1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re as re
import numpy as np
from ..._fiff.meas_info import create_info
from ..._fiff.utils import _mult_cal_one
from ...annotations import Annotations
from ...utils import _check_fname, fill_doc, logger, verbose
from ..base import BaseRaw
@fill_doc
def read_raw_boxy(fname, preload=False, verbose=None) -> "RawBOXY":
"""Reader for an optical imaging recording.
This function has been tested using the ISS Imagent I and II systems
and versions 0.40/0.84 of the BOXY recording software.
Parameters
----------
fname : path-like
Path to the BOXY data file.
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawBOXY
A Raw object containing BOXY data.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.Raw : Documentation of attributes and methods of RawBOXY.
"""
return RawBOXY(fname, preload, verbose)
@fill_doc
class RawBOXY(BaseRaw):
"""Raw object from a BOXY optical imaging file.
Parameters
----------
fname : path-like
Path to the BOXY data file.
%(preload)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
"""
@verbose
def __init__(self, fname, preload=False, verbose=None):
logger.info(f"Loading {fname}")
# Read header file and grab some info.
start_line = np.inf
col_names = mrk_col = filetype = mrk_data = end_line = None
raw_extras = dict()
raw_extras["offsets"] = list() # keep track of our offsets
sfreq = None
fname = str(_check_fname(fname, "read", True, "fname"))
with open(fname) as fid:
line_num = 0
i_line = fid.readline()
while i_line:
# most of our lines will be data lines, so check that first
if line_num >= start_line:
assert col_names is not None
assert filetype is not None
if "#DATA ENDS" in i_line:
# Data ends just before this.
end_line = line_num
break
if mrk_col is not None:
if filetype == "non-parsed":
# Non-parsed files have different lines lengths.
crnt_line = i_line.rsplit(" ")[0]
temp_data = re.findall(r"[-+]?\d*\.?\d+", crnt_line)
if len(temp_data) == len(col_names):
mrk_data.append(
float(
re.findall(r"[-+]?\d*\.?\d+", crnt_line)[
mrk_col
]
)
)
else:
crnt_line = i_line.rsplit(" ")[0]
mrk_data.append(
float(re.findall(r"[-+]?\d*\.?\d+", crnt_line)[mrk_col])
)
raw_extras["offsets"].append(fid.tell())
# now proceed with more standard header parsing
elif "BOXY.EXE:" in i_line:
boxy_ver = re.findall(r"\d*\.\d+", i_line.rsplit(" ")[-1])[0]
# Check that the BOXY version is supported
if boxy_ver not in ["0.40", "0.84"]:
raise RuntimeError(
f"MNE has not been tested with BOXY version ({boxy_ver})"
)
elif "Detector Channels" in i_line:
raw_extras["detect_num"] = int(i_line.rsplit(" ")[0])
elif "External MUX Channels" in i_line:
raw_extras["source_num"] = int(i_line.rsplit(" ")[0])
elif "Update Rate (Hz)" in i_line or "Updata Rate (Hz)" in i_line:
# Version 0.40 of the BOXY recording software
# (and possibly other versions lower than 0.84) contains a
# typo in the raw data file where 'Update Rate' is spelled
# "Updata Rate. This will account for this typo.
sfreq = float(i_line.rsplit(" ")[0])
elif "#DATA BEGINS" in i_line:
# Data should start a couple lines later.
start_line = line_num + 3
elif line_num == start_line - 2:
# Grab names for each column of data.
raw_extras["col_names"] = col_names = re.findall(
r"\w+\-\w+|\w+\-\d+|\w+", i_line.rsplit(" ")[0]
)
if "exmux" in col_names:
# Change filetype based on data organisation.
filetype = "non-parsed"
else:
filetype = "parsed"
if "digaux" in col_names:
mrk_col = col_names.index("digaux")
mrk_data = list()
# raw_extras['offsets'].append(fid.tell())
elif line_num == start_line - 1:
raw_extras["offsets"].append(fid.tell())
line_num += 1
i_line = fid.readline()
assert sfreq is not None
raw_extras.update(filetype=filetype, start_line=start_line, end_line=end_line)
