1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
import scipy.io as spio
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
from mne import pick_types
from mne.datasets import testing
from mne.io import read_raw_boxy
from mne.io.tests.test_raw import _test_raw_reader
data_path = testing.data_path(download=False)
boxy_0_40 = (
data_path / "BOXY" / "boxy_0_40_recording" / "boxy_0_40_notriggers_unparsed.txt"
)
p_pod_0_40 = (
data_path
/ "BOXY"
/ "boxy_0_40_recording"
/ "p_pod_10_6_3_loaded_data"
/ "p_pod_10_6_3_notriggers_unparsed.mat"
)
boxy_0_84 = (
data_path
/ "BOXY"
/ "boxy_0_84_digaux_recording"
/ "boxy_0_84_triggers_unparsed.txt"
)
boxy_0_84_parsed = (
data_path / "BOXY" / "boxy_0_84_digaux_recording" / "boxy_0_84_triggers_parsed.txt"
)
p_pod_0_84 = (
data_path
/ "BOXY"
/ "boxy_0_84_digaux_recording"
/ "p_pod_10_6_3_loaded_data"
/ "p_pod_10_6_3_triggers_unparsed.mat"
)
def _assert_ppod(raw, p_pod_file):
have_types = raw.get_channel_types(unique=True)
assert "fnirs_fd_phase" in raw, have_types
assert "fnirs_cw_amplitude" in raw, have_types
assert "fnirs_fd_ac_amplitude" in raw, have_types
ppod_data = spio.loadmat(p_pod_file)
# Compare MNE loaded data to p_pod loaded data.
map_ = dict(
dc="fnirs_cw_amplitude", ac="fnirs_fd_ac_amplitude", ph="fnirs_fd_phase"
)
for key, value in map_.items():
ppod = ppod_data[key].T
m = np.median(np.abs(ppod))
assert 1e-1 < m < 1e5, key # our atol is meaningful
atol = m * 1e-10
py = raw.get_data(value)
if key == "ph": # radians
assert_array_less(-np.pi, py)
assert_array_less(py, 3 * np.pi)
py = np.rad2deg(py)
assert_allclose(py, ppod, atol=atol, err_msg=key)
@testing.requires_testing_data
def test_boxy_load():
"""Test reading BOXY files."""
raw = read_raw_boxy(boxy_0_40, verbose=True)
assert raw.info["sfreq"] == 62.5
_assert_ppod(raw, p_pod_0_40)
# Grab our different data types.
mne_ph = raw.copy().pick(picks="fnirs_fd_phase")
mne_dc = raw.copy().pick(picks="fnirs_cw_amplitude")
mne_ac = raw.copy().pick(picks="fnirs_fd_ac_amplitude")
# Check channel names.
first_chans = [
"S1_D1",
"S2_D1",
"S3_D1",
"S4_D1",
"S5_D1",
"S6_D1",
"S7_D1",
"S8_D1",
"S9_D1",
"S10_D1",
]
last_chans = [
"S1_D8",
"S2_D8",
"S3_D8",
"S4_D8",
"S5_D8",
"S6_D8",
"S7_D8",
"S8_D8",
"S9_D8",
"S10_D8",
]
assert mne_dc.info["ch_names"][:10] == [
i_chan + " " + "DC" for i_chan in first_chans
]
assert mne_ac.info["ch_names"][:10] == [
i_chan + " " + "AC" for i_chan in first_chans
]
assert mne_ph.info["ch_names"][:10] == [
i_chan + " " + "Ph" for i_chan in first_chans
]
assert mne_dc.info["ch_names"][70::] == [
i_chan + " " + "DC" for i_chan in last_chans
]
assert mne_ac.info["ch_names"][70::] == [
i_chan + " " + "AC" for i_chan in last_chans
]
assert mne_ph.info["ch_names"][70::] == [
i_chan + " " + "Ph" for i_chan in last_chans
]
# Since this data set has no 'digaux' for creating trigger annotations,
# let's make sure our Raw object has no annotations.
assert len(raw.annotations) == 0
@testing.requires_testing_data
@pytest.mark.parametrize("fname", (boxy_0_84, boxy_0_84_parsed))
def test_boxy_filetypes(fname):
"""Test reading parsed and unparsed BOXY data files."""
