gamma=True,
update_mode=1,
pick_ori="vector",
return_residual=True,
verbose=True,
)
assert_var_exp_log(log.getvalue(), 20, 22)
assert_stcs_equal(stc_vec.magnitude(), stc)
_check_stc(stc_vec, evoked, 68477, "lh", fwd=forward, res=res)
stc, res = gamma_map(
evoked,
forward,
cov,
alpha,
tol=1e-4,
xyz_same_gamma=False,
update_mode=1,
pick_ori="vector",
return_residual=True,
)
_check_stc(
stc, evoked, 82010, "lh", fwd=forward, dist_limit=6.0, ratio=2.0, res=res
)
with catch_logging() as log:
dips = gamma_map(
evoked,
forward,
cov,
alpha,
tol=1e-4,
xyz_same_gamma=False,
update_mode=1,
return_as_dipoles=True,
verbose=True,
)
exp_var = assert_var_exp_log(log.getvalue(), 58, 60)
dip_exp_var = np.mean(sum(dip.gof for dip in dips))
assert_allclose(exp_var, dip_exp_var, atol=10) # not really equiv, close
assert isinstance(dips[0], Dipole)
stc_dip = make_stc_from_dipoles(dips, forward["src"])
assert_stcs_equal(stc.magnitude(), stc_dip)
# force fixed orientation
stc, res = gamma_map(
evoked,
forward,
cov,
alpha,
tol=1e-4,
xyz_same_gamma=False,
update_mode=2,
loose=0,
return_residual=True,
)
_check_stc(stc, evoked, 85739, "lh", fwd=forward, ratio=20.0, res=res)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_gamma_map_vol_sphere():
"""Gamma MAP with a sphere forward and volumic source space."""
evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0), proj=False)
evoked.resample(50, npad=100)
evoked.crop(tmin=0.1, tmax=0.16) # crop to window around peak
cov = read_cov(fname_cov)
cov = regularize(cov, evoked.info, rank=dict(eeg=58))
info = evoked.info
sphere = mne.make_sphere_model(r0=(0.0, 0.0, 0.0), head_radius=0.080)
src = mne.setup_volume_source_space(
subject=None,
pos=30.0,
mri=None,
sphere=(0.0, 0.0, 0.0, 0.08),
bem=None,
mindist=5.0,
exclude=2.0,
sphere_units="m",
)
fwd = mne.make_forward_solution(
info, trans=None, src=src, bem=sphere, eeg=False, meg=True
)
alpha = 0.5
stc = gamma_map(
evoked,
fwd,
cov,
alpha,
tol=1e-4,
xyz_same_gamma=False,
update_mode=2,
return_residual=False,
)
assert_array_almost_equal(stc.times, evoked.times, 5)
# Computing inverse with restricted orientations should also work, since
# we have a discrete source space.
stc = gamma_map(evoked, fwd, cov, alpha, loose=0.2, return_residual=False)
assert_array_almost_equal(stc.times, evoked.times, 5)
# Compare orientation obtained using fit_dipole and gamma_map
# for a simulated evoked containing a single dipole
stc = mne.VolSourceEstimate(
50e-9 * np.random.RandomState(42).randn(1, 4),
vertices=[stc.vertices[0][:1]],
tmin=stc.tmin,
tstep=stc.tstep,
)
evoked_dip = mne.simulation.simulate_evoked(
fwd, stc, info, cov, nave=1e9, use_cps=True
)
dip_gmap = gamma_map(evoked_dip, fwd, cov, 0.1, return_as_dipoles=True)
amp_max = [np.max(d.amplitude) for d in dip_gmap]
dip_gmap = dip_gmap[np.argmax(amp_max)]
assert dip_gmap[0].pos[0] in src[0]["rr"][stc.vertices[0]]
dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
assert np.abs(np.dot(dip_fit.ori[0], dip_gmap.ori[0])) > 0.99
|