# Label each channel in our data, for each data type (DC, AC, Ph).
# Data is organised by channels x timepoint, where the first
# 'source_num' rows correspond to the first detector, the next
# 'source_num' rows correspond to the second detector, and so on.
ch_names = list()
ch_types = list()
cals = list()
for det_num in range(raw_extras["detect_num"]):
for src_num in range(raw_extras["source_num"]):
for i_type, ch_type in [
("DC", "fnirs_cw_amplitude"),
("AC", "fnirs_fd_ac_amplitude"),
("Ph", "fnirs_fd_phase"),
]:
ch_names.append(f"S{src_num + 1}_D{det_num + 1} {i_type}")
ch_types.append(ch_type)
cals.append(np.pi / 180.0 if i_type == "Ph" else 1.0)
# Create info structure.
info = create_info(ch_names, sfreq, ch_types)
for ch, cal in zip(info["chs"], cals):
ch["cal"] = cal
# Determine how long our data is.
delta = end_line - start_line
assert len(raw_extras["offsets"]) == delta + 1
if filetype == "non-parsed":
delta //= raw_extras["source_num"]
super().__init__(
info,
preload,
filenames=[fname],
first_samps=[0],
last_samps=[delta - 1],
raw_extras=[raw_extras],
verbose=verbose,
)
# Now let's grab our markers, if they are present.
if mrk_data is not None:
mrk_data = np.array(mrk_data, float)
# We only want the first instance of each trigger.
prev_mrk = 0
mrk_idx = list()
duration = list()
tmp_dur = 0
for i_num, i_mrk in enumerate(mrk_data):
if i_mrk != 0 and i_mrk != prev_mrk:
mrk_idx.append(i_num)
if i_mrk != 0 and i_mrk == prev_mrk:
tmp_dur += 1
if i_mrk == 0 and i_mrk != prev_mrk:
duration.append((tmp_dur + 1) / sfreq)
tmp_dur = 0
prev_mrk = i_mrk
onset = np.array(mrk_idx) / sfreq
description = mrk_data[mrk_idx]
annot = Annotations(onset, duration, description)
self.set_annotations(annot)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a segment of data from a file.
Boxy file organises data in two ways, parsed or un-parsed.
Regardless of type, output has (n_montages x n_sources x n_detectors
+ n_marker_channels) rows, and (n_timepoints x n_blocks) columns.
"""
source_num = self._raw_extras[fi]["source_num"]
detect_num = self._raw_extras[fi]["detect_num"]
start_line = self._raw_extras[fi]["start_line"]
end_line = self._raw_extras[fi]["end_line"]
filetype = self._raw_extras[fi]["filetype"]
col_names = self._raw_extras[fi]["col_names"]
offsets = self._raw_extras[fi]["offsets"]
boxy_file = self.filenames[fi]
# Non-parsed multiplexes sources, so we need source_num times as many
# lines in that case
if filetype == "parsed":
start_read = start_line + start
stop_read = start_read + (stop - start)
else:
assert filetype == "non-parsed"
start_read = start_line + start * source_num
stop_read = start_read + (stop - start) * source_num
assert start_read >= start_line
assert stop_read <= end_line
# Possible detector names.
detectors = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"[:detect_num]
# Loop through our data.
one = np.zeros((len(col_names), stop_read - start_read))
with open(boxy_file) as fid:
# Just a more efficient version of this:
# ii = 0
# for line_num, i_line in enumerate(fid):
# if line_num >= start_read:
# if line_num >= stop_read:
# break
# # Grab actual data.
# i_data = i_line.strip().split()
# one[:len(i_data), ii] = i_data
# ii += 1
fid.seek(offsets[start_read - start_line], 0)
for oo in one.T:
i_data = fid.readline().strip().split()
oo[: len(i_data)] = i_data
# in theory we could index in the loop above, but it's painfully slow,
# so let's just take a hopefully minor memory hit
if filetype == "non-parsed":
ch_idxs = [
col_names.index(f"{det}-{i_type}")
for det in detectors
for i_type in ["DC", "AC", "Ph"]
]
one = (
one[ch_idxs]
.reshape( # each "time point" multiplexes srcs
len(detectors), 3, -1, source_num
)
.transpose( # reorganize into (det, source, DC/AC/Ph, t) order
0, 3, 1, 2
)
.reshape( # reshape the way we store it (det x source x DAP, t)
len(detectors) * source_num * 3, -1
)
)
else:
assert filetype == "parsed"
ch_idxs = [
col_names.index(f"{det}-{i_type}{si + 1}")
for det in detectors
for si in range(source_num)
for i_type in ["DC", "AC", "Ph"]
]
one = one[ch_idxs]
# Place our data into the data object in place.
_mult_cal_one(data, one, idx, cals, mult)
|