# BOXY data files can be saved in two formats (parsed and unparsed) which
# mostly determines how the data is organised.
# For parsed files, each row is a single timepoint and all
# source/detector combinations are represented as columns.
# For unparsed files, each row is a source and each group of n rows
# represents a timepoint. For example, if there are ten sources in the raw
# data then the first ten rows represent the ten sources at timepoint 1
# while the next set of ten rows are the ten sources at timepoint 2.
# Detectors are represented as columns.
# Since p_pod is designed to only load unparsed files, we will first
# compare MNE and p_pod loaded data from an unparsed data file. If those
# files are comparable, then we will compare the MNE loaded data between
# parsed and unparsed files.
raw = read_raw_boxy(fname, verbose=True)
assert raw.info["sfreq"] == 79.4722
_assert_ppod(raw, p_pod_0_84)
# Grab our different data types.
unp_dc = raw.copy().pick("fnirs_cw_amplitude")
unp_ac = raw.copy().pick("fnirs_fd_ac_amplitude")
unp_ph = raw.copy().pick("fnirs_fd_phase")
# Check channel names.
chans = ["S1_D1", "S2_D1", "S3_D1", "S4_D1", "S5_D1", "S6_D1", "S7_D1", "S8_D1"]
assert unp_dc.info["ch_names"] == [i_chan + " " + "DC" for i_chan in chans]
assert unp_ac.info["ch_names"] == [i_chan + " " + "AC" for i_chan in chans]
assert unp_ph.info["ch_names"] == [i_chan + " " + "Ph" for i_chan in chans]
@testing.requires_testing_data
@pytest.mark.parametrize("fname", (boxy_0_84, boxy_0_84_parsed))
def test_boxy_digaux(fname):
"""Test reading BOXY files and generating annotations from digaux."""
srate = 79.4722
raw = read_raw_boxy(fname, verbose=True)
# Grab our different data types.
picks_dc = pick_types(raw.info, fnirs="fnirs_cw_amplitude")
picks_ac = pick_types(raw.info, fnirs="fnirs_fd_ac_amplitude")
picks_ph = pick_types(raw.info, fnirs="fnirs_fd_phase")
assert_array_equal(picks_dc, np.arange(0, 8) * 3 + 0)
assert_array_equal(picks_ac, np.arange(0, 8) * 3 + 1)
assert_array_equal(picks_ph, np.arange(0, 8) * 3 + 2)
# Check that our event order matches what we expect.
event_list = ["1.0", "2.0", "3.0", "4.0", "5.0"]
assert_array_equal(raw.annotations.description, event_list)
# Check that our event timings are what we expect.
event_onset = [i_time * (1.0 / srate) for i_time in [105, 185, 265, 344, 424]]
assert_allclose(raw.annotations.onset, event_onset, atol=1e-6)
# Now let's compare parsed and unparsed events to p_pod loaded digaux.
# Load our p_pod data.
ppod_data = spio.loadmat(p_pod_0_84)
ppod_digaux = np.transpose(ppod_data["digaux"])[0]
# Now let's get our triggers from the p_pod digaux.
# We only want the first instance of each trigger.
prev_mrk = 0
mrk_idx = list()
duration = list()
tmp_dur = 0
for i_num, i_mrk in enumerate(ppod_digaux):
if i_mrk != 0 and i_mrk != prev_mrk:
mrk_idx.append(i_num)
if i_mrk != 0 and i_mrk == prev_mrk:
tmp_dur += 1
if i_mrk == 0 and i_mrk != prev_mrk:
duration.append((tmp_dur + 1) * (1.0 / srate))
tmp_dur = 0
prev_mrk = i_mrk
onset = np.asarray([i_mrk * (1.0 / srate) for i_mrk in mrk_idx])
description = np.asarray([str(float(i_mrk)) for i_mrk in ppod_digaux[mrk_idx]])
assert_array_equal(raw.annotations.description, description)
assert_allclose(raw.annotations.onset, onset, atol=1e-6)
@testing.requires_testing_data
@pytest.mark.parametrize("fname", (boxy_0_40, boxy_0_84, boxy_0_84_parsed))
def test_raw_properties(fname):
"""Test raw reader properties."""
_test_raw_reader(read_raw_boxy, fname=fname, boundary_decimal=1)
|